结构动力学复习题
结构动力学课后习题答案

结构动力学课后习题答案结构动力学是研究结构在动态载荷作用下的响应和行为的学科。
它涉及到结构的振动、冲击响应、疲劳分析等方面。
课后习题是帮助学生巩固课堂知识、深化理解的重要手段。
以下内容是结构动力学课后习题的一些可能答案,供参考:习题1:单自由度系统自由振动分析解答:对于一个单自由度系统,其自由振动的频率可以通过以下公式计算:\[ f = \frac{1}{2\pi}\sqrt{\frac{k}{m}} \]其中,\( k \) 是系统的刚度,\( m \) 是系统的总质量。
系统自由振动的振幅随着时间的衰减可以通过阻尼比 \( \zeta \) 来描述,其衰减系数 \( \delta \) 可以通过以下公式计算:\[ \delta = \sqrt{1-\zeta^2} \]习题2:单自由度系统受迫振动分析解答:当单自由度系统受到周期性外力作用时,其受迫振动的振幅可以通过以下公式计算:\[ A = \frac{F_0}{\sqrt{(k-m\omega^2)^2+(m\zeta\omega)^2}} \] 其中,\( F_0 \) 是外力的幅值,\( \omega \) 是外力的角频率。
习题3:多自由度系统模态分析解答:对于多自由度系统,可以通过求解特征值问题来得到系统的模态。
特征值问题通常表示为:\[ [K]{\phi} = \lambda[M]{\phi} \]其中,\( [K] \) 是系统的刚度矩阵,\( [M] \) 是系统的质量矩阵,\( \lambda \) 是特征值,\( {\phi} \) 是对应的特征向量,即模态形状。
习题4:结构的冲击响应分析解答:对于结构的冲击响应分析,通常需要考虑冲击载荷的持续时间和冲击能量。
结构的冲击响应可以通过冲击响应谱(IRF)来分析,它描述了结构在不同频率下的响应。
冲击响应分析的结果可以用来评估结构的耐冲击性能。
习题5:疲劳分析解答:结构的疲劳分析需要考虑结构在重复载荷作用下的寿命。
结构动力学习题解答

然后积分求初始速度
̇̇ d t = θ̇0 = θ 0
0+ 0+ 0+
∫
0
∫ hδ ( t ) d t = h ∫ δ ( t ) d t = h
0 0 0+
;
再积分求初位移
̇̇ d t == h )d t = 0 ; θ0 = θ 0
0+
∫
0
∫
0
̇̇ 、 θ̇ 和 θ 的瞬态响应 这样方程(6)的解就是系统对于初始条件 θ 0 0 0
1.6 求图 1-35 所示系统的固有频率。图中磙子半径为 R,质量为 M,作纯滚动。弹簧刚度 为K 。 解:磙子作平面运动, 其动能 T=T 平动 +T 转动 。
K R M 图 1-35 x
T平动 = T转动
1 ̇2; Mx 2 2 2 ̇ ⎞ 1 ⎛ MR 2 ⎞ ⎛ x ̇⎞ 1 ⎛x = I⎜ ⎟ = ⎜ ⎟⎜ ⎟ ; 2 ⎝R⎠ 2 ⎝ 2 ⎠⎝ R ⎠
U= r 2 1 1 1 1⎛ K A ϕ A 2 + K B ϕ B 2 = K Aϕ A 2 + K B ϕ B 2 = ⎜ K A + K B A 2 2 2 2 2⎜ rB ⎝
(
)
⎞ 2 ⎟ϕ ; ⎟ A ⎠
系统的机械能为
T +U = r 2 1 1⎛ ̇ A2 + ⎜ K A + K B A (m A + m B )rA 2ϕ 4 2⎜ rB 2 ⎝
d (T + U ) = 0 ,进一步得到系 dt
统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 1.2 叙述用衰减法求单自由度系统阻尼比的方法和步骤。 用衰减法求单自由度系统阻尼比的方法有两个:衰减曲线法和共振法。 方法一:衰减曲线法。 求解步骤: (1)利用试验测得单自由度系统的衰减振动曲线,并测得周期和相邻波峰和波谷 的幅值 Ai 、 Ai +1 。 (2)由对数衰减率定义 δ = ln(
工程力学结构动力学复习题

