1.1.1 正弦定理(二) 学案(人教A版必修5)

合集下载

最新人教版高中数学必修五 正弦定理优质教案

最新人教版高中数学必修五 正弦定理优质教案
正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即
.
师是否可以用其他方法证明这一等式?
生可以作△ABC的外接圆,在△ABC中,令BC=A,AC=B,AB=C,根据直径所对的圆周角是直角以及同弧所对的圆周角相等,来证明 这一关系.
师很好!这位同学能充分利用我们以前学过的知识来解决此问题,我们一起来看下面的证法.
变式二:在△ABC中,已知A=28,B=20,A=120°,求B(精确到1°)和C(保留两个有效数字).
分析:此题属于A为钝角且A>B的情形,有一解,可应用正弦定理求解角B后,利用三角形内角和为180°排除角B为钝角的情形.
解:∵sinB= ≈0.618 6,
∴B≈38°或B≈142°(舍去).
∴C=180°-(A+B)=22°.
∴C1= ≈22.
当A2≈115°时,C2=180°-(B+A2)=180°-(30°+115°)=35°,
∴C2= ≈13.
(2)∵sinB= ≈0.505 1,
∴B1≈30°,B2≈150°.
由于A+B2=45°+150°>180°,故B2≈150°应舍去(或者由B<A知B<A,故B应为锐角).
由分配律可得
.
∴|j| Cos90°+|j| Cos(90°-C)=|j| Cos(90°-A).
∴AsinC=CsinA.
∴ .
另外,过点C作与 垂直的单位向量j,则j与 的夹角为90°+C,j与 的夹角为90°+B,可得 .
(此处应强调学生注意两向量夹角是以同起点为前提,防止误解为j与 的夹角为90°-C,j与 的夹角为90°-B)
1.1 正弦定理和余弦定理

高中数学《1.1.1 正弦定理》复习导学案2 新人教A版必修5

高中数学《1.1.1 正弦定理》复习导学案2 新人教A版必修5

作业 布置 学习 小结 / 教 学 反思
课本 49 页练习 2 的 2,3,4 题
2
2 ,b 3 ,
A 450 ,求角 B .
小结:在 ABC 中,已知 a, b 和 A 时求角 B 的各种情况: (1).角 A 为锐角: ①若 a b sin A ,则一解. ②若 b sin A a b ,则两解. ③若 a b ,则一解 (2).角 A 为直角 a b ,则一解. (3).角 A 为钝角 a b ,则一解. 例 2 在 ABC 中,角 A, B, C 所对的边分别为 a, b, c .已知 A 300 , c 2 3, b 2 ,求
1
ABC 的面积.
达标训练: 1.判断下列各题角 B 的解的个数: 1. a 7, b 14, A 300 .
2. a 30, b 25, A 1500 . 3. a 72, b 50, A 1350 .
4. a 30, b 40, A 260 .
§1.1.2 正弦定理
授课 时间 学习 目标 重点 难理及其拓展. 2.已知两边和其中一边的对角,判断三角形时解的个数. 3.三角形面积公式. 重点:正弦定理的应用. 难点:正弦定理的应用. 自主学习: 正弦定理:_________________________. 正弦定理的变形公式:_________________________. 问题 1.在 ABC 中,已知 a 20, b 28, A 400 ,求 B (精确到 1 )和 c (保留两个有效数
0 问题 3.在 RtABC 中, C 90 ,则 ABC 的面积 S
学习 过程 与方 法
1 ab .对于任意 ABC ,已知 a, b 及 2

