年中考数学专题练习1《实数》
中考数学复习《实数》专项测试卷(带答案)

中考数学复习《实数》专项测试卷(带答案)学校:___________班级:___________姓名:___________考号:___________一、单选题 1.与2(9)-结果相同的是( )A.3±B.|3|C.23D.方程281x =的解2.下列说法正确的是( )A.81-平方根是-B.81的平方根是9C.平方根等于它本身的数是1和0D.21a +一定是正数3.一个正方体的棱长为a ,体积为b ,则下列说法正确的是( )A.b 的立方根是a ±B.a 是b 的立方根C.a b =D.b a =4.下列关于5说法错误的是( ) A.5是无理数 B.数轴上可以找到表示5的点C.5相反数是5-D.53>5.估计11832的运算结果介于( )A.2与3之间B.3与4之间C.4与5之间D.5与6之间6.若实数a ,b 满足13a b +=( )A.a ,b 都是有理数B.a b -的结果必定为无理数C.a ,b 都是无理数D.a b -的结果可能为有理数7.如图,在ABC △中90ACB ∠=︒,AC=3,BC=1,AC 在数轴上,点A 所表示的数为1,以点A 为圆心,AB 长为半径画弧,在点A 左侧交数轴于点D ,则点D 表示的数是( )10 B.10- C.110-1018.若1014M -=,12N =则M ,N 的大小关系是( )A.M N <B.M N =C.M N >D.无法比较9.已知实数tan30sin 45cos60a b c =︒=︒=︒,,,则下列说法正确的是( )A.b a c >>B.a b c >>C.b c a >>D.a c b >>10.定义运算:若,则,例如328=,则2log 83=.运用以上定义,计算:53log 125log 81-=( )A.1-B.2C.1D.411.在下列计算中,正确的是( )A.()56+-=-B.122=C.()26⨯-=D.3sin 30︒= 12.式子52的倒数是( ) A.52 B.52- C.25+ D.52213.对于实数a 、b ,定义22()*2()a b ab a b a b ab a b a b +-≥⎧=⎨--<⎩,则结论正确的有( )①5*31=;②22272(1)*(21)451(1)m m m m m m m m ⎧-+-<-=⎨-+≥⎩; ③若1x ,2x 是方程2560x x --=的两个根,则12*16x x =或17-;④若1x ,2x 是方程210x mx m +--=的两个根12*4x x =,则m 的值为3-或.A.1个B.2个C.3个D.4个二、填空题14.在实数: 中无理数有______个.15a 是一个无理数,且13a <<,请写出一个满足条件的a 值_____.16.011|3|(3π)()tan 45162--+-+-+︒+=______. 17.若m 为7的整数部分,n 为7的小数部分,则)7m n =______. 18.实数a ,b ,c 在数轴上的点如图所示,化简222()()a a b b c +-=____________.三、解答题19.计算m a b =log (0)a b m a =>6-(1)11233- (2)12632322⨯- (3)2245tan 30cos60︒+⋅︒︒20.计算:)102cos6031(16)27--︒-+-. 21.设5a 是一个两位数,其中a 是十位上的数字(9a ≤≤).例如,当a =时5a 表示的两位数是45.尝试:①当1a =时2152251210025=⨯⨯+=;①当2a =时2256252310025==⨯⨯+;①当3a =时2351225==______;…… 归纳:()25a 与()100125a a ++有怎样的大小关系? 验证:请论证“归纳”中的结论正确.22.若正整数a 是4的倍数,则称a 为“四倍数”,例如:8是4的倍数,所以8是“四倍数”.(1)已知p 是任意三个连续偶数的平方和,设中间的数为2n (n 为整数),判断p 是不是“四倍数”,并说明理由;(2)已知正整数k 是一个两位数,且10k x y =+(19x y ≤<≤,其中x ,y 为整数),将其个位上的数字与十位上的数字交换,得到新数m .若m 与k 的差是“四倍数”,求出所有符合条件的正整数k . 参考答案1.答案:C 解析:2(9)819-==33=239=方程281x =的解为9x =±. 故选C.2.答案:D解析:A 、81-是负数,负数没有平方根,不符合题意;B 、819= 9的平方根是3±,不符合题意;C 、平方根等于它本身的数是0,1的平方根是1±,不符合题意;D 、21>0a + 正数的算术平方根大于0,符合题意.故选:D.3.答案:B 解析:一个正方体的棱长为a ,体积为b∴3b a =,即:3a b =∴a 是b 的立方根故选:B.4.答案:D 解析:①5 2.2365857......≈属于无限不循环小数 ①5是无理数,故A 选项正确;①数轴上可以表示任意实数 ①数轴上可以找到表示5的点,故B 选项正确;①5相反数是5,故C 选项正确; ①5 2.2365857......≈①53<,故D 选项错误,符合题意故选:D.5.答案:C 解析:1183232223=+33=+; 132<<4335∴<<;故选:C.6.答案:D解析:A 、当2a =时13213b ==--a 是有理数,b 是无理数,故A 错误;B 、当1322a b ==-,那么0a b -=,所以B 错误; C 、当2a =时13b =-,a 是有理数,故选项C 错误;D 、当1322a b ==-,那么0a b -=,所以选项正确,D 正确. 故选:D.7.答案:C 解析:在Rt ABC △中3AC =,BC=1 22223110AB AC BC ∴=++=∴点D 表示的数为:110故选:C.8.答案:C 解析:1014M -=12= 1011103424M N ∴-=-=103> 0M N ∴->M N ∴>.故选C.9.答案:A 解析:321tan 30sin 45cos 602a b c =︒==︒==︒= 132232<< ∴b a c >> 故选:A.10.答案:A解析:35125= 4381=5log 1253∴= 3log 814=53log 125log 81∴-34=-1=-.故选:A.11.答案:A解析:A 、5(6)561+-=-=-正确,符合题意; B 、1222=原计算错误,不符合题意; C 、3(2)6⨯-=-原计算错误,不符合题意;D 、1sin 302=︒原计算错误,不符合题意. 故选: A.12.答案:A 解析:()()1521 52525252⨯==--+式子5的倒数是52式子5的倒数是52,故选:A.13.答案:C 解析:①5*32523531=⨯+⨯-⨯=,故①正确;②当21m m ≥-时即1m ≤时()()()22*212221212422272m m m m m m m m m m m m -=+---=+--+=-+-当21m m <-时即1m >时 ()()()22*21221214221451m m m m m m m m m m m m -=----=---+=-+()()222721*21451(1)m m m m m m m m ⎧-+-≤∴-=⎨-+>⎩,故②错误; ③1x ,2x 是方程2560x x --=的两个根 125x x ∴+= 126x x =-当12x x ≥时()()121212*225616x x x x x x =+-=⨯--= 当12x x <时()()121212*226517x x x x x x =-+=⨯--=-,故③正确;④1x ,2x 是方程210x mx m +--=的两个根12x x m ∴+=- 121x x m =--当12x x ≥时()()121212*22114x x x x x x m m m =+-=----=-+= 解得:3m =-当12x x <时()()121212*221()24x x x x x x m m m =-+=⨯----=--=解得:6m =-综上可知:①③④正确 故选:C.14.答案:4 解析:3644= 其中8 ⋯ π -2是无理数,共4个 故答案为:4.15.答案:2解析:2123<< 2a ∴=.故答案:2(答案不唯一).16.答案:7 解析:0113(3π)()tan 45162-+-+-+︒+31(2)14=++-++7=.17.答案:3 解析:479<<273∴<2m ∴= 72n = )7(72)(72)743m n ==-=∴故答案为3.18.答案:0解析:由数轴可知0b c a <<<则0a b +< 0b c -<222()||()a a b c b c +---()()a a b c b c =-+++-a abc b c =--++-0=.故答案为:0.19.答案:(1)1(2)5 (3)76解析:(1)(133********===; (2)12632322⨯- 22126322⨯=+632=-+5=;(3)2245tan 30cos60︒+⋅︒︒2312222=+⨯⎝⎭ 21113=+⨯ 76=. 20.答案:532 解析:)102cos6031(16)27--︒-+- 1113133222=-+=53.21.答案:尝试3410025⨯⨯+ 归纳()()25100125a a a =++ 验证:见解析解析:尝试:当3a =时2351225==3410025⨯⨯+; 归纳:()()25100125a a a =++; 验证:等号左边222(5)(105)10010025a a a a =+=++ 等号右边2100(1)2510010025a a a a ++=++ 所以,等号左边=等号右边,等式成立,即证.22.答案:(1)p 是“四倍数”;理由见解析(2)15,19,26,37,48,59解析:(1)p 是“四倍数”,理由如下:①()()()22222222p n n n ++=+-()22128432n n =+=+①p 是“四倍数”;(2)由题意得10m y x =+,则()()10109m k y x x y y x -=+-+=-. ①19x y ≤<≤,其中x ,y 为整数①18y x ≤-≤.若()9y x -.是4的倍数,则4y x -=或8y x -=.当4y x -=时符合条件的k 是15,26,37,48,59; 当8y x -=时符合条件的k 是19.①所有符合条件的正整数k 是15,19,26,37,48,59.。
中考数学专题01 实数-三年(2019-2021)中考真题数学分项汇编(全国通用)(解析版)

专题01 实数一.选择题目1.(2021·湖南邵阳市·中考真题)3-的相反数是()A.3-B.0C.3D.π【答案】C【分析】根据相反数的概念求解即可.【详解】-(-3)=3,即-3的相反数是3,故选:C.【点睛】本题主要考查相反数.只有符号不同的两个数叫做互为相反数,在任意一个数的前面填上“-”号,新的数就表示原数的相反数.2.(2021·山东泰安市·中考真题)下列各数:4-, 2.8-,0,4-,其中比3-小的数是()A.4-B.4-C.0D. 2.8-【答案】A【分析】根据正数比负数大,正数比0大,负数比0小,两个负数中,绝对值大的反而小解答即可.【详解】解:∵∵﹣4∵=4,4>3>2.8,∵﹣4<﹣3<﹣2.8<0<∵﹣4∵,∵比﹣3小的数为﹣4,故选:A.【点睛】本题考查有理数大小比较,熟知有理数的比较大小的法则是解答的关键.3.(2021·浙江中考真题)实数2-的绝对值是()A.2-B.2C.12D.12-【答案】B【分析】根据负数的绝对值是它的相反数,可得答案.【详解】解:实数-2的绝对值是2,故选:B.【点睛】本题考查了实数的性质,负数的绝对值是它的相反数,非负数的绝对值是它本身.4.(2021·四川乐山市·中考真题)如果规定收入为正,那么支出为负,收入2元记作2+,支出5元记作().A.5元B.5-元C.3-元D.7元【答案】B【分析】结合题意,根据正负数的性质分析,即可得到答案.【详解】根据题意得:支出5元记作5-元故选:B.【点睛】本题考查了正数和负数的知识;解题的关键是熟练掌握正负数的性质,从而完成求解.5.(2021·四川凉山彝族自治州·中考真题)2021-=()A.2021B.-2021C.12021D.12021-【答案】A【分析】根据绝对值解答即可.【详解】解:2021-的绝对值是2021,故选:A.【点睛】此题主要考查了绝对值,利用绝对值解答是解题关键.6(2021·湖南怀化市·中考真题)数轴上表示数5的点和原点的距离是()A.15B.5C.5-D.15-【答案】B【分析】根据数轴上点的表示及几何意义可直接进行排除选项.【详解】解:数轴上表示数5的点和原点的距离是5;故选B.【点睛】本题主要考查数轴上点的表示及几何意义,熟练掌握数轴上点的表示及几何意义是解题的关键.7.(2021·浙江宁波市·中考真题)在﹣3,﹣1,0,2这四个数中,最小的数是()A.﹣3B.﹣1C.0D.2【答案】A【分析】画出数轴,在数轴上标出各点,再根据数轴的特点进行解答即可.【详解】这四个数在数轴上的位置如图所示:由数轴的特点可知,这四个数中最小的数是﹣3.故选A.8.(2021·浙江金华市·中考真题)某超市出售一商品,有如下四种在原标价基础上调价的方案,其中调价后售价最低的是()A.先打九五折,再打九五折B.先提价50%,再打六折C.先提价30%,再降价30%D.先提价25%,再降价25%【答案】B【分析】设原件为x元,根据调价方案逐一计算后,比较大小判断即可.【详解】设原件为x元,∵先打九五折,再打九五折,∵调价后的价格为0.95x×0.95=0.9025x元,∵先提价50%,再打六折,∵调价后的价格为1.5x×0.6=0.90x元,∵先提价30%,再降价30%,∵调价后的价格为1.3x×0.7=0.91x元,∵先提价25%,再降价25%,∵调价后的价格为1.25x×0.75=0.9375x元,∵0.90x <0.9025x <0.91x <0.9375x 故选B【点睛】本题考查了代数式,打折,有理数大小比较,准确列出符合题意的代数式,并能进行有理数大小的比较是解题的关键.9.(2021·四川南充市·中考真题)数轴上表示数m 和2m +的点到原点的距离相等,则m 为( ) A .2-B .2C .1D .1- 【答案】D【分析】由数轴上表示数m 和2m +的点到原点的距离相等且2m m +>,可得m 和2m +互为相反数,由此即可求得m 的值.【详解】∵数轴上表示数m 和2m +的点到原点的距离相等,2m m +>,∵m 和2m +互为相反数,∵m +2m +=0,解得m =-1.故选D .【点睛】本题考查了数轴上的点到原点的距离,根据题意确定出m 和2m +互为相反数是解决问题的关键. 10.(2021·湖南常德市·中考真题)阅读理解:如果一个正整数m 能表示为两个正整数a ,b 的平方和,即22m a b =+,那么称m 为广义勾股数.则下面的四个结论:①7不是广义勾股数;②13是广义勾股数;③两个广义勾股数的和是广义勾股数;④两个广义勾股数的积是广义勾股数.依次正确的是( ) A .②④B .①②④C .①②D .