工程力学结构动力学复习题一、简答题1、结构的动力特性主要指什么?对结构做动力分析可分为哪几个阶段?2、何谓结构的振动自由度?它与机动分析中的自由度有何异同?3、何谓动力系数?简谐荷载下动力系数与哪些因素有关?4、动力荷载与静力荷载有什么区别?动力计算与静力计算的主要差别是什么?5、为什么说结构的自振频率和周期是结构的固有性质?怎样改变他们?6、简述振型分解法是如何将耦联的运动方程解耦的.7、时域法求解与频域法求解振动问题各有何特点?8、什么叫动力系数,动力系数大小与哪些因素有关?单自由度体系位移动力系数与内力动力系数是否一样?答:动力放大系数是指动荷载引起的响应幅值与动荷载幅值作为静荷载所引起的结构静响应之比值。
简谐荷载下的动力放大系数与频率比、阻尼比有关。
当惯性力与动荷载作用线重合时,位移动力系数与内力动力系数相等;否则不相等.原因是:当把动荷载换成作用于质量的等效荷载时,引起的质量位移相等,但内力并不等效,根据动力系数的概念可知不会相等。
9、振型正交性的物理意义是什么?振型正交性有何应用?答:由振型关于质量、刚度正交性公式可知,i 振型上的惯性力在j 振型上作的虚功为0。
由此可知,既然每一主振型相应的惯性力在其他主振型上不做功,那么它的振动能量就不会转移到别的主振型上去。
换句话说,当一个体系只按某一主振型振动时,不会激起其他主振型的振动.这说明各个主振型都能单独出现,彼此线性无关。
这就是振型正交的物理意义. 一是可用于校核振型的正确性;二是在已知振型的条件下,可以通过折算质量与折算刚度计算对应的频率。
而更主要的是任一同阶向量均可用振型的线性组合来表示,在受迫振动分析中,利用振型的正交性,在阻尼矩阵正交的假设下可使运动方程解藕。
10、什么是阻尼、阻尼力,产生阻尼的原因一般有哪些?什么是等效粘滞阻尼?答:振动过程的能量耗散称为阻尼。
产生阻尼的原因主要有:材料的内摩擦、构件间接触面的摩擦、介质的阻力等等。
结构动力学复习题

结构力学下复习题一. 判断题1. 对于单自由度体系有如下关系k =δ-1对于多自由度体系也同样成立。
( )2. 仅在恢复力作用下的振动称为自由振动。
( )3. 如果使单自由度体系的阻尼增大,其结果是周期变短。
( )4、 体系在θϖ>时,)(t y 与)(t p 方向相同。
ϖ为自振频率,EI 为常数。
( )5. 在无限自由度体系的弹性稳定分析中,用静力法和能量法(瑞利-里兹法)得到的临界荷载是相同的。
( )6. 只要两个杆件的截面面积相同、所用材料相同,它们的极限弯矩就是相同的。
( )二. 单项选择题1.对图示结构,若要使其自振频率增大,可以( )。
A. 增大F P ; C. 增大m ;B. 增大 EI ; D. 增大l 。
2 . 单自由度简谐受迫振动中,若算得位移放大系数μ 为负值,则表示( )。
A. 体系不可能振动; C. 动位移小于静位移;B. 干扰力频率与自振频率不同步; D. 干扰力方向与位移方向相反。
3.单自由度体系在简谐荷载作用下如果频率比大于1,则要减小振动幅值需采取措施A 增加刚度,减少质量;B 增加刚度,增加质量;C 减少刚度,减少质量;D 减少刚度,增加质量;4.图示两组压杆的临界荷载分析为Pcr 1 F 和Pcr 2 F ,则两者的关系是A 21cr cr F F =B 212cr cr F F =C 212cr cr F F =D 215.1cr cr F F =题4三 . 填充题1.图示体系不计杆件质量和轴向变形,各杆抗弯刚度为常数,其动力自由度为 。
2.图示体系的自振频率为 。
3、对于矩形截面,极限弯矩为屈服弯矩的 倍。
4、已知质点m 的最大竖向位移st y y 5max = ,且初始时质点竖向位移为st y (st y 为静位移),则质点的初始速度为 。
四. 计算分析题1.)已知θ = 0.4ω ,试求图示体系的振幅和最大动弯矩。
2.试求图示体系质点的振幅和A 截面动弯矩幅值,已知ϖθ6.0=3.试求图示基础的振幅 A及地基所受的动压力N。
结构动力学例题复习题含答案-2021年推荐必备