高中数学新人教A版必修5第一章 1.1 1.1.1 正弦定理

高中数学新人教A版必修5第一章  1.1  1.1.1  正弦定理

正弦定理和余弦定理1.1.1 正弦定理(1)直角三角形中的边角之间有什么关系?(2)正弦定理的内容是什么?利用它可以解哪两类三角形?(3)解三角形的含义是什么?预习课本P 2~3,思考并完成以下问题[新知初探]1.正弦定理在一个三角形中,各边和它所对角的正弦的比相等,即a sin A =b sin B =c sin C. [点睛] 正弦定理的特点(1)适用范围:正弦定理对任意的三角形都成立.(2)结构形式:分子为三角形的边长,分母为相应边所对角的正弦的连等式. (3)刻画规律:正弦定理刻画了三角形中边与角的一种数量关系,可以实现三角形中边角关系的互化.2.解三角形一般地,把三角形的三个角A ,B ,C 和它们的对边a ,b ,c 叫做三角形的元素,已知三角形的几个元素求其他元素的过程叫做解三角形.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”) (1)正弦定理适用于任意三角形( )(2)在△ABC 中,等式b sin A =a sin B 总能成立( ) (3)在△ABC 中,已知a ,b ,A ,则此三角形有唯一解( )解析:(1)正确.正弦定理适用于任意三角形.(2)正确.由正弦定理知a sin A =bsin B,即b sin A =a sin B .(3)错误.在△ABC 中,已知a ,b ,A ,此三角形的解有可能是无解、一解、两解的情况,具体情况由a ,b ,A 的值来定.答案:(1)√ (2)√ (3)×2.在△ABC 中,下列式子与sin Aa 的值相等的是( )A.bc B.sin B sin A C.sin C cD.c sin C 解析:选C 由正弦定理得,a sin A =c sin C, 所以sin A a =sin C c .3.在△ABC 中,已知A =30°,B =60°,a =10,则b 等于( ) A .5 2B .10 3C.1033D .5 6解析:选B 由正弦定理得,b =a sin Bsin A=10×3212=10 3.4.在△ABC 中,A =30°,a =3,b =2,则这个三角形有 ( )A .一解B .两解C .无解D .无法确定解析:选A ∵b <a ,A =30°,∴B <30°,故三角形有一解.已知两角及一边解三角形[典例] 在△ABC 中,已知a =8,B =60°,C =75°,求A ,b ,c . [解] A =180°-(B +C )=180°-(60°+75°)=45°, 由正弦定理b sin B =a sin A ,得b =a sin B sin A =8×sin 60°sin 45°=46,由a sin A =c sin C ,得c =a sin C sin A =8×sin 75°sin 45°=8×2+6422=4(3+1).已知三角形任意两角和一边解三角形的基本思路(1)由三角形的内角和定理求出第三个角. (2)由正弦定理公式的变形,求另外的两条边.[注意] 若已知角不是特殊角时,往往先求出其正弦值(这时应注意角的拆并,即将非特殊角转化为特殊角的和或差,如75°=45°+30°),再根据上述思路求解.[活学活用]在△ABC 中,若A =60°,B =45°,BC =32,则AC =( ) A .43 B .2 3 C. 3D .32解析:选B 由正弦定理得,BC sin A =AC sin B ,即32sin 60°=AC sin 45°,所以AC =3232×22=23,故选B.已知两边及其中一边的对角解三角形[典例] 在△ABC 中,a =3,b =2,B =45°,求A ,C ,c . [解] 由正弦定理及已知条件,有3sin A =2sin 45°,得sin A =32.∵a >b ,∴A >B =45°.∴A =60°或120°. 当A =60°时,C =180°-45°-60°=75°,c =b sin C sin B =2sin 75°sin 45°=6+22; 当A =120°时,C =180°-45°-120°=15°,c =b sin C sin B =2sin 15°sin 45°=6-22. 综上可知:A =60°,C =75°,c =6+22或A =120°,C =15°,c =6-22.已知三角形两边和其中一边的对角解三角形的方法(1)首先由正弦定理求出另一边对角的正弦值.(2)如果已知的角为大边所对的角时,由三角形中大边对大角、大角对大边的法则能判断另一边所对的角为锐角,由正弦值可求锐角唯一.(3)如果已知的角为小边所对的角时,则不能判断另一边所对的角为锐角,这时由正弦值可求两个角,要分类讨论.[活学活用]在△ABC 中,c =6,C =60°,a =2,求A ,B ,b . 解:∵a sin A =c sin C ,∴sin A =a sin C c =22.∴A =45°或A =135°. 又∵c >a ,∴C >A .∴A =45°. ∴B =75°,b =c sin B sin C =6·sin 75°sin 60°=3+1.三角形形状的判断[典例] 在△ABC 中,a cos ⎝⎛⎭⎫π2-A =b cos ⎝⎛⎭⎫π2-B ,判断△ABC 的形状. 解:[法一 化角为边] ∵a cos ⎝⎛⎭⎫π2-A =b cos ⎝⎛⎭⎫π2-B ,∴a sin A =b sin B .由正弦定理可得:a ·a 2R =b ·b2R ,∴a 2=b 2,∴a =b ,∴△ABC 为等腰三角形. [法二 化边为角]∵a cos ⎝⎛⎭⎫π2-A =b cos ⎝⎛⎭⎫π2-B , ∴a sin A =b sin B .由正弦定理可得:2R sin 2A =2R sin 2B ,即sin A =sin B , ∴A =B .(A +B =π不合题意舍去) 故△ABC 为等腰三角形.利用正弦定理判断三角形的形状的两条途径(1)化角为边......将题目中的所有条件,利用正弦定理化角为边,再根据多项式的有关知识(分解因式、配方等)得到边的关系,如a =b ,a 2+b 2=c 2等,进而确定三角形的形状.利用的公式为:sin A =a 2R ,sin B =b 2R ,sin C =c2R. (2)化边为角......将题目中所有的条件,利用正弦定理化边为角,再根据三角函数的有关知识得到三个内角的关系,进而确定三角形的形状.利用的公式为:a =2R sin A ,b =2R sin B ,c =2R sin C .[活学活用]在△ABC 中,sin 2A =sin 2B +sin 2C ,且sin A =2sin B ·cos C .试判断△ABC 的形状. 解:由正弦定理,得sin A =a 2R ,sin B =b 2R ,sin C =c2R .∵sin 2A =sin 2B +sin 2C , ∴⎝⎛⎭⎫a 2R 2=⎝⎛⎭⎫b 2R 2+⎝⎛⎭⎫c 2R 2, 即a 2=b 2+c 2, 故A =90°.∴C =90°-B ,cos C =sin B . ∴2sin B ·cos C =2sin 2B =sin A =1. ∴sin B =22. ∴B =45°或B =135°(A +B =225°>180°,故舍去). ∴△ABC 是等腰直角三角形.层级一 学业水平达标1.在△ABC 中,a =5,b =3,则sin A ∶sin B 的值是( )A.53B.35C.37D.57 解析:选A 根据正弦定理得sin A sin B =a b =53. 2.在△ABC 中,a =b sin A ,则△ABC 一定是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形解析:选B 由题意有a sin A =b =b sin B,则sin B =1, 即角B 为直角,故△ABC 是直角三角形. 3.在△ABC 中,若sin A a =cos C c,则C 的值为( )A .30°B .45°C .60°D .90°解析:选B 由正弦定理得,sin A a =sin C c =cos Cc ,则cos C =sin C ,即C =45°,故选B.4.