①④【答案】C【分析】结合题意,根据有理数乘方、有理数加法的性质计算,即可得到答案.【详解】∵716=+或25+或34+ ∵7不是广义勾股数,即①正确;∵22134923=+=+ ∵13是广义勾股数,即②正确;∵22512=+,221013=+,15不是广义勾股数∵③错误;∵22512=+,221323=+,65513=⨯,且65不是广义勾股数∵④错误;故选:C .【点睛】本题考查了有理数运算的知识;解题的关键是熟练掌握有理数乘方、有理数加法的性质,从而完成求解.11.(2021·湖北黄冈市·中考真题)2021年5月15日07时18分,我国首个火星探测器“天问一号”经过470000000公里旅程成功着陆在火星上,从此,火星上留下中国的脚印,同时也为我国的宇宙探测之路迈出重要一步.将470000000用科学记数法表示为( )A .74710⨯B .74.710⨯C .84.710⨯D .90.4710⨯ 【答案】C【分析】根据科学记数法的定义即可得.【详解】科学记数法:将一个数表示成10n a ⨯的形式,其中110a ≤<,n 为整数,这种记数的方法叫做科学记数法,则8470000000 4.710=⨯,故选:C .【点睛】本题考查了科学记数法,熟记定义是解题关键.12.(2021·天津中考真题)计算()53-⨯的结果等于( )A .2-B .2C .15-D .15 【答案】C【分析】根据有理数的乘法法则运算即可求解.【详解】解:由题意可知:()5315-⨯=-,故选:C .【点睛】本题考查了有理数的乘法法则,属于基础题,运算过程中注意符号即可.13.(2021·新疆中考真题)下列实数是无理数的是( )A .2-B .1CD .2 【答案】C【分析】无理数是指无限不循环小数,据此判断即可.为无理数,2-,1,2均为有理数,故选:C .【点睛】本题考查无理数的辨别,理解无理数的定义以及常见形式是解题关键.14.(2021·湖南长沙市·中考真题)下列四个实数中,最大的数是( )A .3-B .1-C .πD .4 【答案】D【分析】根据实数的大小比较法则即可得.【详解】解: 3.14π≈,314π∴-<-<<,即这四个实数中,最大的数是4,故选:D .【点睛】本题考查了实数的大小比较法则,熟练掌握实数的大小比较法则是解题关键.15.(2021·湖南岳阳市·-1,0,2中,为负数的是( )A B .-1 C .0 D .2【答案】B【分析】利用负数的定义即可判断.【详解】解:A 是正数;B 、1是正数,在正数的前面加上“-”的数是负数,所以,-1是负数;C 、0既不是正数,也不是负数;D 、2是正数.故选:B【点睛】本题考查了实数的分类的知识点,熟知负数的定义是解题的关键.16.(2021·浙江台州市· )A .0个B .1个C .2个D .3个 【答案】B【详解】解:∵12<<,23<<,∵2,这一个数,故选:B .【点睛】此题主要考查了无理数的估算能力,解决本题的关键是得到最接近无理数的两个有理数的值.现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.17.(2021·浙江金华市·中考真题)实数12-,2,3-中,为负整数的是( )A .12-B .C .2D .3- 【答案】D【分析】按照负整数的概念即可选取答案.【详解】解:12-是负数不是整数;2是正数;3-是负数且是整数,故选D . 【点睛】本题考查了实数的分类,比较简单.18.(2021·四川资阳市·中考真题)若a =b =2c =,则a ,b ,c 的大小关系为( ) A .b c a <<B .b a c <<C .a c b <<D .a b c << 【答案】C【分析】根据无理数的估算进行大小比较.【详解】解:<>又∵a c b <<故选:C .【点睛】本题考查求一个数的算术平方根,求一个数的立方根及无理数的估算,理解相关概念是解题关键.19.(2021·浙江中考真题)已知,a b 是两个连续整数,1a b <<,则,a b 分别是( )A .2,1--B .1-,0C .0,1D .1,2【答案】C1的范围即可得到答案.【详解】解: 12,<<∴ 011,<<0,1,a b ∴== 故选:.C【点睛】本题考查的是无理数的估算,掌握利用算术平方根的含义估算无理数是解题的关键.20.(2020·四川攀枝花市·中考真题)下列说法中正确的是( ).A .0.09的平方根是0.3B 4=±C .0的立方根是0D .1的立方根是±1【答案】C【分析】根据平方根,算术平方根和立方根的定义分别判断即可.【详解】解:A 、0.09的平方根是±0.3,故选项错误;B 4=,故选项错误;C 、0的立方根是0,故选项正确;D 、1的立方根是1,故选项错误;故选C.【点睛】本题考查了平方根,算术平方根和立方根,熟练掌握平方根、算术平方根和立方根的定义是解题的关键.21.(2020·四川达州市·中考真题)中国奇书《易经》中记载,远古时期,人们通过在绳子上打结来计数,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满5进1,用来记录孩子自出生后的天数.由图可知,孩子自出生后的天数是( )A .10B .89C .165D .294【答案】D 【分析】类比十进制“满十进一”,可以表示满5进1的数从左到右依次为:2×5×5×5,1×5×5,3×5,4,然后把它们相加即可.【详解】依题意,还在自出生后的天数是:2×5×5×5+1×5×5+3×5+4=250+25+15+4=294,故选:D .【点睛】本题考查了实数运算的实际应用,解答的关键是运用类比的方法找出满5进1的规律列式计算. 22.(2020·山东菏泽市·中考真题)下列各数中,绝对值最小的数是( )A .5-B .12C .1- D【答案】B【分析】根据绝对值的意义,计算出各选项的绝对值,然后再比较大小即可.【详解】解:55-=,1122=,11-==,∵1512>>>,∵绝对值最小的数是12;故选:B . 【点睛】本题考查的是实数的大小比较,熟知绝对值的性质是解答此题的关键.23.(2020·江苏宿迁市·中考真题)在∵ABC 中,AB=1,下列选项中,可以作为AC 长度的是( ) A .2B .4C .5D .6【答案】A【分析】根据三角形三边关系,两边之差小于第三边,两边之和大于第三边,可以得到AC 的长度可以取得的数值的取值范围,从而可以解答本题.【详解】∵在∵ABC 中,AB=1,﹣1<AC ,1<2,4,5,6,∵AC 的长度可以是2,故选项A 正确,选项B 、C 、D 不正确;故选:A .【点睛】本题考查了三角形三边关系以及无理数的估算,解答本题的关键是明确题意,利用三角形三边关系解答.24.(2020·四川攀枝花市·中考真题)实数a 、b 在数轴上的位置如图所示,化简的结果是( ).A .2-B .0C .2a -D .2b 【答案】A【分析】根据实数a 和b 在数轴上的位置得出其取值范围,再利用二次根式的性质和绝对值的性质即可求出答案.【详解】解:由数轴可知-2<a <-1,1<b <2,∵a+1<0,b -1>0,a -b <0,+=11a b a b ++---=()()()11a b a b -++-+-=-2故选A.【点睛】此题主要考查了实数与数轴之间的对应关系,以及二次根式的性质,要求学生正确根据数在数轴上的位置判断数的符号以及绝对值的大小,再根据运算法则进行判断.25.(2020·湖南株洲市·中考真题)一实验室检测A 、B 、C 、D 四个元件的质量(单位:克),超过标准质量的克数记为正数,不足标准质量的克数记为负数,结果如图所示,其中最接近标准质量的元件是( )A .B .C .D .【答案】D【分析】分别求出每个数的绝对值,根据绝对值的大小找出绝对值最小的数即可.【详解】∵|+1.2|=1.2,|-2.3|=2.3, |+0.9|=0.9,|-0.8|=0.8,0.8<0.9<1.2<2.3,∵从轻重的角度看,最接近标准的是选项D 中的元件,故选D .【点睛】本题考查了绝对值以及正数和负数的应用,掌握正数和负数的概念和绝对值的性质是解题的关键,主要考查学生的理解能力,题目具有一定的代表性,难度也不大.26.(2020·北京中考真题)实数a 在数轴上的对应点的位置如图所示.若实数b 满足a b a -<<,则b 的值可以是( )A .2B .-1C .-2D .-3 【答案】B【分析】先根据数轴的定义得出a 的取值范围,从而可得出b 的取值范围,由此即可得.【详解】由数轴的定义得:12a <<21a ∴-<-<-2a ∴<又a b a -<<b ∴到原点的距离一定小于2 观察四个选项,只有选项B 符合,故选:B .【点睛】本题考查了数轴的定义,熟记并灵活运用数轴的定义是解题关键.27.(2020·湖南长沙市·中考真题)2020年3月14日,是人类第一个“国际数学日”这个节日的昵称是“π(Day )”国际数学日之所以定在3月14日,是因为3.14与圆周率的数值最接近的数字,在古代,一个国家所算的的圆周率的精确程度,可以作为衡量这个国家当时数学与科技发展的水平的主要标志,我国南北朝时期的祖冲之是世界上最早把圆周率的精确值计算到小数点后第七位的科学巨匠,该成果领先世界一千多年,以下对圆周率的四个表述:①圆周率是一个有理数;②圆周率是一个无理数;③圆周率是一个与圆的大小无关的常数,它等于该圆的周长与直径的比;④圆周率是一个与圆大小有关的常数,它等于该圆的周长与半径的比;其中正确的是( )A .②③B .①③C .①④D .②④【答案】A【分析】圆周率的含义:圆的周长和它直径的比值,叫做圆周率,用字母π表示,π是一个无限不循环小数;据此进行分析解答即可.【详解】解:①圆周率是一个有理数,错误;②π是一个无限不循环小数,因此圆周率是一个无理数,说法正确;③圆周率是一个与圆的大小无关的常数,它等于该圆的周长与直径的比,说法正确;④圆周率是一个与圆大小有关的常数,它等于该圆的周长与半径的比,说法错误;故选:A .【点睛】本题考查了对圆周率的理解,解题的关键是明确其意义,并知道圆周率一个无限不循环小数,3.14只是取它的近似值.28.(2020·黑龙江大庆市·中考真题)若2|2|(3)0x y ++-=,则x y -的值为( )A .-5B .5C .1D .-1【答案】A 【分析】根据绝对值和平方的非负性可求出x ,y 的值,代入计算即可;【详解】∵2|2|(3)0x y ++-=,∵20x +=,30y -=,∵2x =-,3y =,∵235-=--=-x y .故答案选A .【点睛】本题主要考查了绝对值和平方的非负性,准确计算是解题的关键.29.(2020·山东烟台市·中考真题)实数a ,b ,c 在数轴上的对应点的位置如图所示,那么这三个数中绝对值最大的是( )A .aB .bC .cD .无法确定 【答案】A【分析】根据有理数大小比较方法,越靠近原点其绝对值越小,进而分析得出答案.【详解】解:观察有理数a ,b ,c 在数轴上的对应点的位置可知,这三个数中,实数a 离原点最远,所以绝对值最大的是:a .故选:A .【点睛】此题主要考查了绝对值的意义,以及有理数大小的比较,正确掌握绝对值的意义是解题关键. 30.(2020·四川乐山市·中考真题)数轴上点A 表示的数是3-,将点A 在数轴上平移7个单位长度得到点B .则点B 表示的数是( )A .4B .4-或10C .10-D .4或10-【答案】D【分析】根据题意,分两种情况,数轴上的点右移加,左移减,求出点B 表示的数是多少即可.【详解】解:点A 表示的数是−3,左移7个单位,得−3−7=−10,点A 表示的数是−3,右移7个单位,得−3+7=4,故选:D .【点睛】此题主要考查了数轴的特征和应用,要熟练掌握,解答此题的关键是要明确:数轴上的点右移加,左移减.31.(2020·湖南郴州市·中考真题)如图表示互为相反数的两个点是( )A .点A 与点BB .点A 与点DC .点C 与点BD .点C 与点D 【答案】B【分析】根据一个数的相反数定义求解即可.【详解】解:在-3,-1,2,3中,3和-3互为相反数,则点A 与点D 表示互为相反数的两个点.故选:B .【点睛】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.32.(2019·台湾中考真题)数线上有O 、A 、B 、C 四点,各点位置与各点所表示的数如图所示.若数线上有一点D ,D 点所表示的数为d ,且5d d c -=-,则关于D 点的位置,下列叙述何者正确?( )A .在A 的左边B .介于A 、C 之间 C .介于C 、O 之间D .介于O 、B 之间【答案】D【分析】根据O 、A 、B 、C 四点在数轴上的位置和绝对值的定义即可得到结论.【详解】解:0c <,5b =,5c <,5d d c -=-,BD CD ∴=,D ∴点介于O 、B 之间,故选:D .【点睛】本题考查实数与数轴,熟知实数与数轴上各点是一一对应关系是解答此题的关键.33.(2019·江苏徐州市·中考真题)如图,数轴上有O 、A 、B 三点,O 为O 原点,OA 、OB 分别表示仙女座星系、M87黑洞与地球的距离(单位:光年).下列选项中,与点B 表示的数最为接近的是( )A .6510⨯B .710C .7510⨯D .810 【答案】D【分析】用各选项的数分别除以62.510⨯,根据商结合数轴上AO 、OB 间的距离进行判断即可. 【详解】A. (6510⨯)÷(62.510⨯)=2,观察数轴,可知A 选项不符合题意; B. 710÷(62.510⨯)=4,观察数轴,可知B 选项不符合题意; C. 7510⨯÷(62.510⨯)=20,观察数轴,可知C 选项不符合题意;D. 810÷(62.510⨯)=40,从数轴看比较接近,可知D 选项符合题意,故选D .【点睛】本题考查了数轴,用科学记数法表示的数的除法,正确进行运算,结合数轴恰当地进行估算是解题的关键.34.(2019·山东枣庄市·中考真题)点,,,O A B C 在数轴上的位置如图所示,O 为原点,1AC =,OA OB =.若点C 所表示的数为a ,则点B 所表示的数为( )A .()1a -+B .()1a --C .1a +D .1a -【答案】B【分析】根据题意和数轴可以用含 a 的式子表示出点 B 表示的数,本题得以解决. 【详解】O 为原点,1AC =,OA OB =,点C 所表示的数为a ,∴点A 表示的数为1a -,∴点B 表示的数为:()1a --,故选B .【点睛】本题考查数轴,解答本题的关键是明确题意,利用数形结合的思想解答.35.(2019·四川中考真题)实数m,n 在数轴上对应点的位置如图所示,则下列判断正确的是( )A .1m <B .1m 1->C .0mn >D .10m +>【答案】B【分析】利用数轴表示数的方法得到m <0<n ,然后对各选项进行判断.【详解】利用数轴得m <0<1<n ,所以-m >0,1-m >1,mn <0,m+1<0.故选B. 【点睛】本题考查了实数与数轴:数轴上的点与实数一一对应;右边的数总比左边的数大. 二.填空题目1.(2021·重庆中考真题)计算:031_______.【答案】2.【分析】分别根据绝对值的性质、0指数幂的运算法则计算出各数,再进行计算即可. 