结构动力学例题复习题第十六章结构动力学【例 16- 1 】不计杆件分布质量和轴向变形,确定图 16-6 所示刚架的动力自由度。
图 16-6【解】各刚架的自由度确定如图中所示。
这里要注意以下两点:1.在确定刚架的自由度时,引用受弯直杆上任意两点之间的距离保持不变的假定。
根据这个假定并加入最少数量的链杆以限制刚架上所有质量的位置,则刚架的自由度数目即等于所加链杆数目。
2.集中质量的质点数并不一定等于体系的自由度数,而根据自由度的定义及问题的具体情形确定。
【例 16- 2 】试用柔度法建立图 16-7a 所示单自由度体系,受均布动荷载作用的运动方程。
【解】本题特点是,动荷载不是作用在质量上的集中荷载。
对于非质量处的集中动荷载的情况,在建立运动方程时,一般采用柔度法较为方便。
设图 a 质量任一时刻沿自由度方向的位移为 y (向下为正)。
把惯性力、阻尼力及动荷载,均看作是一个静荷载,则在其作用下体系在质量处的位移y ,由叠加原理(见图 b 、 c 、 d 及 e ),则式中,,。
将它们代入上式,并注意到,,得图 16-7经整理后可得式中,,称为等效动荷载或等效干扰力。
其含义为:直接作用于质量上所产生的位移和实际动荷载引起的位移相等。
图 a 的相当体系如图 f 所示。
【例 16- 3 】图 16-8 a 为刚性外伸梁, C 处为弹性支座 , 其刚度系数为,梁端点 A 、 D 处分别有和质量,端点 D 处装有阻尼器 c ,同时梁 BD 段受有均布动荷载作用,试建立刚性梁的运动方程。
【解】因为梁是刚性的,这个体系仅有一个自由度,故它的动力响应可由一个运动方程来表达,方程可以用直接平衡法来建立。
这个单自由度体系可能产生的位移形式如图 b 所示,可以用铰 B 的运动作为基本量,而其它一切位移均可利用它来表示。
图 16-8以顺时针向为正。
则 A 点有位移和加速度; D 点有位移和加速度及速度; C 点约束反力为。
由,有将惯性力、阻尼力及约束反力代入上式,得经整理,运动方程为小结:例 16- 2 及例 16- 3 讨论的是单自由度的一般情况下的运动方程的建立。
结构动力学复习

强迫振动和固有运动出现拍的现象,即时而相互增强,时而相互抵消;
最大总响应比最大稳态响应大:总动力放大因数为
共振:r=1时,用假定解求解
(2)粘滞阻尼SDOF系统简谐激励运动方程:
稳态响应与激励不同相位,稳态响应的解可写成:
则稳态响应方程可以写成:
其中:
(2)非周期激励——傅立叶积分:它是由傅立叶级数,令周期T1无穷大得来的。
傅立叶变换对:
(3)复频响应与单位脉冲响应的关系:
第八章连续系统
(1)轴向变形基本假定:横截面保持为平面,并垂直于杆件的轴;材料为线弹性;在给定截面上,材料特征为常数,也可随X面变。
三个基本方程式:
线弹性杆的轴向振动运动方程:
横向强迫振动的运动方程:
该公式只是对于相对长的薄壁梁成立。
边界条件:固定端
简支端
外力-自由端
(3)哈密顿原理:
(4)铁木辛科梁:以哈密顿原理推导的运动方程和边界条件,考虑剪切变形和转动惯量。也适用短粗梁。
第九章连续系统自由振动
(1)轴向自由振动:
边界条件:固定端
自由端
(2)伯努利-欧拉梁横向自由振动:
第一章结构的动力学引言
(1)动力问题与静力问题的两大区别:(1)动力荷载随着时间的变化,即激励的与时俱变性质,动力荷载是一个随时间变化的幅值、方向和作用点,由此得到与时俱变的挠度和应力,就构成了动力响应;(2)加速度在结构动力问题中起了主要作用,如果惯性力对结构的挠度和内应力有显著影响时,就需要研究它的动力问题了。
根据阻尼因数的大小分为:弱阻尼(),临界阻尼()和过阻尼()
弱阻尼:为阻尼固有圆频率,为
相应的为阻尼周期,为
结构动力学复习题全解