在△ABC 中,a =3,b =5,sin A =13,则sin B =( )A.15B.59C.53D .1解析:选B 在△ABC 中,由正弦定理a sin A =bsin B ,得sin B =b sin Aa =5×133=59.5.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且a =3b sin A ,则sin B =( ) A. 3 B.33C.63D .-63解析:选B 由正弦定理得a =2R sin A ,b =2R sin B ,所以sin A =3sin B sin A ,故sinB =33. 6.下列条件判断三角形解的情况,正确的是______(填序号). ①a =8,b =16,A =30°,有两解; ②b =18,c =20,B =60°,有一解; ③a =15,b =2,A =90°,无解; ④a =40,b =30,A =120°,有一解.解析:①中a =b sin A ,有一解;②中c sin B <b <c ,有两解;③中A =90°且a >b ,有一解;④中a >b 且A =120°,有一解.综上,④正确.答案:④7.在△ABC 中,若(sin A +sin B )(sin A -sin B )=sin 2C ,则△ABC 的形状是________. 解析:由已知得sin 2A -sin 2B =sin 2C ,根据正弦定理知sin A =a 2R ,sin B =b2R ,sin C=c2R, 所以⎝⎛⎭⎫a 2R 2-⎝⎛⎭⎫b 2R 2=⎝⎛⎭⎫c 2R 2,即a 2-b 2=c 2,故b 2+c 2=a 2.所以△ABC 是直角三角形. 答案:直角三角形8.在△ABC 中,若A =105°,C =30°,b =1,则c =________. 解析:由题意,知B =180°-105°-30°=45°.由正弦定理,得c =b sin C sin B =1×sin 30°sin 45°=22. 答案:229.已知一个三角形的两个内角分别是45°,60°,它们所夹边的长是1,求最小边长. 解:设△ABC 中,A =45°,B =60°, 则C =180°-(A +B )=75°. 因为C >B >A ,所以最小边为a . 又因为c =1,由正弦定理得, a =c sin A sin C =1×sin 45°sin 75°=3-1, 所以最小边长为3-1.10.在△ABC 中,已知a =22,A =30°,B =45°,解三角形. 解:∵a sin A =b sin B =csin C, ∴b =a sin B sin A =22sin 45°sin 30°=22×2212=4.∴C =180°-(A +B )=180°-(30°+45°)=105°,∴c =a sin C sin A =22sin 105°sin 30°=22sin 75°12=42sin(30°+45°)=2+2 3.层级二 应试能力达标1.(2017·全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin B +sin A (sin C -cos C )=0,a =2,c =2,则C =( )A.π12B.π6C.π4D.π3解析:选B 因为sin B +sin A (sin C -cos C )=0, 所以sin(A +C )+sin A sin C -sin A cos C =0,所以sin A cos C +cos A sin C +sin A sin C -sin A cos C =0,整理得sin C (sin A +cos A )=0.因为sin C ≠0,所以sin A +cos A =0,所以tan A =-1,因为A ∈(0,π),所以A =3π4,由正弦定理得sin C =c ·sin A a =2×222=12,又0<C <π4,所以C =π6.2.已知a ,b ,c 分别是△ABC 的内角A ,B ,C 的对边,若△ABC 的周长为4(2+1),且sin B +sin C =2sin A ,则a =( )A. 2 B .2 C .4D .2 2解析:选C 根据正弦定理,sin B +sin C =2sin A 可化为b +c =2a , ∵△ABC 的周长为4(2+1),∴⎩⎨⎧a +b +c =4(2+1),b +c =2a ,解得a =4.故选C. 3.(2017·山东高考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若△ABC 为锐角三角形,且满足sin B (1+2cos C )=2sin A cos C +cos A sin C ,则下列等式成立的是( )A .a =2bB .b =2aC .A =2BD .B =2A解析:选A 由题意可知sin B +2sin B cos C =sin A cos C +sin(A +C ),即2sin B cos C =sin A cos C ,又cos C ≠0,故2sin B =sin A ,由正弦定理可知a =2b .4.如图,正方形ABCD 的边长为1,延长BA 至E ,使AE =1,连接EC ,ED ,则sin ∠CED =( )A.31010B.1010C.510D.515解析:选B 由题意得EB =EA +AB =2,则在Rt △EBC 中,EC =EB 2+BC 2=4+1= 5.在△EDC 中,∠EDC =∠EDA +∠ADC =π4+π2=3π4,由正弦定理得sin ∠CED sin ∠EDC =DC EC =15=55, 所以sin ∠CED =55·sin ∠EDC =55·sin 3π4=1010. 5.在△ABC 中,A =60°,B =45°,a +b =12,则a =________. 解析:因为a sin A =b sin B ,所以a sin 60°=bsin 45°,所以32b =22a ,① 又因为a +b =12,② 由①②可知a =12(3-6). 答案:12(3-6)6.在△ABC 中,若A =120°,AB =5,BC =7,则sin B =_______. 解析:由正弦定理,得AB sin C =BC sin A ,即sin C =AB ·sin ABC=5sin 120°7=5314. 可知C 为锐角,∴cos C =1-sin 2C =1114. ∴sin B =sin(180°-120°-C )=sin(60°-C ) =sin 60°·cos C -cos 60°·sin C =3314.答案:33147.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知A -C =90°,a +c =2b ,求C .解:由A -C =90°,得A 为钝角且sin A =cos C ,利用正弦定理,a +c =2b 可变形为sin A +sin C =2sin B ,又∵sin A =cos C ,∴sin A +sin C =cos C +sin C =2sin(C +45°)=2sin B , 又A ,B ,C 是△ABC 的内角,故C +45°=B 或(C +45°)+B =180°(舍去), 所以A +B +C =(90°+C )+(C +45°)+C =180°. 所以C =15°.8.在△ABC 中,已知c =10,cos A cos B =b a =43,求a ,b 及△ABC 的内切圆半径. 解:由正弦定理知sin B sin A =b a ,∴cos A cos B =sin Bsin A .即sin A cos A =sin B cos B ,∴sin 2A =sin 2B . 又∵a ≠b ,∴2A =π-2B ,即A +B =π2.∴△ABC 是直角三角形,且C =90°, 由⎩⎪⎨⎪⎧a 2+b 2=102,b a =43得a =6,b =8.故内切圆的半径为r =a +b -c 2=6+8-102=2.。