【详解】解:031312,故答案是:2.【点睛】本题考查的是绝对值的性质、0指数幂,熟悉相关运算法则是解答此题的关键.2.(2021·四川自贡市·中考真题)某校园学子餐厅把WIFI 密码做成了数学题,小亮在餐厅就餐时,思索了一会,输入密码,顺利地连接到了学子餐厅的网络,那么他输入的密码是______.【答案】143549【分析】根据题中密码规律确定所求即可.【详解】5⊗3⊗2=5×3×10000+5×2×100+5×(2+3)=151025 9⊗2⊗4=9×2×10000+9×4×100+9×(2+4)=183654, 8⊗6⊗3=8×6×10000+8×3×100+8×(3+6)=482472,∵7⊗2⊗5=7×2×10000+7×5×100+7×(2+5)=143549.故答案为143549【点睛】本题考查有理数的混合运算,根据题意得出规律并熟练掌握运算法则是解题关键.3.(2021·云南中考真题)已知a ,b 2(2)0b -=则a b -=_______. 【答案】-3【分析】根据非负数的性质列式求出a 、b 的值,然后代入代数式进行计算即可得解. 【详解】解:根据题意得,a +1=0,b -2=0,解得a =-1,b =2, 所以,a -b =-1-2=-3.故答案为:-3.【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.4.(2021·湖南怀化市·中考真题)比较大小:2__________12(填写“>”或“<”或“=”).【答案】>【分析】直接用122-,结果大于0,则2大;结果小于0,则12大.【详解】解:11=0222->,∵122,故答案为:>. 【点睛】本题主要考查实数的大小比较,常用的比较大小的方法有作差法、作商法、平方法等,正确理解和记忆方法背后的知识点是解题关键.5.(2021·山东临沂市·中考真题)比较大小:(选填“>”、“ =”、“ <” ). 【答案】<【分析】先把两数值化成带根号的形式,再根据实数的大小比较方法即可求解.【详解】解:∵=5=,而24<25,∵5.故答案为:<.【点睛】此题主要考查了实数的大小的比较,当一个带根号的无理数和一个有理数进行比较时,首选的方法就是把它们还原成带根号的形式,然后比较被开方数即可解决问题.6.(2021·四川自贡市·中考真题)请写出一个满足不等式7x >的整数解_________. 【答案】6(答案不唯一)1.4,再解不等式即可.【详解】解: 1.4≈,∵7x >,∵ 5.6x >.所以6是该不等式的其中一个整数解(答案不唯一,所有不小于6的整数都是该不等式的整数解); 故答案为:6(答案不唯一).【点睛】本题考查了解一元一次不等式、不等式的整数解、二次根式的值的估算等内容,要求学生在理解相关概念的前提下能灵活运用解决问题,本题答案不唯一,有一定的开放性. 7.(2021·湖南邵阳市·中考真题)16的算术平方根是___________. 【答案】4【详解】正数的正的平方根叫算术平方根,0的算术平方根还是0;负数没有平方根也没有算术平方根 ∵2(4)16±= ∵16的平方根为4和-4 ∵16的算术平方根为48.(2020·______. 【答案】2(或3)【详解】∵1<2,34,∵2或3.故答案为:2(或3)相邻的整数之间是解答此题的关键.9.(2020·|1|0b +=,则2020()a b +=_________. 【答案】1【分析】根据绝对值的非负性和二次根式的非负性得出a ,b 的值,即可求出答案.【详解】|1|0b +=∵2a =,1b =-,∵2020()a b +=202011=,故答案为:1. 【点睛】本题考查了绝对值的非负性,二次根式的非负性,整数指数幂,得出a ,b 的值是解题关键.10.(2020·湖北荆州市·中考真题)若()112020,,32a b c π-⎛⎫=-=-=- ⎪⎝⎭,则a ,b ,c 的大小关系是_______.(用<号连接) 【答案】b a c <<【分析】分别计算零次幂,负整数指数幂,绝对值,再比较大小即可.【详解】解:()020201,a π=-=112,2b -⎛⎫=-=- ⎪⎝⎭33,c =-=∴ b a c <<.故答案为:b a c <<.【点睛】本题考查的是零次幂,负整数指数幂,绝对值的运算,有理数的大小比较,掌握以上知识是解题的关键.11.(2020·内蒙古赤峰市·中考真题)一个电子跳蚤在数轴上做跳跃运动.第一次从原点O 起跳,落点为A 1,点A 1表示的数为1;第二次从点A 1起跳,落点为OA 1的中点A 2;第三次从A 2点起跳,落点为0A 2的中点A 3;如此跳跃下去……最后落点为OA 2019的中点A 2020.则点A 2020表示的数为__________.【答案】201912【分析】先根据数轴的定义、线段中点的定义分别求出点1234,,,A A A A 表示的数,再归纳类推出一般规律,由此即可得.【详解】由题意得:点1A 表示的数为0112=;点2A 表示的数为11111222OA ==点3A 表示的数为22111242OA ==;点4A 表示的数为33111282OA == 归纳类推得:点n A 表示的数为112n -(n 为正整数);则点2020A 表示的数为2020120191122-=,故答案为:201912. 【点睛】本题考查了数轴的定义、线段中点的定义,根据点1234,,,A A A A 表示的数,正确归纳类推出一般规律是解题关键.12.(2019·山东德州市·中考真题)33x x -=-,则x 的取值范围是______. 【答案】3x ≤【分析】根据绝对值的意义,绝对值表示距离,所以30x -≥,即可求解; 【详解】根据绝对值的意义得,30x -≥,3x ∴≤; 故答案为3x ≤; 【点睛】本题考查绝对值的意义;理解绝对值的意义是解题的关键. 三.解答题1.(2021·上海中考真题)计算: 1129|12-+-【答案】2【分析】根据分指数运算法则,绝对值化简,负整指数运算法则,化最简二次根式,合并同类二次根式以及同类项即可.【详解】解:1129|12-+-(112-⨯31=2. 【点睛】本题考查实数混合运算,分指数运算法则,绝对值符号化简,负整指数运算法则,化最简二次根式,合并同类二次根式与同类项,掌握实数混合运算法则与运算顺序,分指数运算法则,绝对值符号化简,负整指数运算法则,化最简二次根式,合并同类二次根式与同类项是解题关键.2.(2021·新疆中考真题)计算:020211)|3|(1)+--. 【答案】0.【分析】第一项根据零指数幂计算,第二项根据绝对值的意义计算,第三项进行立方根运算,第四项进行有理数的乘方运算,最后进行加减运算即可. 【详解】解:原式=1+3-3+(-1)=0.【点睛】本题考查了实数的运算,包括零指数幂、绝对值的意义,求一个数的立方根,有理数的乘方运算.正确化简各数是解题的关键.3.(2021·湖南怀化市·中考真题)计算:021(3)()4sin 60(1)3π---+︒--【答案】11【分析】根据非零实数0次幂、二次根式、负整数次幂、特殊角三角函数值根据实数加减混合运算法则计算即可.【详解】解:原式=191=11-+.【点睛】本题主要考查非零实数0次幂、二次根式、负整数次幂、特殊角三角函数值根据实数加减混合运算法则,正确掌握每个知识点是解决本题的关键.4.(2021·四川广安市·中考真题)计算:()03.1414sin 60π-+︒. 【答案】0【分析】分别化简各数,再作加减法.【详解】解:()03.1414sin 60π-+︒=114-+=11-+ 【点睛】本题考查了实数的混合运算,特殊角的三角函数值,解题的关键是掌握运算法则.5.(2021·湖南岳阳市·中考真题)计算:())02021124sin 30π-+-+︒-.【答案】2【分析】分别根据有理数的乘方、绝对值的代数意义、特殊锐角三角函数值和零指数幂的运算法则化简各项后,再进行加减运算即可得到答案.【详解】解:())2021124sin 30π-+-+︒-=112412-++⨯- =1221-++-=2. 【点睛】此题主要考查了实数的混合运算,熟练掌握运算法则和特殊锐角三角函数值是解答此题的关键.6.(2021·云南中考真题)计算:201tan 452(3)1)2(6)23-︒-++-+⨯-. 【答案】6【分析】原式分别利用乘方,特殊角的三角函数值,零指数幂,负整数指数幂,乘法法则分别计算,再作加减法.【详解】解:201tan 452(3)1)2(6)23-︒-++-+⨯-=1191422++--=6【点睛】此题考查了实数的混合运算,熟练掌握运算法则是解本题的关键.7.(2021·浙江金华市·中考真题)计算:()202114sin 45+2-︒-.【答案】1【分析】利用乘方的意义,二次根式的化简,特殊角的函数值,绝对值的化简,化简后合并计算即可【详解】解:原式1422=-+⨯+12=-+1=. 【点睛】本题考查了二次根式的化简,特殊角的三角函数值,绝对值的化简等知识,熟练运用各自的运算法则化简是解题的关键.8.(2021·浙江台州市·中考真题)小华输液前发现瓶中药液共250毫升,输液器包装袋上标有“15滴/毫升”.输液开始时,药液流速为75滴/分钟.小华感觉身体不适,输液10分钟时调整了药液流速,输液20分钟时,瓶中的药液余量为160毫升.(1)求输液10分钟时瓶中的药液余量;(2)求小华从输液开始到结束所需的时间.【答案】(1)输液10分钟时瓶中的药液余量为200毫升;(2)小华从输液开始到结束所需的时间为60分钟.【分析】(1)先求出每分钟输液多少毫升,进而即可求解;(2)先求出输液10分钟时调整后的药液流速,进而即可求解.【详解】(1)解:75÷15=5(毫升/分钟),250-5×10=200(毫升), 答:输液10分钟时瓶中的药液余量为200毫升;(2)(200-160)÷10=4(毫升/分钟),160÷4+20=60(分钟), 答:小华从输液开始到结束所需的时间为60分钟.【点睛】本题主要考查有理数运算的实际应用,明确时间,流速,输液量三者之间的数量关系,是解题的关键.9.(2020·青海中考真题)计算:101145( 3.14)3π-⎛⎫+︒+-- ⎪⎝⎭【分析】根据负整数指数幂,绝对值的性质,零指数幂,立方根,特殊角的三角函数值进行计算即可【详解】101145( 3.14)3π-⎛⎫+︒+- ⎪⎝⎭3|11|13=+-+-3113=++-=【点睛】本题考查了负整数指数幂,绝对值的性质,零指数幂,立方根,特殊角的三角函数值,熟知以上。
中考数学专题复习《实数的运算》测试卷-附带答案

中考数学专题复习《实数的运算》测试卷-附带答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列说法中正确的是()A.√25的值是±5B.两个无理数的和仍是无理数C.-3没有立方根.D.√a2−b2是最简二次根式.2.实数m,n在数轴上的对应点的位置如图所示,下列结论中正确的是()A.|m|<|n|B.m+n>0C.m−n<0D.mn>0 3.计算:|−2|+3sin30°−2−1−(2022−π)0等于()A.-2B.−12C.2D.04.观察下列各式:√1+112+122=1+11×2√1+122+132=1+12×3√1+132+142=1+13×4…请利用你所发现的规律计算√1+112+122+√1+122+132+√1+132+142+⋯⋯+√1+192+1102其结果为()A.8910B.9910C.989D.8895.估计√2(√23−√2)的值应在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间.6.秦兵马俑的发现被誉为“世界第八大奇迹” 兵马俑的眼睛到下巴的距离与头顶到下巴的距离之比为√5−12下列各数中最接近于√5−12的是()A.25B.12C.35D.347.若x为实数在“(√3+1)◯ x”的“◯”中添上一种运算符号(在“+-× ÷”中选择)后其运算的结果为有理数则不可能是()A.√3−1B.1−√3C.3√3D.1+√38.计算sin60°⋅tan30°−sin45°⋅cos30°的结果是()A.−12+√62B.√32+12C.−√32+12D.12−√649.下列运算正确的是()A .√3+√2=√5B .|3.14−π|=π−3.14C .a 2⋅a 3=a 6D .(a −1)2=a 2−2a −110.今年“十一”期间 广州部分公园举行游园活动 据统计 天河公园早晨6时30分有2人进入公园 接下来的第一个30分钟内有4人进去1人出来 第二个30分钟内有8人进去2人出来 第三个30分钟内有16人进去3人出来 第四个30分钟内有32人进去4人出来.按照这种规律进行下去 到上午11时30分公园内的人数是( )A .211−47B .212−57C .213−68D .214−80二 填空题11.(√3−1.732)0+(−14)−2= .12.【中考变形】已知a =(12)−1+(−√3)0,b =(√3+√2)(√3−√2) 则√a +b = .13.计算:|−5|+(3−π)0−6×3−1+√3−1−2sin60°= 。
中考数学专题练习 实数(含解析)