*本章讨论结构在动力荷载作用下的反应。 **学习本章注重动力学的特征------惯性力。 *结构动力计算的目的在于确定结构在动力荷载作用下的位移、内力等量值随时间变化 的规律,从而找出其最大值作为设计的依据。 *动力学研究的问题:动态作用下结构或构件的强度、刚度及稳定性分析。 一、 本章重点 1.振动方程的建立 2.振动频率和振型的计算 3.振型分解法求解多自由度体系 4.最大动位移及最大动应力 二、 基础知识 1.高等数学 2.线性代数 3.结构力学 三、 动力荷载的特征 1.大小和方向是时间 t 的函数 例如:地震作用,波浪对船体的作用,风荷载,机械振动等 2.具有加速度,因而产生惯性力 四、 动力荷载的分类 1.周期性动力荷载 例如:①机械运转产生的动力荷载,②打桩时的锤击荷载。 P(t) P(t)
Δt 时间内,干扰力的作用近似的看作是初速度为 v (t ) = 的自由振动。 由(3)式可知:
p∆t p ( ∆t ) 2 ,初位移为 y(t ) = =0 m 2m
y(t ) = y 0 cosωt +
v0 p∆t sinωt sinωt = ω mω
---------------------(9)
& (t ) FD= - C y
,称为粘滞阻尼力,阻尼力 与运动方向相反。
一切引起振动衰减的因素均称为阻尼,包括 EI ①材料的内摩擦引起的机械能转化为热能消失 ②周围介质对结构的阻尼(如,空气的紫力) ③节点,构件与支座连接之间的摩擦阻力 ④通过基础散失的能量 2.弹性恢复力 FE= - K y(t) ,K 为侧移刚度系数,弹性恢复力 与运动方向相反。 3.惯性力
,阻尼系数为 C ,横梁具有分布质量 m =
m L
。
结构动力学复习

(5)连续系统的虚位移原理——假定振型法:虚位移在一定程度上近似于连续系统的挠曲特征,这种方法成为假定振型法。
第三章SDOF系统自由振动
(1)线性SDOF系统的运动方程:
无阻尼固有圆频率;粘滞阻尼因数;临界阻尼系数
边界条件:外力-自由端
固定端
(2)线弹性梁横向振动的伯努利-欧拉理论假定:梁上有一根沿x轴的中性轴,表现即没有拉伸也没有压缩;在未变形的梁中,横截面垂直于中性轴,并保持平面,在变形的中性轴上亦保持垂直,忽略横向剪切变形;材料为线弹性,任何截面性质相同;y、z向应力相对x向来说可忽略不计;x-y为柱主平面。可以忽略转动惯量。
(3)无阻尼DPF系统短时作用脉冲响应为:
无阻尼SDOF系统单位脉冲响应函数,即I=1时:
=1的粘滞阻尼SDOF系统单位脉冲函数:
第六章SDOF系统一般动力激励
(1)三种方法得到一般动力荷载系统响应的解析表达式:杜哈梅积分法(时域解),拉普拉斯变换法(拉域解)和傅立叶变换法(频域解)。
(2)杜哈梅积分法:叠加原理为依据,仅对线性系统有效。
总响应的特点:稳态响应与激励频率相同,相位据r而定;
强迫振动和固有运动出现拍的现象,即时而相互增强,时而相互抵消;
最大总响应比最大稳态响应大:总动力放大因数为
共振:r=1时,用假定解求解
(2)粘滞阻尼SDOF系统简谐激励运动方程:
稳态响应与激励不同相位,稳态响应的解可写成:
则稳态响应方程可以写成:
其中:
边界条件:固定端
简支端
自由端
(3)连续系统固有频率瑞利近似表示法:即假定振型法,用来估算无阻尼连续系统基频。