高中数学《正弦定理》学案2 新人教A版必修5

高中数学《正弦定理》学案2 新人教A版必修5

随堂手记✂ 错题备忘录: 本节课重、难点及做错题目备忘:§1.1.1正弦定理✂ 学习目标1、 理解并掌握利用正弦定理解三角形的两种题型2、掌握利用正弦定理完成边角互化。

✂ 新课预习:思考:我们知道,在任意三角形中有大边对大角,小边对小角。

观察课件,由此猜想任意三角形当中,边与角的数量关系, 你能证明你的猜想吗? ★ 试一试:1、ABC ∆中45,30,10A C c ===,求,B a 及b 的值。

变式练习:ABC ∆中75,45,32A B c ===.2、ABC ∆中45b c B ===,解三角形.练习:ABC ∆中45b c B ===,解三角形✂ 新课导学:★ 探究--------正弦定理★ 对定理的理解: (1)(2)✂ 总结提升★ 利用正弦定理可以解决哪些解三角形的问题?例3、ABC ∆中,cos cos a bA B=,则ABC ∆的形状为( ) A 、等边三角形 B 、直角三角形 C 、等腰三角形 D 、等腰直角三角形 变式练习:ABC ∆中,cos cos a A b B =, 则ABC ∆的形状为______★ 小 结✂ 目标检测1、ABC ∆中,8,60,75,______a B C b ====2、ABC ∆中,2,45,_____a b B c ====3、ABC ∆中,22tan tan Ba Ab =,则ABC ∆的形状为_____4、ABC ∆中,lg lg lgsin a c B -==-B 为锐角, 试判断此三角形的形状。

则BC边的长为。

高二数学人教A版必修5教学教案1-1-1正弦定理(2)_1

高二数学人教A版必修5教学教案1-1-1正弦定理(2)_1

正弦定理一、教学内容的分析“正弦定理”是人教A版必修五第一章第一节的主要内容。

其主要任务是引入并证明正弦定理.做好正弦定理的教学,不仅能复习巩固旧知识,使学生掌握新的有用的知识,体会联系、发展等辩证观点,而且能培养学生的应用意识和实践操作能力,以及提出问题、解决问题等研究性学习的能力.二、学生学习情况分析在初中学生已经学习过关于任意三角形中大边对大角、小边对小角的边角关系,本节内容是处理任意三角形中的边角关系,与初中学习的三角形的边与角的基本关系有着密切的联系;这里的一个重要问题是:是否能得到这个边、角关系准确量化的表示.也就是如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题.这样,用联系的观点,从新的角度看过去的问题,使学生对过去的知识有了新的认识,同时使新知识建立在已有知识的坚实基础上,形成良好的知识结构.三、设计思想培养学生学会学习、学会探究是全面发展学生能力的重要前提,是高中新课程改革的主要任务。

这就要求教师在教学中引导学生在一定的情境中,运用已有的学习经验,并通过与他人(在教师指导和学习伙伴的帮助下)协作,主动建构而获得知识。

所以本节课的教学将以学生为中心,视学生为认知的主体,教师只对学生的意义建构起帮助和促进作用。

四、三维目标1、知识与技能通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及证明方法,并能解决一些简单的三角形问题。

2、过程与方法通过对特殊三角形边长和角度关系的探索,发现正弦定理,初步学会用特殊到一般的思想方法发现数学规律。

3、情感态度与价值观通过生活实例的探究引出正弦定理,体现数学来源于生活,并应用于生活,激发学生学习数学的兴趣,并体会数学的应用价值。

五、教学重难点重点:正弦定理的证明及其基本运用.难点:(1)正弦定理的探索和证明;(2)已知两边和其中一边的对角解三角形时,判断解的个a cb O B C A 数.六、教学过程设计(一)新课导入如图,河流两岸有A 、B 两村庄,有人说利用测角器与直尺,不过河也可以得到A 、B 两地的距离(假设现在的位置是A 点),请同学们讨论设计一个方案解决这个问题。