实数一、选择题1.某年哈尔滨市一月份的平均气温为﹣18℃,三月份的平均气温为2℃,则三月份的平均气温比一月份的平均气温高()A.16℃ B.20℃ C.﹣16℃D.﹣20℃2.下列计算正确的是()A.B.(a+b)2=a2+b2C.(﹣2a)3=﹣6a3D.﹣(x﹣2)=2﹣x3.下列计算正确的是()A.(﹣1)﹣1=1 B.(﹣3)2=﹣6 C.π0=1 D.(﹣2)6÷(﹣2)3=(﹣2)24.数字,,π,,cos45°,中是无理数的个数有()个.A.1 B.2 C.3 D.45.据报道,2010年苏州市政府有关部门将在市区完成130万平方米老住宅小区综合整治工作.130万(即1300000)这个数用科学记数法可表示为()A.1.3×104B.1.3×105C.1.3×106D.1.3×1076.数轴上的点A表示的数是﹣1,点B表示的数是﹣,则点B关于点A的对称点B′点表示的数为()A.﹣2 B.﹣﹣2 C.﹣﹣1 D.07.下列计算结果正确的是()A.(﹣a3)2=a9B.a2•a3=a6C.D.(sin60°﹣)0=08.28cm接近于()A.珠穆朗玛峰的高度 B.三层楼的高度C.姚明的身高D.一张纸的厚度9.实数a、b在数轴上的位置如图所示,下列式子错误的是()A.a<b B.|a|>|b| C.﹣a<﹣b D.b﹣a>0二.填空题10.地球与太阳之间的距离约为149 600 000千米,用科学记数法表示(保留2个有效数字)约为千米.11.化简: = .12.若将三个数表示在数轴上,其中能被如图所示的墨迹覆盖的数是.13.已知a、b为两个连续的整数,且,则a+b= .14.已知互为相反数,则a:b= .15.若的值在x与x+1之间,则x= .16.,则x y= .17.计算: = .18.化简二次根式: = .19.一个自然数的算术平方根是a,则相邻的下一个自然数的算术平方根是.三.计算题20.计算:﹣+|1﹣|+()﹣1.21.计算:﹣2sin30°﹣(﹣)﹣2+(﹣π)0﹣+(﹣1)2012.22..23.计算:.24.若x是不等于1的实数,我们把称为x的差倒数,如3的差倒数为,﹣5的差倒数为.现已知x1=﹣,x1的差倒数是x2,x2的差倒数是x3,…,以此类推,x2013的值是多少?实数参考答案与试题解析一、选择题1.某年哈尔滨市一月份的平均气温为﹣18℃,三月份的平均气温为2℃,则三月份的平均气温比一月份的平均气温高()A.16℃ B.20℃ C.﹣16℃D.﹣20℃【考点】有理数的减法.【专题】应用题.【分析】根据题意用三月份的平均气温气温减去一月份的平均气温气温,再根据有理数的减法运算法则“减去一个数等于加上这个数的相反数”计算求解.【解答】解:2﹣(﹣18)=2+18=20℃.故选B.【点评】本题考查有理数的减法运算法则.2.下列计算正确的是()A.B.(a+b)2=a2+b2C.(﹣2a)3=﹣6a3D.﹣(x﹣2)=2﹣x【考点】完全平方公式;去括号与添括号;幂的乘方与积的乘方;二次根式的加减法.【分析】利用完全平方公式、去括号与添括号法则、幂的乘方与积的乘方及二次根式的加减法等性质进行计算后即可确定答案.【解答】解:A、不是同类二次根式,因此不能进行运算,故本答案错误;B、(a+b)2=a2+b2+2ab,故本答案错误;C、(﹣2a)3=﹣8a3,故本答案错误;D、﹣(x﹣2)=﹣x+2=2﹣x,故本答案正确;故选D.【点评】本题考查了完全平方公式、去括号与添括号法则、幂的乘方与积的乘方及二次根式的加减法等性质,属于基本运算,要求学生必须掌握.3.下列计算正确的是()A.(﹣1)﹣1=1 B.(﹣3)2=﹣6 C.π0=1 D.(﹣2)6÷(﹣2)3=(﹣2)2【考点】负整数指数幂;同底数幂的除法;零指数幂.【专题】计算题.【分析】根据平方根,负指数幂的意义,同底数的幂的除法的意义,分别计算出各个式子的值即可判断.【解答】解:A、(﹣1)﹣1=﹣1,故A错误;B、(﹣3)2=9,故B错误;C、任何非0实数的零次幂等于1,故C正确;D、(﹣2)6÷(﹣2)3=(﹣2)3,故D错误.故选C.【点评】解决此题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、同底数的幂的除法等考点的运算.4.数字,,π,,cos45°,中是无理数的个数有()个.A.1 B.2 C.3 D.4【考点】无理数;特殊角的三角函数值.【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,结合所给的数据判断即可.【解答】解: =2,cos45°=,所以数字,,π,,cos45°,中无理数的有:,π,cos45°,共3个.故选C.【点评】此题考查了无理数的定义,属于基础题,关键是掌握无理数的三种形式.5.据报道,2010年苏州市政府有关部门将在市区完成130万平方米老住宅小区综合整治工作.130万(即1300000)这个数用科学记数法可表示为()A.1.3×104B.1.3×105C.1.3×106D.1.3×107【考点】科学记数法—表示较大的数.【专题】应用题.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:130万=1 300 000=1.3×106.故选C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.数轴上的点A表示的数是﹣1,点B表示的数是﹣,则点B关于点A的对称点B′点表示的数为()A.﹣2 B.﹣﹣2 C.﹣﹣1 D.0【考点】实数与数轴.【分析】先求出A、B之间的距离,然后根据对称的性质得出A、B′之间的距离,再设点B′表示的数为x,列出关于x的方程,解方程即可.【解答】解:∵数轴上的点A表示的数是﹣1,点B表示的数是﹣,∴AB=﹣1,∵点B和点B′关于点A对称,∴AB′=AB=﹣1.设点B′表示的数为x,则x+1=﹣1,x=﹣2.∴B′点表示的数为﹣2.故选A.【点评】本题考查了实数与数轴上的点的对应关系,以及对称的有关性质.7.下列计算结果正确的是()A.(﹣a3)2=a9B.a2•a3=a6C.D.(sin60°﹣)0=0【考点】负整数指数幂;同底数幂的乘法;幂的乘方与积的乘方;零指数幂.【分析】根据有理数的幂的乘方和同底数幂的乘法及负指数幂的运算法则计算.【解答】解:A、平方取正值,指数相乘,应为a6,故A错误;B、a2•a3=a5,故B错误;C、,故C正确;D、(sin60°﹣)0=1≠0,故D错误.故选C.【点评】本题主要考查了有理数的有关运算法则,解答此题时要注意任何非0数的0次幂等于1.8.28cm接近于()A.珠穆朗玛峰的高度 B.三层楼的高度C.姚明的身高D.一张纸的厚度【考点】有理数的乘方.【分析】根据有理数的乘方运算法则,计算出结果,然后根据生活实际来确定答案.【解答】解:28=24×24=16×16=256(cm)=2.56(m).A、珠穆朗玛峰峰的高度约8848米,错误;B、三层楼的高度20米左右,错误;C、姚明的身高是2.23米,接近2.56米,正确;D、一张纸的厚度只有几毫米,错误.故选C.【点评】解答这样的题目有两个要点需要注意,一是有理数的乘方运算法则要记牢;二是根据生活实际情况来做出选择.9.实数a、b在数轴上的位置如图所示,下列式子错误的是()A.a<b B.|a|>|b| C.﹣a<﹣b D.b﹣a>0【考点】实数与数轴.【分析】根据数轴表示数的方法得到a<0<b,数a表示的点比数b表示点离原点远,则a<b;﹣a >﹣b;b﹣a>0,|a|>|b|.【解答】解:根据题意得,a<0<b,∴a<b;﹣a>﹣b;b﹣a>0,∵数a表示的点比数b表示点离原点远,∴|a|>|b|,∴选项A、B、D正确,选项C不正确.故选C.【点评】本题考查了实数与数轴:数轴上的点与实数一一对应;数轴上原点左边的点表示负数,右边的点表示正数;右边的点表示的数比左边的点表示的数要大.二.填空题10.地球与太阳之间的距离约为149 600 000千米,用科学记数法表示(保留2个有效数字)约为1.5×108千米.【考点】科学记数法与有效数字.【专题】计算题.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于1 048 576有7位,所以可以确定n=7﹣1=6.有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.【解答】解:149 600 000=1.496×108≈1.5×108.故答案为1.5×108.【点评】此题考查科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.11.化简: = .【考点】算术平方根.【分析】根据开平方的意义,可得答案.【解答】解:原式==,故答案为:.【点评】本题考查了算术平方根,先化成分数,再开方运算.12.若将三个数表示在数轴上,其中能被如图所示的墨迹覆盖的数是.【考点】实数与数轴.【专题】图表型.【分析】首先利用估算的方法分别得到﹣,,前后的整数(即它们分别在那两个整数之间),从而可判断出被覆盖的数.【解答】解:∵﹣2<﹣<﹣1,2<<3,3<<4,且墨迹覆盖的范围是1﹣3,∴能被墨迹覆盖的数是.【点评】本题考查了实数与数轴的对应关系,以及估算无理数大小的能力.13.已知a、b为两个连续的整数,且,则a+b= 11 .【考点】估算无理数的大小.【分析】根据无理数的性质,得出接近无理数的整数,即可得出a,b的值,即可得出答案.【解答】解:∵,a、b为两个连续的整数,∴<<,∴a=5,b=6,∴a+b=11.故答案为:11.【点评】此题主要考查了无理数的大小,得出比较无理数的方法是解决问题的关键.14.已知互为相反数,则a:b= .【考点】立方根.【分析】根据立方根互为相反数,可得被开方数互为相反数,根据互为相反数的两数的和为0,可得答案.【解答】解:互为相反数,∴(3a﹣1)+(1﹣2b)=0,3a=2b,故答案为:.【点评】本题考查了立方根,先由立方根互为相反数得出被开方数互为相反数,再求出的值.15.若的值在x与x+1之间,则x= 2 .【考点】估算无理数的大小.【分析】先估算的整数部分是多少,即可求出x的取值.【解答】解:∵2<<3,∴x=2.故答案为:2.【点评】此题主要考查了估算无理数的大小,确定无理数的整数部分即可解决问题.16.,则x y= ﹣1 .【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】首先根据非负数的性质,两个非负数的和是0,这两个数都是0求得x,y的值,代入即可求解.【解答】解:根据题意得:,解得:,∴x y=(﹣1)2011=﹣1.故答案是:﹣1.【点评】本题主要考查了非负数的性质,以及负指数幂的意义,正确求得x,y的值是解题的关键.17.计算: = .【考点】实数的运算;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】根据负指数幂、二次根式化简、特殊角的三角函数3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=3+0.5﹣6×=,故答案为.【点评】本题是基础题,考查了实数的有关运算,还涉及了零指数幂、负指数幂、二次根式化简、绝对值等考点.18.化简二次根式: = ﹣2 .【考点】二次根式的混合运算.【分析】首先进行各项的化简,然后合并同类项即可.【解答】解: =3﹣()﹣2=﹣2,故答案为﹣2.【点评】本题主要考查二次根式的化简、二次根式的混合运算,解题的关键在于对二次根式进行化简,然后合并同类项.19.一个自然数的算术平方根是a,则相邻的下一个自然数的算术平方根是.【考点】算术平方根.【分析】首先利用算术平方根求出这个自然数,然后即可求出相邻的下一个自然数的算术平方根.【解答】解:∵一个自然数的算术平方根是a,∴这个自然数是a2,∴相邻的下一个自然数为:a2+1,∴相邻的下一个自然数的算术平方根是:,故答案为:.【点评】此题主要考查算术平方根的定义及其应用,比较简单.三.计算题20.计算:﹣+|1﹣|+()﹣1.【考点】实数的运算;负整数指数幂.【专题】计算题.【分析】原式第一项化为最简二次根式,第二项分母有理化,第三项利用绝对值的代数意义化简,最后一项利用负指数幂法则计算即可得到结果.【解答】解:原式=3﹣+﹣1+2=3+1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.21.计算:﹣2sin30°﹣(﹣)﹣2+(﹣π)0﹣+(﹣1)2012.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】本题涉及零指数幂、乘方、特殊角的三角函数值、立方根等考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=﹣2×﹣+1﹣(﹣2)+1=﹣1﹣9+1+2+1=﹣6.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是掌握零指数幂、乘方、特殊角的三角函数值、立方根等考点的运算.22..【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】根据零指数幂、负整数指数幂和特殊角的三角函数值得到原式=4+(1﹣)﹣1+2×+,再去括号和进行乘法运算,然后合并即可.【解答】解:原式=4+(1﹣)﹣1+2×+=4+1﹣﹣1++=4+.【点评】本题考查了实数的运算:先算乘方或开方,再算乘除,然后进行加减运算;有括号先算括号.也考查了零指数幂、负整数指数幂和特殊角的三角函数值.23.计算:.【考点】实数的运算;零指数幂;特殊角的三角函数值.【专题】计算题.【分析】本题涉及零指数幂、特殊角的三角函数值、二次根式化简、去绝对值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=2+×﹣(﹣1)﹣1,=2+1﹣+1﹣1,=+1.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握特殊角的三角函数值、零指数幂、二次根式、绝对值等考点的运算.24.若x是不等于1的实数,我们把称为x的差倒数,如3的差倒数为,﹣5的差倒数为.现已知x1=﹣,x1的差倒数是x2,x2的差倒数是x3,…,以此类推,x2013的值是多少?【考点】规律型:数字的变化类.【分析】根据差倒数的定义分别计算出x1=﹣,x2=;x3=4,x4=﹣,则得到从x1开始每3个值就循环,而2013÷3=671,即可得出答案.【解答】解:∵x1=﹣,∴x2==;x3==4;x4==﹣;…,∴三个数一个循环,∵2013÷3=671,∴x2013=x3=4.【点评】此题考查了数字的变化类,是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.。
中考数学专题复习1实数的运算(原卷版)

实数的运算复习考点攻略考点01 有理数1.整数和分数统称为有理数。
(有限小数与无限循环小数都是有理数。
)2.正整数、0、负整数统称为整数。
正分数、负分数统称分数。
3.正数和零统称为非负数,负数和零统称为非正数,正整数和零统称为非负整数,负整数和零统称为非正整数。
4.正数和负数表示相反意义的量。
【注意】0既不是正数,也不是负数。
【例1】.在下列各组中,哪个选项表示互为相反意义的量()A.足球比赛胜5场与负5场B.向东走3千米,再向南走3千米C.增产10吨粮食与减产﹣10吨粮食D.下降的反义词是上升【例2】已知某快递公司的收费标准为:寄一件物品不超过5千克,收费13元;超过5千克的部分每千克收2元。
圆圆在该快递公司寄一件8千克的物品,需要付费( )。
A.17元B.19元C.21元D.23元考点02 数轴1.数轴的三要素:原点、正方向、单位长度。
数轴是一条直线。
2.所有有理数都可以用数轴上的点来表示,但数轴上的点不一定都是有理数。
3.数轴上,右边的数总比左边的数大;表示正数的点在原点的右侧,表示负数的点在原点的左侧。
【例3】如图,数轴上的点A,B分别表示数﹣2和1,点C是线段AB的中点,则点C 表示的数是()A.﹣0.5B.﹣1.5C.0D.0.5考点03 相反数、绝对值和倒数1.在数轴上表示数a的点与原点的距离,叫做a的绝对值,记作:a。
2.一个正数的绝对值等于本身,一个负数的绝对值等于它的相反数,0的绝对值是0.即(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩3. 乘积为1的两个数互为倒数。
正数的倒数为正数,负数的倒数为负数,0没 有倒数。
倒数是本身的只有1和-1。
4. 倒数性质:(1)若a 与b 互为倒数,则a·b=1;反之,若a·b=1,则a 与b 互为倒数。
(2)若a 与b 互为负倒数,则a·b=-1;反之,若a·b= -1则a 与b 互为倒数。
中考《数学》实数的有关概念与计算专题练习题(共53题)