高中数学必修5《1.1.1正弦定理》教学设计

高中数学必修5《1.1.1正弦定理》教学设计

高中数学必修5《1.1.1 正弦定理》教学设计1000字【教学设计】【教学目标】1. 理解正弦定理的概念,掌握求解三角形边长的方法。

2. 学会运用正弦定理求解实际问题。

3. 培养学生的逻辑思维能力和解决问题的能力。

【教学内容】《数学必修5》第1章第1节,“正弦定理”(1.1.1)。

【教学过程】一、导入1. 引导学生思考:“三角形的边有什么特点?”2. 让学生回忆一下高中数学所学的定理,比如勾股定理和角平分线定理。

3. 引入正弦定理的概念,让学生对正弦定理有个初步的了解。

二、知识讲授1. 讲解正弦定理的概念及其公式。

2. 分别对三角形中的三角函数进行讲解,让学生对它们的定义有一个清晰的认识。

3. 通过图示让学生知道在不同情况下如何使用正弦定理解决问题。

4. 给学生提供几个具体例子,让他们练习运用正弦定理解决实际问题。

三、练习1. 让学生自主完成课本上的练习题,巩固所学知识。

2. 可以组织学生进行小组竞赛,比赛项目为用正弦定理解决实际问题,以此提高学生的兴趣和参与度。

四、复习与总结1. 以课堂小测验的形式检查学生对所学知识的掌握情况。

2. 对所学知识进行概括性总结,让学生对正弦定理的应用有更全面的了解。

【教学重点】1. 正确掌握正弦定理的概念和公式。

2. 熟练掌握正弦定理的运用方法。

【教学难点】1. 正弦定理的应用在实际问题中的具体运用。

2. 正确判断在不同情况下使用正弦定理的方法。

【教学方法】1. 讲解法:通过讲解,让学生明白正弦定理的概念和公式。

2. 案例法:通过实例让学生知道如何使用正弦定理解决问题。

3. 组织竞赛法:通过小组竞赛,让学生更加积极主动地参与课堂活动。

【学情分析】学生学习高中数学是从基础数学知识逐步深入的,正弦定理是高中数学重点内容之一,更为复杂的三角函数内容的基础。

学习正弦定理需要有良好的基础数学知识,同时也需要良好的逻辑思维能力,因此需要从基础知识入手,渐进进行教学。

【教学建议】1. 为了保证课堂效果,教师应该采用多样化的教学法,如讲解法、案例法、练习法等。

课件15:1.1.1 正弦定理(二)

转化为角的关系后,常利用三角变换公式进行变形、化 简,确定角的大小或关系,继而判断三角形的形状、证 明三角恒等式.
课堂小结 1.会用正弦定理的四个变形 (1)(角化边)sin A=2aR,sin B=2bR,sin C=2cR. (2)(边化角)a=2R sin A,b=2R sin B,c=2R sin C. (3)(边角互换)a∶b∶c=sin A∶sin B∶sin C.
sin
B=b
sin a
A=6sin 2
30°= 3
23,
又∵B∈(0°,180°),∴B1=60°,B2=120°.

B1=60°时,C1=90°,c1=a
sin sin
AC1=2
s3insi3n09°0°=4
3;

B2=120°时,C2=30°,c2=a
sin sin
AC2=2
s3insi3n03°0°=2
3<1,
所以当 B 为锐角时,满足 sin B=593的角有 60°<B<90°,
故对应的钝角 B 有 90°<B<120°,
也满足 A+B<180°,故三角形有两解.
3.三角形的面积公式
任意三角形的面积公式为:
(1)S△ABC=21bc sin A=
1 2ac sin B
1 = 2ab sin C
[提示] 可借助正弦定理把边化成角:2R sin A cos B= 2R sin B cos A,移项后就是一个三角恒等变换公式 sin A cos B-cos A sin B=0.
2.对三角形解的个数的判断 已知三角形的两角和任意一边,求另两边和另一角, 此时有唯一解,三角形被唯一确定.已知两边和其中 一边的对角,求其他的边和角,此时可能出现一解、 两解或无解的情况,三角形不能被唯一确定,现以 已知 a,b 和 A 解三角形为例说明.

【数学】1.1《正弦定理》学案(新人教A版必修5)

正弦定理 学案【预习达标】在ΔABC 中,角A 、B 、C 的对边为a 、b 、c , 1.在Rt ΔABC 中,∠C=900, csinA= ,csinB= ,即sin a A= = 。

2. 在锐角ΔABC 中,过C 做CD ⊥AB 于D ,则|CD|= = ,即sin a A= ,同理得 ,故有sin a A=。

3. 在钝角ΔABC 中,∠B 为钝角,过C 做CD ⊥AB 交AB 的延长线D ,则|CD|= = ,即sin a A= ,故有sin a A= 。

【典例解析】例1已知ΔABC ,根据下列条件,求相应的三角形中其他边和角的大小:(1)A=600,B=450,a=10;(2)a=3,b=4,A=300;(3)a=5,b=2,B=1200;(4)b=36,c=6,B=1200.例2 如图,在ΔABC 中,∠A 的平分线AD 与边BC 相交于点D ,求证:B D A B D CA C=【达标练习】1. 已知ΔABC ,根据下列条件,解三角形:(1)A=600,B=300,a=3;(2)A=450,B=750,b=8;(3)a=3,b=3,A=600;ABCD2.求证:在ΔABC 中,sin sin sin A Ba b Cc++=3.应用正弦定理证明:在ΔABC 中,大角对大边,大边对大角.4.在ΔABC 中,sin 2A+sin 2B=sin 2C,求证:ΔABC 是直角三角形。