实数的有关概念与计算专题练习题(53题)一、单选题12.(2023年安徽省滁州市南片五校中考二模数学试卷)12-的倒数是( )A .12-B .2-C .12D .213.(2023·浙江宁波·统考中考真题)在2,1,0,π--这四个数中,最小的数是( ) A .2-B .1-C .0D .π14.(2023·江西·统考中考真题)下列各数中,正整数是( ) A .3B .2.1C .0D .2-15.(2023·新疆·统考中考真题)﹣5的绝对值是( ) A .5B .﹣5C .15-D .1516.(2023·甘肃武威·统考中考真题)9的算术平方根是( ) A .3±B .9±C .3D .3-17.(2023·浙江温州·统考中考真题)如图,比数轴上点A 表示的数大3的数是( )A .1-B .0C .1D .218.(2023·四川自贡·统考中考真题)如图,数轴上点A 表示的数是2023,OA=OB ,则点B 表示的数是( )A .2023B .2023-C .12023D .12023-19.(2023·浙江绍兴·统考中考真题)计算23-的结果是( ) A .1-B .3-C .1D .320.(2023·江苏扬州·统考中考真题)已知523a b c ===,,,则a 、b 、c 的大小关系是( ) A .b a c >>B .a c b >>C .a b c >>D .b c a >>21.(2023·江苏扬州·统考中考真题)3-的绝对值是( ) A .3B .3-C .13D .3±22.(2023·重庆·统考中考真题)4的相反数是( )A .14B .14-C .4D .4-23.(2023·四川凉山·统考中考真题)下列各数中,为有理数的是( )二、填空题39.(2023·江苏连云港·统考中考真题)计算:2(5)=__________.三、解答题40.(2023·浙江金华·统考中考真题)计算:0(2023)42sin305-+-︒+-.41.(2023·四川自贡·统考中考真题)计算:02|3|(71)2--+-.42.(2023·四川泸州·统考中考真题)计算:()0123212sin 303-⎛⎫+-+︒-- ⎪⎝⎭.43.(2023·浙江·统考中考真题)计算:011(2023)22--+-+.44.(2023·四川广安·统考中考真题)计算:02024212cos60532⎛⎫-+--+- ⎪⎝⎭︒45.(2023·江苏连云港·统考中考真题)计算()11422π-⎛⎫-+-- ⎪⎝⎭.。
2022年全国中考数学真题分项汇编专题1:实数(含解析)
专题01 实数一.选择题1.(2022·湖南长沙)-6的相反数是()A. B. -6 C. D. 62.(2022·四川成都)的相反数是()A.B.C.D.3.(2022·安徽)下列为负数的是()A.B.C.0D.4.(2022·江西)实数a,b在数轴上的对应点的位置如图所示,则下列结论中,正确的是()A.B.C.D.5.(2022·江苏苏州)下列实数中,比3大的数是()A.5B.1C.0D.-26.(2022·山东泰安)计算的结果是()A.-3B.3C.-12D.127.(2022·湖南娄底)截至2022年6月2日,世界第四大水电站——云南昭通溪洛渡水电站累计生产清洁电能突破5000亿千瓦时,相当于替代标准煤约1.52亿吨,减排二氧化碳约4.16亿.5000亿用科学计数法表示为()A.B.C.D.8.(2022·湖南娄底)在古代,人们通过在绳子上打结来计数.即“结绳计数”.当时有位父亲为了准确记录孩子的出生天数,在粗细不同的绳子上打结(如图),由细到粗(右细左粗),满七进一,那么孩子已经出生了()A.1335天B.516天C.435天D.54天9.(2022·湖南湘潭)如图,点、表示的实数互为相反数,则点表示的实数是()A.2B.-2C.D.10.(2022·云南)中国是最早采用正负数表示相反意义的量,并进行负数运算的国家.若零上10℃记作+10℃,则零下10℃可记作()A.10℃B.0℃C.-10 ℃D.-20℃11.(2022·四川南充)下列计算结果为5的是()A.B.C.D.12.(2022·江苏宿迁)-2的绝对值是()A.2B.C.D.13.(2022·山东泰安)的倒数是()A.B.C.5D.14.(2022·天津)计算的结果等于()A.B.C.5D.115.(2022·湖南邵阳)5月29日腾讯新闻报道,2022年第一季度,湖南全省地区生产总值约为11000亿元,11000亿用科学记数法可表示为,则的值是()A.0.11B.1.1C.11D.1100016.(2022·浙江杭州)圆圆想了解某地某天的天气情况,在某气象网站查询到该地这天的最低气温为-6℃,最高气温为2℃,则该地这天的温差(最高气温与最低气温的差)为()A.-8℃B.-4℃C.4℃D.8℃17.(2022·浙江杭州)国家统计局网站公布我国2021年年末总人口约1412600000人,数据1412600000用科学记数法可以表示为()A.B.C.D.18.(2022·江苏连云港)-3的倒数是()A.3B.-3C.D.19.(2022·四川自贡)下列运算正确的是()A. B. C. D.20.(2022·浙江宁波)的相反数是()A.2022B.C.D.21.(2022·四川达州)下列四个数中,最小的数是()A.0B.-2C.1D.22.(2022·浙江舟山)估计的值在()A.4和5之间B.3和4之间C.2和3之间D.1和2之间23.(2022·山东滨州)下列计算结果,正确的是()A.B.C.D.24.(2022·四川泸州)()A.B.C.D.225.(2022·四川凉山)化简:=()A.±2B.-2C.4D.226.(2022·浙江金华)在中,是无理数的是()A.B.C.D.227.(2022·湖南株洲)在0、、-1、这四个数中,最小的数是()A.0B.C.-1D.28.(2022·四川眉山)截至2021年12月31日,全国共有共青团组织约367.7万个.将367.7万用科学记数法表示为()A.B.C.D.29.(2022·四川泸州)与最接近的整数是()A.4B.5C.6D.7二.填空题30.(2022·江苏宿迁)2022年5月,国家林业和草原局湿地管理司在第二季度侧行发布会上表示,到“十四五”末,我国力争将湿地保护率提高到55%,其中修复红树林146200亩,请将146200用科学记数法表示是____.31.(2022·浙江杭州)计算:_________;_________.32.(2022·湖南株洲)计算:3+(﹣2)=_____.33.(2022·江苏扬州)扬州市某天的最高气温是6℃,最低气温是-2℃,那么当天的日温差是__.34.(2022·江苏宿迁)满足的最大整数是_______.35.(2022·陕西)实数a,b在数轴上对应点的位置如图所示,则a______.(填“>”“=”或“<”)36.(2022·陕西)计算:______.37.(2022·江苏连云港)写出一个在1到3之间的无理数:_________.38.(2022·浙江宁波)写出一个大于2的无理数_____.39.(2022·重庆)计算:_________.40.(2022·四川南充)比较大小:_______________.(选填>,=,<)41.(2022·四川泸州)若,则________.42.(2022·湖南湘潭)四个数-1,0,,中,为无理数的是_________.三.解答题43.(2022·新疆)计算:44.(2022·四川泸州)计算:.45.(2022·浙江丽水)计算:.46.(2022·湖南邵阳)计算:.47.(2022·陕西)计算:.48.(2022·江苏宿迁)计算:4°.49.(2022·湖南株洲)计算:.50.(2022·四川眉山)计算:.51.(2022·江苏连云港)计算:.52.(2022·浙江金华)计算:.53.(2022·四川德阳)计算:.54.(2022·浙江杭州)计算:.圆圆在做作业时,发现题中有一个数字被墨水污染了.(1)如果被污染的数字是,请计算.(2)如果计算结果等于6,求被污染的数字.专题01 实数一.选择题1.(2022·湖南长沙)-6的相反数是()A. B. -6 C. D. 6【答案】D【分析】根据只有符号不同的两个数互为相反数进行解答即可得.【详解】解:相反数是6.故选D.【点睛】本题考查了相反数的定义,熟练掌握相反数的定义是解题的关键.2.(2022·四川成都)的相反数是()A.B.C.D.【答案】A【分析】直接根据相反数的求法求解即可.【详解】解:任意一个实数a的相反数为-a由 −的相反数是;故选A.【点睛】本题主要考查相反数,熟练掌握求一个数的相反数是解题的关键.3.(2022·安徽)下列为负数的是()A.B.C.0D.【答案】D【分析】根据正负数的意义分析即可;【详解】解:A、=2是正数,故该选项不符合题意;B、是正数,故该选项不符合题意;C、0不是负数,故该选项不符合题意;D、-5<0是负数,故该选项符合题意.故选D.【点睛】本题考查正负数的概念和意义,熟练掌握绝对值、算术平方根和正负数的意义是解决本题的关键.4.(2022·江西)实数a,b在数轴上的对应点的位置如图所示,则下列结论中,正确的是()A.B.C.D.【答案】C【分析】根据数轴上点的特点,进行判断即可.【详解】ABC.根据数轴上点a、b的位置可知,,,∴,故AB错误,C正确;根据数轴上点a、b的位置可知,,故D错误.故选:C.【点睛】本题主要考查了数轴上点的特点,熟练掌握数轴上点表示的数,越向右越大,是解题的关键.5.(2022·江苏苏州)下列实数中,比3大的数是()A.5B.1C.0D.-2【答案】A【分析】根据有理数的大小比较法则比较即可.【详解】解:因为-2<0<1<3<5,所以比3大的数是5,故选:A.【点睛】本题考查了有理数的大小比较法则,能熟记有理数的大小比较法则的内容是解此题的关键.6.(2022·山东泰安)计算的结果是()A.-3B.3C.-12D.12【答案】B【分析】直接计算即可得到答案.【详解】==3故选:B.【点睛】本题考查有理数的乘法,解题的关键是熟练掌握有理数乘法的知识.7.(2022·湖南娄底)截至2022年6月2日,世界第四大水电站——云南昭通溪洛渡水电站累计生产清洁电能突破5000亿千瓦时,相当于替代标准煤约1.52亿吨,减排二氧化碳约4.16亿.5000亿用科学计数法表示为()A.B.C.D.【答案】B【分析】用科学记数法表示较大的数时,一般形式为,其中,为整数,先将5000亿转化成数字,然后按要求表示即可.【详解】解:5000亿,根据科学记数法要求500000000000的5后面有11个0,从而用科学记数法表示为,故选:B.【点睛】本题考查科学记数法,按照定义,确定与的值是解决问题的关键.8.(2022·湖南娄底)在古代,人们通过在绳子上打结来计数.即“结绳计数”.当时有位父亲为了准确记录孩子的出生天数,在粗细不同的绳子上打结(如图),由细到粗(右细左粗),满七进一,那么孩子已经出生了()A.1335天B.516天C.435天D.54天【答案】B【分析】根据题意以及图形分析,根据满七进一,即可求解.【详解】解:绳结表示的数为故选B 【点睛】本题考查了有理数的混合运算,理解“满七进一”是解题的关键.9.(2022·湖南湘潭)如图,点、表示的实数互为相反数,则点表示的实数是()A.2B.-2C.D.【答案】A【分析】根据互为相反数的两个数的和为0即可求解.【详解】解:因为数轴上两点A,B表示的数互为相反数,点A表示的数是-2,所以点B表示的数是2,故选:A.【点睛】此题考查了相反数的性质,数轴上两点间的距离,解题的关键是利用数形结合思想解答.10.(2022·云南)中国是最早采用正负数表示相反意义的量,并进行负数运算的国家.若零上10℃记作+10℃,则零下10℃可记作()A.10℃B.0℃C.-10 ℃D.-20℃【答案】C【分析】零上温度记为正,则零下温度就记为负,则可得出结论.【详解】解:若零上记作,则零下可记作:.故选:C.【点睛】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.11.(2022·四川南充)下列计算结果为5的是()A.B.C.D.【答案】C【分析】根据去括号法则及绝对值化简依次计算判断即可.【详解】解:A、-(+5)=-5,不符合题意;B、+(-5)=-5,不符合题意;C、-(-5)=5,符合题意;D、,不符合题意;故选:C.【点睛】题目主要考查去括号法则及化简绝对值,熟练掌握去括号法则是解题关键.12.(2022·江苏宿迁)-2的绝对值是()A.2B.C.D.【答案】A【分析】根据数轴上某个数与原点的距离叫做这个数的绝对值的定义进行求解即可.【详解】在数轴上,点-2到原点的距离是2,所以-2的绝对值是2,故选:A.13.(2022·山东泰安)的倒数是()A.B.C.5D.【答案】A【详解】根据两个数乘积是1的数互为倒数的定义,因此求一个数的倒数即用1除以这个数.所以结合绝对值的意义,得的倒数为.故选A.14.(2022·天津)计算的结果等于()A.B.C.5D.1【答案】A【分析】直接计算得到答案.【详解】==故选:A.【点睛】本题考查有理数的运算,解题的关键是熟练掌握有理数的运算知识.15.(2022·湖南邵阳)5月29日腾讯新闻报道,2022年第一季度,湖南全省地区生产总值约为11000亿元,11000亿用科学记数法可表示为,则的值是()A.0.11B.1.1C.11D.11000【答案】B【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,整数位数减1即可.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:因为1亿=108,所以11000亿用科学记数法表示为1.1×104×108=1.1×1012.故选:B.【点睛】此题考查了科学记数法表示绝对值大于1的数.解题的关键是关键知道1亿=108,要正确确定a的值以及n的值.16.(2022·浙江杭州)圆圆想了解某地某天的天气情况,在某气象网站查询到该地这天的最低气温为-6℃,最高气温为2℃,则该地这天的温差(最高气温与最低气温的差)为()A.-8℃B.-4℃C.4℃D.8℃【答案】D【分析】这天的温差就是最高气温减去最低气温的差,由此列式得出答案即可.【详解】解:这天最高温度与最低温度的温差为2-(-6)=8.故选:D.【点睛】本题主要考查有理数的减法法则,关键是根据减去一个数等于加上这个数的相反数解答.17.(2022·浙江杭州)国家统计局网站公布我国2021年年末总人口约1412600000人,数据1412600000用科学记数法可以表示为()A.B.C.D.【答案】B【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数,当原数绝对值<1时,n是负整数.【详解】解:1412600000=.故选:B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.18.(2022·江苏连云港)-3的倒数是()A.3B.-3C.D.【答案】D【分析】根据倒数的定义,即可计算出结果.【详解】解:-3的倒数是;故选:D【点睛】本题考查了倒数的定义:乘积是1的两数互为倒数.19.(2022·四川自贡)下列运算正确的是()A. B. C. D.【答案】B【分析】根据乘方运算,平方差公式,同底数幂的除法法则,零指数幂的运算法则进行运算即可.【详解】A.,故A错误;B.,故B正确;C.,故C错误;D.,故D错误.故选:B.【点睛】本题主要考查了整式的运算和实数的运算,熟练掌握平方差公式,同底数幂的除法法则,零指数幂的运算法则,是解题的关键.20.(2022·浙江宁波)的相反数是()A.2022B.C.D.【答案】A【分析】根据相反数的意义即只有符号不同的两个数互为相反数,即可解答.【详解】解:﹣2022的相反数是2022,故选:A.【点睛】本题考查了相反数,熟练掌握相反数的意义是解题的关键.21.(2022·四川达州)下列四个数中,最小的数是()A.0B.-2C.1D.【答案】B【分析】根据实数的大小比较即可求解.【详解】解:∵,∴最小的数是,故选B.【点睛】本题考查了实数的大小比较,掌握实数的大小比较是解题的关键.22.(2022·浙江舟山)估计的值在()A.4和5之间B.3和4之间C.2和3之间D.1和2之间【答案】C【分析】根据无理数的估算方法估算即可.【详解】∵∴故选:C.【点睛】本题主要考查了无理数的估算能力,要求掌握无理数的基本估算技能,灵活应用.“夹逼法”是估算的一般方法,也是常用方法.23.(2022·山东滨州)下列计算结果,正确的是()A.B.C.D.【答案】C【分析】据幂的乘方、算术平方根的计算、立方根的化简和特殊角的三角函数值逐一进行计算即可.【详解】解:A、,该选项错误;B、,该选项错误;C、,该选项正确;D、,该选项错误;故选:C.【点睛】本题考查了幂的乘方、算术平方根的计算、立方根的化简和特殊角的三角函数值,熟练掌握运算法则是解题的关键.24.(2022·四川泸州)()A.B.C.D.2【答案】A【分析】根据算术平方根的定义可求.【详解】解:-2,故选A.【点睛】本题考查了算术平方根的定义,要注意正确区分平方根与算术平方根,解题的关键是掌握算术平方根的定义.25.(2022·四川凉山)化简:=()A.±2B.-2C.4D.2【答案】D【分析】先计算(-2)2=4,再求算术平方根即可.【详解】解:,故选:D.【点睛】本题考查算术平方根,熟练掌握算术平方根的定义是解题的关键.26.(2022·浙江金华)在中,是无理数的是()A.B.C.D.2【答案】C【分析】根据无理数的定义判断即可;【详解】解:∵-2,,2是有理数,是无理数,故选: C.【点睛】本题考查了无理数的定义:无限不循环小数叫做无理数,如开方开不尽的数的方根、π.27.(2022·湖南株洲)在0、、-1、这四个数中,最小的数是()A.0B.C.-1D.【答案】C【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【详解】解:根据实数比较大小的方法,可得:,∴在0、、-1、这四个数中,最小的数是-1.故选C.【点睛】此题主要考查了实数大小比较的方法.解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.28.(2022·四川眉山)截至2021年12月31日,全国共有共青团组织约367.7万个.将367.7万用科学记数法表示为()A.B.C.D.【答案】C【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:367.7万=3677000=;选:C【点睛】此题考查了科学记数法.解题的关键是掌握科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.29.(2022·四川泸州)与最接近的整数是()A.4B.5C.6D.7【答案】C【分析】估算无理数的大小即可得出答案.【详解】解:∵12.25<15<16,∴3.5<<4,∴5.5<2+<6,∴最接近的整数是6,故选:C.【点睛】本题考查了估算无理数的大小,无理数的估算常用夹逼法,用有理数夹逼无理数是解题的关键.二.填空题30.(2022·江苏宿迁)2022年5月,国家林业和草原局湿地管理司在第二季度侧行发布会上表示,到“十四五”末,我国力争将湿地保护率提高到55%,其中修复红树林146200亩,请将146200用科学记数法表示是____.【答案】【分析】科学记数法就是把绝对值大于1的数表示成的形式,其中n就等于原数的位数减1.【详解】解:.故答案为:.【点睛】本题主要考查了科学记数法,牢记科学记数法的定义并准确求出中的n是做出本题的关键.31.(2022·浙江杭州)计算:_________;_________.【答案】 2 4【分析】根据算术平方根的性质,乘方的运算法则,即可求解.【详解】解:;.故答案为:2,4【点睛】本题主要考查了求一个数的算术平方根,乘方运算,熟练掌握算术平方根的性质,乘方的运算法则是解题的关键.32.(2022·湖南株洲)计算:3+(﹣2)=_____.【答案】1【分析】根据有理数的加法法则计算即可.【详解】3+(﹣2)=+(3﹣2)=1,故答案为1【点睛】本题主要考查了有理数的加法,熟练掌握法则是解答本题的关键.33.(2022·江苏扬州)扬州市某天的最高气温是6℃,最低气温是-2℃,那么当天的日温差是__.【答案】8℃.【详解】用最高温度减去最低温度即可得当天的日温差:6-(-2)=6+2=8℃.34.(2022·江苏宿迁)满足的最大整数是_______.【答案】3【分析】先判断从而可得答案.【详解】解:满足的最大整数是3.故答案为:3.【点睛】本题考查的是无理数的估算,掌握“无理数的估算方法”是解本题的关键.35.(2022·陕西)实数a,b在数轴上对应点的位置如图所示,则a______.(填“>”“=”或“<”)【答案】<【分析】根据在数轴上右边的数据大于左边的数据即可得出答案.【详解】解:如图所示:-4<b<-3,1<a<2,∴,∴.故答案为:<.【点睛】此题主要考查了实数与数轴,正确掌握数轴上数据大小关系是解题关键.36.(2022·陕西)计算:______.【答案】【分析】先计算,再计算3-5即可得到答案.【详解】解:.故答案为:-2.【点睛】本题主要考查了实数的运算,化简是解答本题的关键.37.(2022·江苏连云港)写出一个在1到3之间的无理数:_________.【答案】(答案不唯一)【分析】由于12=1,32=9,所以只需写出被开方数在1和9之间的,且不是完全平方数的数即可求解.【详解】解:1和3之间的无理数如.故答案为:(答案不唯一).【点睛】本题主要考查常见无理数的定义和性质,解题关键是估算无理数的整数部分和小数部分.38.(2022·浙江宁波)写出一个大于2的无理数_____.【答案】如(答案不唯一)【分析】首先2可以写成,由于开方开不尽的数是无理数,由此即可求解.【详解】解:∵2=,∴大于2的无理数须使被开方数大于4即可,如(答案不唯一).【点睛】本题考查无理数定义及比较大小.熟练掌握无理数的定义是解题的关键.39.(2022·重庆)计算:_________.【答案】5【分析】根据绝对值和零指数幂进行计算即可.【详解】解:,故答案为:5.【点睛】本题考查了绝对值和零指数幂的计算,熟练掌握定义是解题的关键.40.(2022·四川南充)比较大小:_______________.(选填>,=,<)【答案】<【分析】先计算,,然后比较大小即可.【详解】解:,,∵,∴,故答案为:<.【点睛】本题主要考查有理数的大小比较,负整数指数幂的运算,零次幂的运算,熟练掌握运算法则是解题关键.41.(2022·四川泸州)若,则________.【答案】【分析】由可得,,进而可求出和的值.【详解】∵,∴,,∴=2,,∴.故答案为-6.【点睛】本题考查了非负数的性质,①非负数有最小值是零;②有限个非负数之和仍然是非负数;③有限个非负数的和为零,那么每一个加数也必为零.,初中范围内的非负数有:绝对值,算术平方根和偶次方.42.(2022·湖南湘潭)四个数-1,0,,中,为无理数的是_________.【答案】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.【详解】解:-1,0,是有理数;是无理数;故答案为:.【点睛】此题考查了无理数的识别,无限不循环小数叫无理数,解题的关键是知道初中范围内常见的无理数有三类:①π类,如2π,π3等;②开方开不尽的数,如等;③虽有规律但却是无限不循环的小数,如0.1010010001…(两个1之间依次增加1个0),0.2121121112…(两个2之间依次增加1个1)等.三.解答题43.(2022·新疆)计算:【答案】【分析】分别计算有理数的乘方、绝对值、二次根式及零指数幂,再进行加减即可.【详解】解:原式.【点睛】本题考查有理数的乘方,绝对值和二次根式的化简及零指数幂的性质,属于基础题,正确运算是解题的关键.要熟练掌握:任何一个不等于零的数的零次幂都等于1,.44.(2022·四川泸州)计算:.【答案】2【分析】根据零指数幂、负整数指数幂、特殊角三角函数、绝对值的性质化简即可.【详解】原式==2.【点睛】本题考查了实数的运算,熟练掌握运算法则是解题的关键.45.(2022·浙江丽水)计算:.【答案】【分析】根据求一个数的算术平方根、零指数和负整数指数幂的运算法则进行运算,即可求得.【详解】解:.【点睛】本题考查了求一个数的算术平方根、零指数和负整数指数幂的运算法则,熟练掌握和运用各运算法则是解决本题的关键.46.(2022·湖南邵阳)计算:.【答案】5-【分析】先计算零指数幂、负指数幂、锐角三角函数值,再计算二次根式的乘法和加减法.【详解】解:=1+4-2×=5-.【点睛】此题考查了零指数幂、负指数幂、锐角三角函数值,解题的关键是熟练掌握零指数幂、负指数幂、锐角三角函数值的计算法则.47.(2022·陕西)计算:.【答案】【分析】先算绝对值、算术平方根,零指数幂,再算乘法和加减法,即可求解.【详解】解:【点睛】本题主要考查实数的混合运算,掌握零指数幂和运算法则是解题的关键.48.(2022·江苏宿迁)计算:4°.【答案】2【分析】先计算负整数指数幂,二次根式的化简,特殊角的三角函数值,再计算乘法,再合并即可.【详解】解:【点睛】本题考查的是特殊角的三角函数值的运算,负整数指数幂的含义,二次根式的化简,掌握“运算基础运算”是解本题的关键.49.(2022·湖南株洲)计算:.【答案】3【分析】分别计算负数的偶次幂、二次根式、特殊角的正弦值,再进行加减即可.【详解】解:.【点睛】本题考查负数的偶次幂、二次根式化简以及特殊角的三角函数值,属于基础题,正确计算是解题的关键.50.(2022·四川眉山)计算:.【答案】7【分析】利用零指数幂的运算法则,绝对值的意义,二次根式的化简及负整数指数幂的运算法则计算即可.【详解】解:原式【点睛】本题考查零指数幂的运算法则,绝对值的意义,二次根式的化简及负整数指数幂的运算法则,熟练掌握实数的运算法则是解答此类问题的关键.51.(2022·江苏连云港)计算:.【答案】2【分析】根据有理数的乘法,二次根式的性质,零指数的计算法则求解即可.【详解】解:原式.【点睛】本题主要考查了有理数的乘法,二次根式的性质,零指数,熟知相关计算法则是解题的关键.52.(2022·浙江金华)计算:.【答案】4【分析】根据零指数幂,正切三角函数值,绝对值的化简,算术平方根的定义计算求值即可;【详解】解:原式;【点睛】本题考查了实数的混合运算,掌握特殊角的三角函数值是解题关键.53.(2022·四川德阳)计算:.【答案】【分析】根据二次根式的化简,零指数幂的定义,特殊角的三角函数值,绝对值的性质以及负整数指数幂的运算法则分别化简后再进行实数的加减法运算.【详解】解:.【点睛】此题考查实数的运算法则,正确掌握二次根式的化简,零指数幂的定义,特殊角的三角函数值,绝对值的性质以及负整数指数幂的运算法则是解题的关键.54.(2022·浙江杭州)计算:.圆圆在做作业时,发现题中有一个数字被墨水污染了.(1)如果被污染的数字是,请计算.(2)如果计算结果等于6,求被污染的数字.【答案】(1)-9(2)3【分析】(1)根据有理数混合运算法则计算即可;(2)设被污染的数字为x,由题意,得,解方程即可;(1)解:;(2)设被污染的数字为x,由题意,得,解得,所以被污染的数字是3.【点睛】本题主要考查有理数的混合运算、一元一次方程的应用,掌握相关运算法则和步骤是接替的关键.。
专题01 实数(含二次根式)(8大考点)-2023年中考数学总复习真题探究与变式训练(解析版)
1.实数的概念:有理数和无理数统称为实数。
2.有理数:有限小数或无限循环小数叫做有理数。
3.无理数:无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一实质,归纳起来有四类:
(1)开方开不尽的数,如
等;
(2)有特定意义的数,如圆周率π,或化简后含有π的数,如 +8 等; (3)有特定结构的数,如 0.1010010001…等; (4)某些三角函数,如 sin60o 等。
第一部分 数与式
专题 01 实数(含二次根式)(8 大考点)
核心考点一 实数的分类 核心考点二 相反数、倒数、绝对值 核心考点三 数轴 核心考点四 科学记数法
核心考点
核心考点五 实数的大小比较 核心考点六 平方根、立方根 核心考点七 二次根式及其运算 核心考点八 实数的运算 新题速递
核心考点一 实数的分类
【变式 1】(2022·广西桂林·一模)实数 , ,2,-6 中,为负整数的是( )
A.
B.
C.2
D.- 6
【答案】D
【分析】根据实数的分类即可做出判断.
【详解】解:A 选项是负分数,不符合题意;
Байду номын сангаас
B 选项是无理数,不符合题意;
C 选项是正整数,不符合题意;
D 选项是负整数,符合题意;
故选:D.
【点睛】本题考查了实数的分类,属于简单题,注意整数包括正整数,负整数和 0.
是无理数; 故答案为: . 【点睛】此题考查了无理数的识别,无限不循环小数叫无理数,解题的关键是知道初中范围 内常见的无理数有三类:①π 类,如 2π,π3 等;②开方开不尽的数,如 等;③虽有规 律但却是无限不循环的小数,如 0.1010010001…(两个 1 之间依次增加 1 个 0), 0.2121121112…(两个 2 之间依次增加 1 个 1)等.
2022年全国中考数学真题分类汇编专题1:实数(附答案解析)
A.c>d
B.|c|>|d|
C.﹣c<d
D.c+d<0
【解答】解:由题意得:
c<0,d>0 且|c|<|d|,
A、c<d,故 A 不符合题意;
B、|c|<|d|,故 B 不符合题意;
C、﹣c<d,故 C 符合题意;
D、c+d>0,故 D 不符合题意;
故选:C.
8.实数 a,b 在数轴上对应点的位置如图所示,则 a,b 的大小关系为( )
故选 C.
11.如图,数轴上的两点 A、B 对应的实数分别是 a、b,则下列式子中成立的是( )
第 6 页 共 13 页
A.1﹣2a>1﹣2b B.﹣a<﹣b
C.a+b<0
D.|a|﹣|b|>0
【解答】解:由题意得:a<b,
∴﹣2a>﹣2b,
∴1﹣2a>1﹣2b,
∴A 选项的结论成立;
∵a<b,
∴﹣a>﹣b,
30.计算:| |
.
【解答】解:| |
=1 .
第 10 页 共 13 页
31.计算:(﹣1)2022﹣2cos30°+|1 |+( )﹣1. 【解答】解:(﹣1)2022﹣2cos30°+|1 |+( )﹣1
=1﹣2
1+3
=1
1+3
=3.