参考答案【预习达标】1.a,b,sin sin b c BC=. 2.bsinA asinB ,sin b B,s in a A=s in c C,sin b B=sin c C.3. .bsinA asinB ,sin bB,s in b B=sin c C.【典例解析】例1(1)C=750,b=1063,c=152563+(2)B ≈41.80,C ≈108.80,c ≈5.7或B ≈138.20,C ≈11.80,c ≈1.2(3)无解(4)C=450,A=150,a ≈2.2例2证明:如图在ΔABD 和ΔCAD 中,由正弦定理, 得sin sin BD AB βα=,sin sin(180)sin DC AC AC βαα==-,两式相除得B D A B D CA C=【双基达标】1.(1)C=900,b=3,c=23(2)C=1200,a=83-8 ,c=12246-A BCDβ βα 1800- α(3)B=600,C=900,c=23 2.证明:设sin sin sin abck A B C===,则sin ,sin ,sin a k A b k B c k C ===sin sin sin sin sin sin a b k A k BA Bck CC+++∴==3.(1)设A>B ,若A ≤900,由正弦函数的单调性得sinA ≥sinB,又由正弦定理得a ≥b ;若A>900,有A+B<1800,即900>1800-A>B, 由正弦函数的单调性得sin(1800-A)>sinB,即sinA>sinB, 又由正弦定理得a>b.(2)设a>b, 由正弦定理得sinA>sinB,若B ≥900,则在ΔABC 中A<900,有sinA>sin (1800-B )由正弦函数的单调性得A>1800-B,即A+B>1800,与三角形的内角和为1800相矛盾;若A ≥900,则A>B ;若A<900,B<900, 由正弦函数的单调性得A>B.综上得,在ΔABC 中,大角对大边,大边对大角. 4.略。

(完整word版)高中数学人教版必修五学案:正弦定理人教课标版(优秀教案)

正弦定理()【学习目标】、掌握正弦定理及其证明;、能运用正弦定理解决简单的解三角形问题.【重点难点】正弦定理的证明.【自主学习】一、知识回顾、三角形的三边关系;、三角形的三个内角的关系是;、确定一个三角形的条件有哪些?二、问题情境如图,某人在山脚处测得山顶的仰角为︒30,沿直线前进了米后到达处,又测得山顶的仰角为︒45,求三、数学建构角关系.=Asin=Bsin=Csin即Aasin Bbsin Ccsin证明对于任意三角形,都有CcB b A a sin sin sin ==吗?阅读课本中的证明方法,回答下列问题:1、 证明法中为什么要对角分锐角、钝角讨论?2、 写出为钝角时的证明过程。

正弦定理:在ABC ∆中,角A 、B 、C 的对边分别是a 、b 、c ,那么sin sin sin a b cA B C==一般的,把三角形的三个角和它们的对边叫做三角形的叫做解三角形【典型例题】例、已知.,,20,45C ,30A c b a ABC 求中,=︒=︒=∆例、已知.ABC ,45,2,3,解三角形中︒===∆B b a ABC变式、.ABC ,45,2,1,解三角形中︒===∆B b a ABC变式、.ABC ,45,2,4,解三角形中︒===∆B b a ABC【小结】:、已知A ,和b a ,解三角形时完成下表:、利用正弦定理能解决的两类有关的三角形问题:、在解三角形的过程中,真正取舍的依据是:【巩固练习】、:1:4C ::A =∆B ABC 中,在.、__________1,c ,60C ,45则最短边的长度是中,在=︒=︒=∆B ABC . 、__________,334b ,22c ,45===︒=∆A B ABC 则中,在. 、不解三角形,确定下列判断是否正确有两解,30,14,7︒===A b a ( ) 有一解,150,25,30︒===A b a ( ) 有两解,45,9,6︒===A b a ( )无解,60,10,9︒===B c b ( ).正弦定理()【学习目标】1、 了解正弦定理的第三种证明方法;2、 进一步学习正弦定理,会利用正弦定理证明简单三角形问题和判断三角形的形状;3、 会利用正弦定理求解简单的实际问题.【重点难点】正弦定理的变形及应用.【自主学习】一、知识回顾:正弦定理.问题:你还有其他方法来证明正弦定理吗?二、问题情境在Rt ABC ∆中,斜边c 与Rt ABC ∆外接圆的 直径2R ,是什么关系 故有2sin sin sin a b cR A B C===,这 一关系对任意三角形都成立吗(如图)?探索并证 明你的结论.三、建构数学 正弦定理:.变形()2sin a R A =,b =,c =. (),sin 2bB R=,. ()sin :sin :sin A B C =.【典型例题】例、在△中,已知cos cos cos a b cA B C==,试判断△的形状.例、在△中,是∠的平分线,用正弦定理证明AB BDAC DC=.例、某登山队在山脚处测得山顶的仰角为°,沿倾斜角为°的斜坡前进1000m 后到达处,又测得山顶的仰角为°,求山的高度.【巩固练习】()在△中,若60A =,a =sin sin sin a b cA B C++=++.()根据下列条件,判断△的形状:①222sin sin sin A B C +=; ②cos cos a A b B =;③sin cos cos A B Ca b c==.()为了在一条河上建一座桥,施工前在河两岸打上两个桥位桩A ,B .要测算出A ,B 两点间的距离,测量人员在岸边定出基线BC ,测得80BC m =,75B ∠=,45C ∠=,试计算AB 的长..正弦定理()【学习目标】、会利用正弦定理解决简单的三角形问题; 、掌握三角形的另一种面积公式及其应用。

人教A版高中数学必修5第一章 解三角形1.1 正弦定理和余弦定理教案

专题22正弦定理和余弦定理1.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题;1.正、余弦定理在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则 定理正弦定理余弦定理内容a sin A =b sin B =csin C=2R a 2=b 2+c 22bc cos__A ;b 2=c 2+a 22ca cos__B ; c 2=a 2+b 2-2ab cos__C常见变形(1)a =2R sin A ,b =2R sin__B ,c =2R sin_C ;(2)sin A =a 2R ,sin B =b 2R ,sin C =c2R ;(3)a ∶b ∶c =sin__A ∶sin__B ∶sin__C ;(4)a sin B =b sin A ,b sin C =c sin B ,a sin C =c sin Acos A =b 2+c 2-a 22bc ;cos B =c 2+a 2-b 22ac ;cos C =a 2+b 2-c 22ab2.S △ABC =12ab sin C =12bc sin A =12ac sin B =4R =12(a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R ,r .高频考点一 利用正弦定理、余弦定理解三角形例1、(1)在△ABC 中,已知a =2,b =6,A =45°,则满足条件的三角形有( ) A .1个 B .2个 C .0个D .无法确定(2)在△ABC 中,已知sin A ∶sin B =2∶1,c 2=b 2+2bc ,则三内角A ,B ,C 的度数依次是________.(3)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =3,sin B =12,C =π6,则b =________.答案 (1)B (2)45°,30°,105° (3)1 解析 (1)∵b sin A =6×22=3,∴b sin A <a <b .解得b =1.【感悟提升】(1)判断三角形解的个数的两种方法①代数法:根据大边对大角的性质、三角形内角和公式、正弦函数的值域等判断. ②几何图形法:根据条件画出图形,通过图形直观判断解的个数.(2)已知三角形的两边和其中一边的对角解三角形.可用正弦定理,也可用余弦定理.用正弦定理时,需判断其解的个数,用余弦定理时,可根据一元二次方程根的情况判断解的个数. 【变式探究】(1)已知在△ABC 中,a =x ,b =2,B =45°,若三角形有两解,则x 的取值范围是( ) A .x >2 B .x <2 C .2<x <2 2D .2<x <2 3(2)在△ABC 中,A =60°,AC =2,BC =3,则AB =________. 答案 (1)C (2)1解析 (1)若三角形有两解,则必有a >b ,∴x >2,又由sin A =a b sin B =x 2×22<1,可得x <22,∴x 的取值范围是2<x <2 2. (2)∵A =60°,AC =2,BC =3, 设AB =x ,由余弦定理,得BC 2=AC 2+AB 2-2AC ·AB cos A ,化简得x 2-2x +1=0, ∴x =1,即AB =1.高频考点二 利用正弦、余弦定理判定三角形的形状例2、(2015·浙江)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,已知A =π4,b 2-a2=12c 2. (1)求tan C 的值;(2)若△ABC 的面积为3,求b 的值. 解 (1)由b 2-a 2=12c 2及正弦定理得(2)由tan C =2,C ∈(0,π)得 sin C =255,cos C =55,因为sin B =sin(A +C )=sin ⎝ ⎛⎭⎪⎫π4+C ,所以sin B =31010,由正弦定理得c =223b ,又因为A =π4,12bc sin A =3,所以bc =62,故b =3. 【感悟提升】(1)对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用哪一个公式.(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化. 【变式探究】四边形ABCD 的内角A 与C 互补,AB =1,BC =3,CD =DA =2. (1)求C 和BD ;(2)求四边形ABCD 的面积.解 (1)由题设A 与C 互补及余弦定理得BD 2=BC 2+CD 2-2BC ·CD cos C =13-12cos C ,① BD 2=AB 2+DA 2-2AB ·DA cos A =5+4cos C .②由①②得cos C =12,BD =7,因为C 为三角形内角,故C =60°. (2)四边形ABCD 的面积S =12AB ·DA sin A +12BC ·CD sin C=⎝ ⎛⎭⎪⎫12×1×2+12×3×2sin60° =2 3.高频考点三 正弦、余弦定理的简单应用例3、设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A.锐角三角形B.直角三角形C.钝角三角形D.不确定答案 B【感悟提升】(1)判断三角形形状的方法①化边:通过因式分解、配方等得出边的相应关系,从而判断三角形的形状.②化角:通过三角恒等变形,得出内角的关系,从而判断三角形的形状,此时要注意应用A +B +C =π这个结论. (2)求解几何计算问题要注意①根据已知的边角画出图形并在图中标示; ②选择在某个三角形中运用正弦定理或余弦定理.【变式探究】(1)在△ABC 中,内角A ,B ,C 所对的边长分别是a ,b ,c ,若c -a cos B =(2a -b )cos A ,则△ABC 的形状为( ) A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形(2)如图,在△ABC 中,已知点D 在BC 边上,AD ⊥AC ,sin∠BAC =223,AB =32,AD =3,则BD 的长为______.