32.计算: 【解答】解:
|﹣2|+( 1)0﹣tan45°. |﹣2|+( 1)0﹣tan45°
11.如图,数轴上的两点 A、B 对应的实数分别是 a、b,则下列式子中成立的是( )
A.1﹣2a>1﹣2b B.﹣a<﹣b
C.a+b<0
二.填空题(共 10 小题)
专题01实数(共43题)【解析版】--2023年中考数学真题专题讲解汇总
专题01实数(共43题)--2023年中考数学专题训练一、单选题1.(2022年云南省中考数学真题)中国是最早采用正负数表示相反意义的量,并进行负数运算的国家.若零上10℃记作+10℃,则零下10℃可记作()A.10℃B.0℃C.-10℃D.-20℃【答案】C【解析】【分析】零上温度记为正,则零下温度就记为负,则可得出结论.【详解】解:若零上10°C记作+10°C,则零下10°C可记作:−10°C.故选:C.【点睛】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.2.(2022年四川省凉山州中考数学真题)−2022的相反数是()A.2022B.−2022C.−12022D.12022【答案】A【解析】【分析】根据相反数的意义即只有符号不同的两个数互为相反数,即可解答.【详解】解:﹣2022的相反数是2022,故选:A.【点睛】本题考查了相反数,熟练掌握相反数的意义是解题的关键.3.(2022年浙江省舟山市中考数学真题)若收入3元记为+3,则支出2元记为()A.1B.-1C.2D.-2【答案】D【解析】【分析】根据正负数的意义可得收入为正,收入多少就记多少即可.【详解】解:∵收入3元记为+3,∴支出2元记为-2.故选:D【点睛】本题考查正、负数的意义;在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数.4.(2022年安徽省中考数学真题)下列为负数的是()A.−2B.3C.0D.−5【答案】D【解析】【分析】根据正负数的意义分析即可;【详解】解:A、−2=2B、3是正数,故该选项不符合题意;C、0不是负数,故该选项不符合题意;D、-5<0是负数,故该选项符合题意.故选D.【点睛】本题考查正负数的概念和意义,熟练掌握绝对值、算术平方根和正负数的意义是解决本题的关键.5.(2022年四川省南充市中考数学试卷)下列计算结果为5的是()A.−(+5)B.+(−5)C.−(−5)D.−|−5|【答案】C【解析】【分析】根据去括号法则及绝对值化简依次计算判断即可.【详解】解:A、-(+5)=-5,不符合题意;B、+(-5)=-5,不符合题意;C、-(-5)=5,符合题意;D、−−5=−5,不符合题意;故选:C.【点睛】题目主要考查去括号法则及化简绝对值,熟练掌握去括号法则是解题关键.6.(2022年甘肃省中考第三次数学模拟测试题)2的相反数是()A.−12B.12C.2D.−2【答案】D【解析】【分析】直接根据相反数的定义解答即可.【详解】解:2的相反数是﹣2.故选:D【点睛】此题考查的是相反数,熟练掌握相反数的定义是解题的关键.7.(2022年云南省中考数学真题)赤道长约为40000000m,用科学记数法可以把数字40000000表示为()A.4×107B.40×106C.400×105D.4000×103【答案】A【解析】【分析】根据科学记数法“把一个大于10的数表示成×10的形式(其中a是整数数位只有一位的数,即a大于或等于1且小于10,n是正整数)”进行解答即可得.【详解】解:40000000=4×107,【点睛】本题考查了科学记数法,解题的关键是掌握科学记数法表示形式中a与n的确定.8.(2022年浙江省舟山市中考数学真题)根据有关部门测算,2022年春节假期7天,全国国内旅游出游251000000人次.数据251000000用科学记数法表示为()A.2.51×108B.2.51×107C.25.1×107D.0.251×109【答案】A【解析】【分析】绝对值大于1的数可以用科学记数法表示,一般形式为a×10n,为正整数,且比原数的整数位数少1,据此可以解答.【详解】解:251000000=2.51×108.故选:A【点睛】本题考查用科学记数法表示较大的数,熟练掌握科学记数法表示较大的数一般形式为×10,其中1≤<10,是正整数,正确确定的值和的值是解题的关键.9.(2022年江苏省连云港市中考数学真题)2021年12月9日,“天宫课堂”正式开课,我国航天员在中国空间站首次进行太空授课,本次授课结束时,网络在线观看人数累计超过14600000人次.把“14600000”用科学记数法表示为()A.0.146×108B.1.46×107C.14.6×106D.146×105【答案】B【解析】【分析】科学记数法的表现形式为×10的形式,其中1≤<10,n为整数,确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n是正数,当原数绝对值小于1时n是负数;由此进行求解即可得到答案.【详解】解:14600000=1.46×107.【点睛】本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的具体要求.10.(2022年四川省达州市中考数学真题)2022年5月19日,达州金垭机场正式通航.金亚机场位于达州高新区,占地总面积2940亩,概算投资约为26.62亿元.数据26.62亿元用科学记数法表示为()A.2.662×108元B.0.2662×109元C.2.662×109元D.26.62×1010元【答案】C【解析】【分析】用科学记数法表示较大的数时,一般形式为×10,其中1≤|U<10,为整数.【详解】解:26.62亿=2662000000=2.662×109.故选C.【点睛】本题考查了科学记数法,科学记数法的表示形式为×10的形式,其中1≤|U<10,为整数.确定的值时,要看把原来的数,变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值≥10时,是正数;当原数的绝对值<1时,是负数,确定与的值是解题的关键.11.(2022年浙江省金华市中考数学真题)体现我国先进核电技术的“华龙一号”,年发电能力相当于减少二氧化碳排放16320000吨,数16320000用科学记数法表示为()A.1632×104B.1.632×107C.1.632×106D.16.32×105【答案】B【解析】【分析】在用科学记数法表示的大于10的数时,×10的形式中a的取值范围必须是1≤<10,10的指数比原来的整数位数少1.【详解】解:数16320000用科学记数法表示为1.632×107.故选:B.【点睛】本题考查科学记数法,对于一个写成用科学记数法写出的数,则看数的最末一位在原数中所在数位,其中a 是整数数位只有一位的数,10的指数比原来的整数位数少1.12.(2022年安徽省中考数学真题)据统计,2021年我省出版期刊杂志总印数3400万册,其中3400万用科学记数法表示为()A.3.4×108B.0.34×108C.3.4×107D.34×106【答案】C【解析】【分析】将3400万写成34000000,保留1位整数,写成×10(1≤<10)的形式即可,n为正整数.【详解】解:3400万=34000000,保留1位整数为3.4,小数点向左移动7位,因此34000000=3.4×107,故选:C.【点睛】本题考查科学记数法的表示方法,熟练掌握×10(1≤|U<10)中a的取值范围和n的取值方法是解题的关键.13.(2022年四川省凉山州中考数学真题)我州今年报名参加初中学业水平暨高中阶段学校招生考试的总人数为80917)A.8.0917×106B.8.0917×105C.8.0917×104D.8.0917×103【答案】C【解析】【分析】根据科学记数法的定义即可得.【详解】解:科学记数法:将一个数表示成×10的形式,其中1≤<10,为整数,这种记数的方法叫做科学记数法,则80917=8.0917×104,故选:C.【点睛】本题考查了科学记数法,熟记科学记数法的定义(将一个数表示成×10的形式,其中1≤<10,为整数,这种记数的方法叫做科学记数法)是解题关键.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.14.(2022年四川省成都市中考数学真题)2022年5月17日,工业和信息化部负责人在“2022世界电信和信息社会日”大会上宣布,我国目前已建成5G基站近160万个,成为全球首个基于独立组网模式规模建设5G网络的国家.将数据160万用科学记数法表示为()A.1.6×102B.1.6×105C.1.6×106D.1.6×107【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是非负数;当原数的绝对值<1时,n是负数.【详解】解答:解:160万=1600000=1.6×106,故选:C.【点睛】a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.15.(2022年四川省泸州市中考数学真题)2022年5月,四川省发展和改革委员会下达了保障性安居工程2022年第一批中央预算内投资计划,泸州市获得75500000元中央预算内资金支持,将75500000用科学记数法表示为()A.7.55×106B.75.5×106C.7.55×107D.75.5×107【答案】C【解析】【分析】科学记数法表示较大的数形式为a×10n的形式,其中1≤|a|<10,n为整数,10的指数n比原来的整数位数少1.75500000=7.55×107故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.16.(2022年山东省滨州市中考数学真题)某市冬季中的一天,中午12时的气温是−3℃,经过6小时气温下降了7℃,那么当天18时的气温是()A.10℃B.−10℃C.4℃D.−4℃【答案】B【解析】【分析】根据有理数减法计算−3−7=−10℃即可.【详解】解:∵中午12时的气温是−3℃,经过6小时气温下降了7℃,∴当天18时的气温是−3−7=−10℃.故选B.【点睛】本题考查有理数的减法,掌握有理数的减法法则是解题关键.17.(2022年四川省遂宁市中考数学真题)2022年4月16日,神舟十三号飞船脱离天宫空间站后成功返回地面,总共飞行里程约198000公里.数据198000用科学计数法表示为()A.198×103B.1.98×104C.1.98×105D.1.98×106【答案】C【解析】【分析】用科学记数法表示较大的数时,一般形式为×10,其中1≤|U<10,为整数.【详解】解:198000=1.98×105.故选:C.本题考查了科学记数法,科学记数法的表示形式为×10的形式,其中1≤|U<10,为整数.确定的值时,要看把原来的数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值≥10时,是正数;当原数的绝对值<1时,是负数,确定与的值是解题的关键.18.(2022年浙江省衢州市柯城区九年级第二次模拟考试数学试题)-3的倒数是()A.3B.-3C.13D.−13【答案】D【解析】【分析】根据倒数的定义,即可计算出结果.【详解】解:-3的倒数是−13;故选:D【点睛】本题考查了倒数的定义:乘积是1的两数互为倒数.19.(2022年四川省自贡市中考数学试题)自贡市江姐故里红色教育基地自去年底开放以来,截止今年5月,共接待游客180000余人;人数180000用科学记数法表示为()A.1.8×104B.18×104C.1.8×105D.1.8×106【答案】C【解析】【分析】用移动小数点的方法确定a值,根据整数位数减一原则确定n值,最后写成×10的形式即可.【详解】∵180000=1.8×105,故选C.【点睛】本题考查了科学记数法表示大数,熟练掌握把小数点在左边第一个非零数字的后面确定a,运用整数位数减去1确定n值是解题的关键.20.(2022年四川省自贡市中考数学试题)下列运算正确的是()A.−12=−2B.323−2=1C.6÷3=2D.−=0【答案】B【解析】【分析】根据乘方运算,平方差公式,同底数幂的除法法则,零指数幂的运算法则进行运算即可.【详解】A.−12=1,故A错误;B.3+23−2=32−22=1,故B正确;C.633,故C错误;D.−=1,故D错误.故选:B.【点睛】本题主要考查了整式的运算和实数的运算,熟练掌握平方差公式,同底数幂的除法法则,零指数幂的运算法则,是解题的关键.21.(2022年山东省淄博市高青县中考二模数学试题)−2的倒数是()A.2B.12C.−2D.−12【答案】D【解析】【分析】根据倒数的定义求解即可.【详解】解:-2的倒数是−12,故D正确.故选:D.【点睛】本题主要考查了倒数的定义,熟练掌握乘积为1的两个数互为倒数,是解题的关键.22.(2022年四川省达州市中考数学真题)下列四个数中,最小的数是()A.0B.-2C.1D.2【答案】B【解析】【分析】根据实数的大小比较即可求解.【详解】解:∵−2<0<1<2,∴最小的数是−2,故选B.【点睛】本题考查了实数的大小比较,掌握实数的大小比较是解题的关键.23.(2022年浙江省舟山市中考数学真题)估计6的值在()A.4和5之间B.3和4之间C.2和3之间D.1和2之间【答案】C【解析】【分析】【详解】∵4<6<9∴2<6<3故选:C.【点睛】本题主要考查了无理数的估算能力,要求掌握无理数的基本估算技能,灵活应用.“夹逼法”是估算的一般方法,也是常用方法.24.(2022年浙江省金华市中考数学真题)在−2,12,3,2中,是无理数的是()A.−2B.12C.3D.2【答案】C【解析】【分析】根据无理数的定义判断即可;【详解】解:∵-2,12,2是有理数,3是无理数,故选:C.【点睛】本题考查了无理数的定义:无限不循环小数叫做无理数,如开方开不尽的数的方根、π.25.(2022年四川省凉山州中考数学真题)化简:(−2)2=()A.±2B.-2C.4D.2【答案】D【解析】【分析】先计算(-2)2=4,再求算术平方根即可.【详解】解:−22=4=2,故选:D.【点睛】本题考查算术平方根,熟练掌握算术平方根的定义是解题的关键.26.(2022年山东省滨州市中考数学真题)下列计算结果,正确的是()A.(2)3=5B.8=32C.38=2D.cos30°=12【答案】C【解析】【分析】根据幂的乘方、算术平方根的计算、立方根的化简和特殊角的三角函数值逐一进行计算即可.【详解】解:A、(2)3=2×3=6,该选项错误;B、8=2×2×2=22,该选项错误;C、38=32×2×2=2,该选项正确;D、cos30°=故选:C.【点睛】本题考查了幂的乘方、算术平方根的计算、立方根的化简和特殊角的三角函数值,熟练掌握运算法则是解题的关键.27.(2022年四川省泸州市中考数学真题)与2+15最接近的整数是()A.4B.5C.6D.7【答案】C【解析】【分析】估算无理数的大小即可得出答案.【详解】解:∵12.25<15<16,∴3.5<15<4,∴5.5<2+15<6,∴最接近的整数是6,故选:C.【点睛】本题考查了估算无理数的大小,无理数的估算常用夹逼法,用有理数夹逼无理数是解题的关键.28.(2022年四川省泸州市中考数学真题)−4=()A.−2B.−12C.12D.2【答案】A【解析】【分析】根据算术平方根的定义可求.【详解】解:−4=-2,【点睛】本题考查了算术平方根的定义,要注意正确区分平方根与算术平方根,解题的关键是掌握算术平方根的定义.29.(2022年重庆市中考数学试卷A卷)估计3×(23+5)的值应在()A.10和11之间B.9和10之间C.8和9之间D.7和8之间【答案】B【解析】【分析】先化简3×(23+5)=6+15,利用9<15<16,从而判定即可.【详解】3×(23+5)=6+15,∵9<15<16,∴3<15<4,∴9<6+15<10,故选:B.【点睛】30.(2022年重庆市中考数学真题(B卷))估计54−4的值在()A.6到7之间B.5到6之间C.4到5之间D.3到4之间【答案】D【解析】【分析】根据49<54<64,得到7<54<8,进而得到3<54−4<4,即可得到答案.【详解】解:∵49<54<64,∴7<54<8,∴3<54−4<4,即54−4的值在3到4之间,故选:D.此题考查了无理数的估算,正确掌握无理数的估算方法是解题的关键.二、填空题31.(2022年重庆市中考数学试卷A卷)计算:−4+3−0=_________.【答案】5【解析】【分析】根据绝对值和零指数幂进行计算即可.【详解】解:−4+3−0=4+1=5,故答案为:5.【点睛】本题考查了绝对值和零指数幂的计算,熟练掌握定义是解题的关键.32.(2022年四川省南充市中考数学试卷)比较大小:2−2_______________30.(选填>,=,<)【答案】<【解析】【分析】先计算2−2=14,30=1,然后比较大小即可.【详解】解:2−2=14,30=1,∵14<1,∴2−2<30,故答案为:<.【点睛】本题主要考查有理数的大小比较,负整数指数幂的运算,零次幂的运算,熟练掌握运算法则是解题关键.33.(2022年重庆市中考数学真题(B卷))|−2|+(3−5)0=_________.【答案】3【解析】先计算绝对值和零指数幂,再进行计算即可求解.【详解】解:|−2|+(3−5)0=2+1=3故答案为:3.【点睛】本题考查了实数的运算,解答此题的关键是要掌握负数的绝对值等于它的相反数,任何不为0的数的0次幂都等于1.34.(2022年四川省凉山州中考数学真题)计算:-12+|-2023|=_______.【答案】2022【解析】【分析】先计算有理数的乘方、化简绝对值,再计算加法即可得.【详解】解:原式=−1+2023=2022,故答案为:2022.【点睛】本题考查了含乘方的有理数混合运算,熟练掌握有理数的运算法则是解题关键.三、解答题35.(2022年四川省泸州市中考数学真题)计算:30+2−1+2cos45°−−【答案】2【解析】【分析】根据零指数幂、负整数指数幂、特殊角三角函数、绝对值的性质化简即可.【详解】原式=1+12+2−12=2.本题考查了实数的运算,熟练掌握运算法则是解题的关键.36.(2022年浙江省丽水市中考数学真题)计算:9−(−2022)0+2−1.【答案】52【解析】【分析】根据求一个数的算术平方根、零指数和负整数指数幂的运算法则进行运算,即可求得.【详解】解:9−(−2022)0+2−1=3−1+12=52.【点睛】本题考查了求一个数的算术平方根、零指数和负整数指数幂的运算法则,熟练掌握和运用各运算法则是解决本题的关键.37.(2022年江苏省连云港市中考数学真题)计算:(−10)×−−16+20220.【答案】2【解析】【分析】根据有理数的乘法,二次根式的性质,零指数的计算法则求解即可.【详解】解:原式=5−4+1=2.【点睛】本题主要考查了有理数的乘法,二次根式的性质,零指数,熟知相关计算法则是解题的关键.38.(2022年四川省达州市中考数学真题)计算:(−1)2022+|−2|−−2tan45°.【答案】0【解析】先计算乘方和去绝对值符号,并把特殊角三角函数值代入,再计算乘法,最后计算加减即可求解.【详解】解:原式=1+2-1-2×1=1+2-1-2=0.【点睛】本题考查实数的混合运算,熟练掌握零指数幂的运算、熟记特殊角的三角函数值是解题的关键.39.(2022年浙江省金华市中考数学真题)计算:(−2022)0−2tan45°+|−2|+9.【答案】4【解析】【分析】根据零指数幂,正切三角函数值,绝对值的化简,算术平方根的定义计算求值即可;【详解】解:原式=1−2×1+2+3=1−2+2+3=4;【点睛】本题考查了实数的混合运算,掌握特殊角的三角函数值是解题关键.40.(2022−16+−22.【答案】1【解析】【分析】原式运用零指数幂,二次根式的化简,乘方的意义分别计算即可得到结果.【详解】−16+−22=1−4+4=1故答案为:1【点睛】本题主要考查了实数的运算,熟练掌握零指数幂,二次根式的化简和乘方的意义是解本题的关键.41.(2022−9+3tan30°+2.(2)解不等式组:3(+2)≥2+5 ①2−1<K23 ②.【答案】(1)1;(2)−1≤<2【解析】【分析】(1)本题涉及负整数指数幂、特殊角的三角函数值、绝对值、二次根式化简4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.(2)分别解出两个不等式的解集再求其公共解.【详解】解:(19+3tan30°+2=2−3+3+2−3=−1+3+2−3=1.(2)3(+2)≥2+5 ①2−1<K23 ②不等式①的解集是x≥-1;不等式②的解集是x<2;所以原不等式组的解集是-1≤x<2.【点睛】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型,解决此类题目的关键是熟练掌握负整数指数幂、特殊角的三角函数值、绝对值、二次根式等考点的运算.求不等式组的解集应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.42.(2022年四川省德阳市中考数学真题)计算:12+3.14−0−3tan60°+1−+−2−2.【答案】14【解析】【分析】根据二次根式的化简,零指数幂的定义,特殊角的三角函数值,绝对值的性质以及负整数指数幂的运算法则分别化简后再进行实数的加减法运算.【详解】解:12+(3.14−p0−3tan60°+1−+(−2)−2=23+1−33+3−1+14=14.【点睛】此题考查实数的运算法则,正确掌握二次根式的化简,零指数幂的定义,特殊角的三角函数值,绝对值的性质以及负整数指数幂的运算法则是解题的关键.43.(2022年重庆市中考数学真题(B卷))对于一个各数位上的数字均不为0的三位自然数N,若N能被它的各数位上的数字之和m整除,则称N是m的“和倍数”.例如:∵247÷(2+4+7)=247÷13=19,∴247是13的“和倍数”.又如:∵214÷(2+1+4)=2147=30⋯⋯4,∴214不是“和倍数”.(1)判断357,441是否是“和倍数”?说明理由;(2)三位数A是12的“和倍数”,a,b,c分别是数A其中一个数位上的数字,且>>.在a,b,c中任选两个组成两位数,其中最大的两位数记为op,最小的两位数记为op,若op+op16为整数,求出满足条件的所有数A.【答案】(1)357不是15“和倍数”,441是9的“和倍数”;理由见解析(2)数A可能为732或372或516或156【解析】【分析】(1)根据题目中给出的“和倍数”定义进行判断即可;(2)先根据三位数A是12的“和倍数”得出++=12,根据>>,是最大的两位数,是最小的两位数,得出+=10+2+10,op+op16=(k为整数),结合++=12得出=15−2,根据已知条件得出1<<6,从而得出=3或=5,然后进行分类讨论即可得出答案.(1)解:∵357÷3+5+7=357÷15=23⋅⋅⋅⋅⋅⋅12,∴357不是15“和倍数”;∵441÷4+4+1=441÷9=49,∴441是9的“和倍数”.(2)∵三位数A是12的“和倍数”,∴++=12,∵>>,∴在a,b,c中任选两个组成两位数,其中最大的两位数=10+,最小的两位数=10+,∴+=10++10+=10+2+10,∵op+op16为整数,设op+op16=(k为整数),则10r2r1016=,整理得:5+5+=8,根据++=12得:+=12−,∵>>,∴12−>,解得<6,∵“和倍数”是各数位上的数字均不为0的三位自然数,∴>>>0,∴>1,∴1<<6,把+=12−代入5+5+=8得:512−+=8,整理得:=15−2,∵1<<6,k为整数,∴=3或=5,当=3时,+=12−3=9,∵>>>0,∴>3,0<<3,∴=7,=3,=2,或=8,=3,=1,要使三位数A是12的“和倍数”,数A必须是一个偶数,当=7,=3,=2时,组成的三位数为732或372,∵732÷12=61,∴732是12的“和倍数”,∵372÷12=31,∴372是12的“和倍数”;当=8,=3,=1时,组成的三位数为318或138,∵318÷12=26⋅⋅⋅⋅⋅⋅6,∴318不是12的“和倍数”,∵138÷12=11⋅⋅⋅⋅⋅⋅6,∴138不是12的“和倍数”;当=5时,+=12−5=7,∵>>>0,∴5<<7,∴=6,=5,=1,组成的三位数为516或156,∵516÷12=43,∴516是12的“和倍数”,∵156÷12=13,∴156是12的“和倍数”;综上分析可知,数A可能为732或372或516或156.【点睛】本题主要考查了新定义类问题,数的整除性,列代数式,利用数位上的数字特征和数据的整除性,是解题的关键,分类讨论是解答本题的重要方法,本题有一定的难度.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年中考数学专题练习1《实数》
【知识归纳】
1、有理数:像3、53-、11
9……这样的 或 。
2、数轴:规定了 、 和 的直线叫做数轴(画数轴时,要注意上述规定的 三要素缺一不可)。
3、相反数:只有 不同的两个数,如a 的相反数是 ,0的相反数仍是 。
若a 与b 互为相反数,则 .
4、绝对值:正数的绝对值是它 ,负数的绝对值是它的 ,0的绝对值是0.任何实数的绝对值都是 ,a ≧0.互为相反数的两个数的绝对值相等,a =a -。
5、倒数: 没有倒数。
正数的倒数是正数,负数的倒数是负数。
若a 与b 互为倒数,则 .
6、有理数的四则混合运算:(1)先乘方,再乘除,最后加减; (2)同级运算,从左到右进行;
(4)如有括号,先做括号内的运算,按 ,中括号, 依次进行。
7、乘方:求n 个 的积的运算,叫做乘方,乘方的结果叫做 。
在a n 中,a 叫做 ,n 叫做 。
8、科学记数法:把一个数写做 的形式,其中101<≤a ,n 是整数,这种记数法叫做科学记数法。
9、平方根:如果一个数的平方等a ,那么这个数叫做a 的 或 ,0的平方根是0,负数 平方根。
a 的平方根记为a ±(a ≧0),读作“正负根号a ”,a 叫做被开方数。
10、算术平方根:如果一个正数的平方等于a ,那么这个正数叫做a 的 ,0的算术平方根为0。
a 的算术平方根记为a (a ≧0),读作“根号a ”,a 叫做被开方数。
11、立方根:如果一个数的立方等于a ,那么这个数叫做a 的 或 ,0的立方
根是0,正数的立方根是正数,负数的立方根是负数。
3a
-=的立方根记为3a,读作“三次根号a”,a叫做,3是。
12、无理数:像2、33、……这样的。
13、实数:和统称为实数。
实数与数轴上的点。
【基础检测】
1.(2016·成都)在-3,-1,1,3四个数中,比-2小的数是( )
A.-3 B.-1 C.1 D.3
2.(2016·南京)数轴上点A、B表示的数分别是5,-3,它们之间的距离可以表示为( ) A.-3+5 B.-3-5 C.|-3+5| D.|-3-5|
3.(2016·毕节)下列说法正确的是( )
A.一个数的绝对值一定比0大 B.一个数的相反数一定比它本身小
C.绝对值等于它本身的数一定是正数 D.最小的正整数是1
4.(2016·宁夏)实数a在数轴上的位置如图,则|a-3|=__ __.
5.(2016·十堰)计算:|3
8 -4|-(
1
2
)-2=__ __.
6.|-5|+3
27-(
1
3
)-1;
【达标检测】
一、选择题:
1.(2016•南充)如果向右走5步记为+5,那么向左走3步记为()A.+3 B.﹣3 C.+D.﹣
2.(2016•攀枝花)下列各数中,不是负数的是( )
A .﹣2
B .3
C .﹣
D .﹣0.10
3.(2016•德州)2的相反数是( )
A .
B .
C .﹣2
D .2
4.(2016南宁)据《南国早报》报道:2016年广西高考报名人数约为332000人,创历史新高,其中数据332000用科学记数法表示为( )
A .0.332×106
B .3.32×105
C .3.32×104
D .33.2×104
5.(2016河北)点A ,B 在数轴上的位置如图所示,其对应的数分别是a 和b .对于以下结论:
甲:b -a <0; 乙:a +b >0; 丙:|a |<|b |; 丁:0b a
. 其中正确的是( )
A .甲乙
B .丙丁
C .甲丙
D .乙丁 6.(2016·福建龙岩)(﹣2)3=( )
A .﹣6
B .6 C.﹣8 D .8
7.(2016·山东菏泽)当1<a <2时,代数式|a ﹣2|+|1﹣a|的值是( )
A .﹣1
B .1
C .3
D .﹣3
8. (2015•河北,第7题3分)在数轴上标注了四段范围,如图,则表示
的点落在( )
A . 段① B. 段② C. 段③ D. 段④
二、填空题:
9.(2016·重庆市)在﹣,0,﹣1,1这四个数中,最小的数是 .
10.(2016·湖北武汉)计算5+(-3)的结果为_______.
11.(2015•河北)计算:3﹣2×(﹣1)=( )
12.(2016·青海西宁)青海日报讯:十五年免费教育政策已覆盖我省所有贫困家庭,首批惠及学生近86.1万人.将86.1万用科学记数法表示为 .
13.(2015•广东东莞)观察下列一组数:
,…,根据该组数的排列规律,可推出第10个数是 .
三、解答题:
14.(2016·宜昌)计算:(-2)2×(1-34
). 15.(2016·杭州)计算:6÷(-12+13
). 方方同学的计算过程如下:
原式=6÷(-12)+6÷13
=-12+18
=6.
请你判断方方的计算过程是否正确,若不正确,请你写出正确的计算过程.
16. (2016·厦门)计算:10+8×(-12)2-2÷15
. 17.(2015•茂名)为了求1+3+32+33+…+3100的值,可令M=1+3+32+33+…+3100,则
3M=3+32+33+34+…+3101,因此,3M ﹣M=3101﹣1,所以M=
,即1+3+32+33+…+3100=,仿照以上推理计算:1+5+52+53+…+5
2015的值.
参考答案
【知识归纳】
1、有限小数或无限循环小数。
2、原点、正方向和单位长度
3、符号、-a ,、0、a+b=0.
4、正数,相反数, 0、非负数,a ≧0、绝对值,a =a -。
5、0、正数、负数、ab=1.
6、小括号,大括号
7、相同因数、底数、指数。
8、、n a 10⨯±、科学记数法。
9、平方根、二次方根±10、算术平方根 11、立方根或三次方根、被开方数、根指数。
12、无限不循环小数。
13、有理数、无理数、一一对应。
【基础检测】
1. A .【解析】可根据在数轴上的点的位置直接判断大小。
2. D 【解析】根据绝对值的定义和性质可以得到答案。
3.D 【解析】因为0的绝对值等于0,正数的绝对值等于其本身,故可判断答案D 正确。
4. 3-a 【解析】根据数轴上点之间的距离定义可判断。
5.-2【解析】|3
8 -4|-(
1
2
)-2=|2 -4|-4=-2
6.5【解析】原式=5+3-3=5
【达标检测】
一、选择题:
1.B【解答】解:如果向右走5步记为+5,那么向左走3步记为﹣3;故选:B.
2.A【解答】解:A、﹣2是负数,故本选项不符合题意;
B、3是正数,不是负数,故本选项符合题意;
C、﹣是负数,故本选项不符合题意;
D、﹣0.10是负数,故本选项不符合题意;
故选:B.
3.C【解答】解:2的相反数是﹣2,
故选:C.
4.B【解答】解:将332000用科学记数法表示为:3.32×105.
故选:B.
5.C【解析】:a+b<0,故乙错误;b/a<0,故丁错误。
知识点:数轴的应用;绝对值的应用。
6.C【解答】解:原式=﹣8,
故选C
7.B【解答】解:当1<a<2时,
|a﹣2|+|1﹣a|=2﹣a+a﹣1=1.
故选:B.
8. C【解析】解:2.62=6.76,2.72=7.29,2.82=7.84,2.92=8.41,32=9,∵7.84<8<8.41,
∴,
∴的点落在段③,
故选:C.
二、填空题:
9.【解答】解:|﹣1|>|﹣|,
﹣1<﹣.
﹣1<﹣<0<1,
故答案为:﹣1.
10. 【解析】原式=2
11. 【解析】解:原式=3﹣(﹣2)=3+2=5.
12. 【解答】解:∵1万=1×104,
∴86.1万=86.1×104=8.61×105.
故答案为:8.61×105.
13.【解析】解:∵分子为1,2,3,4,5,…,
∴第10个数的分子为10,
∵分母为3,5,7,9,11,…,
∴第10个数的分母为:1+2×10=21, ∴第10个数为:,
故答案为:.
三、解答题:
14.【解析】:原式=4×14
=1
15.【解析】:不正确.正确的过程如下:
原式=6÷(-36+26
) =6÷(-16
)
=6×(-6)
=-36
16.【解析】:原式=10+8×14-2÷15
=10+2-2×5
=10+2-10
17.【解析】解:设M=1+5+52+53+ (52015)
则5M=5+52+53+54 (52016)
两式相减得:4M=52016﹣1,
则M=.
故答案为.。