答案 (1)D (2) 3∴△ABC 为等腰或直角三角形.(2)sin∠BAC =sin(π2+∠BAD )=cos∠BAD ,∴cos∠BAD =223.BD 2=AB 2+AD 2-2AB ·AD cos∠BAD=(32)2+32-2×32×3×223,即BD 2=3,BD = 3.高频考点三 和三角形面积有关的问题【例3】 (2016·全国Ⅰ卷)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos C (a cosB +b cos A )=c .(1)求C ;(2)若c =7,△ABC 的面积为332,求△ABC 的周长. 解 (1)由已知及正弦定理得,2cos C (sin A cos B +sin B ·cos A )=sin C ,2cos C sin(A +B )=sinC ,故2sin C cos C =sin C . 由C ∈(0,π)知sin C ≠0, 可得cos C =12,所以C =π3.(2)由已知,12ab sin C =332,又C =π3,所以ab =6,由已知及余弦定理得,a 2+b 2-2ab cos C =7,故a 2+b 2=13, 从而(a +b )2=25.所以△ABC 的周长为5+7. 【方法规律】三角形面积公式的应用原则(1)对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用哪一个公式.(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化.【变式探究】在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,满足(2a -b )cos C -c cos B =0.(1)求角C 的值;(2)若三边a ,b ,c 满足a +b =13,c =7,求△ABC 的面积.1.【2016高考新课标3理数】在ABC △中,π4B =,BC 边上的高等于13BC ,则cos A =( ) (A )310 (B )10 (C )10- (D )310-【答案】C【解析】设BC 边上的高为AD ,则3BC AD =,所以225AC AD DC AD =+=,2AB AD=.由余弦定理,知22222210cos 210225AB AC BC A AB AC AD AD+-===-⋅⨯⨯,故选C . 2.【2016高考新课标2理数】ABC ∆的内角,,A B C 的对边分别为,,a b c ,若4cos 5A =,5cos 13C =,1a =,则b = . 【答案】21133.【2016高考天津理数】在△ABC 中,若AB ,120C ∠=o ,则AC = ( ) (A )1(B )2(C )3(D )4【答案】A【解析】由余弦定理得213931AC AC AC =++⇒=,选A.4.【2016高考江苏卷】在锐角三角形ABC 中,若sin 2sin sin A B C =,则tan tan tan A B C 的最小值是 ▲ . 【答案】8. 【解析】sin sin()2sin sin tan tan 2tan tan A B+C B C B C B C==⇒+=,又tan tan tan tan tan 1B+CA=B C -,因tan tan tan tan tan tan tan 2tan tan tan tan tan 8,A B C A B C A B C A B C =++=+≥≥即最小值为8.5.(2016·山东卷)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知b =c ,a 2=2b 2(1-sinA ),则A =( )A.3π4 B.π3 C.π4 D.π6解析 在△ABC 中,由b =c ,得cos A =b 2+c 2-a 22bc =2b 2-a 22b 2,又a 2=2b 2(1-sin A ),所以cos A =sin A ,即tan A =1,又知A ∈(0,π),所以A =π4,故选C.答案 C【2015高考天津,理13】在ABC ∆ 中,内角,,A B C 所对的边分别为,,a b c ,已知ABC ∆的面积为 ,12,cos ,4b c A -==- 则a 的值为 . 【答案】【解析】因为0A π<<,所以sin 4A ==,又1sin 242ABC S bc A bc ∆===∴=,解方程组224b c bc -=⎧⎨=⎩得6,4b c ==,由余弦定理得2222212cos 64264644a b c bc A ⎛⎫=+-=+-⨯⨯⨯-= ⎪⎝⎭,所以8a =.【2015高考北京,理12】在ABC △中,4a =,5b =,6c =,则sin 2sin AC= .【答案】1【解析】222sin 22sin cos 2sin sin 2A A A a b c a C C c bc +-==⋅2425361616256⨯+-=⋅=⨯⨯【2015高考新课标1,理16】在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是 . 【答案】(62-,6+2)AB 的取值范围为(62-,6+2).【2015江苏高考,15】(本小题满分14分) 在ABC ∆中,已知ο60,3,2===A AC AB . (1)求BC 的长; (2)求C 2sin 的值 【答案】(17(243【2015高考湖南,理17】设ABC ∆的内角A ,B ,C 的对边分别为a ,b ,,tan a b A =,且B 为钝角. (1)证明:2B A π-=;(2)求sin sin A C +的取值范围. 【答案】(1)详见解析;(2)29,]28. 【解析】(1)由tan a b A =及正弦定理,得sin sin cos sin A a AA bB ==,∴sin cos B A =,即sin sin()2B A π=+,又B 为钝角,因此(,)22A πππ+∈,故2B A π=+,即2B A π-=; (2)由(1)知,()C A B π=-+(2)2022A A πππ-+=->,∴(0,)4A π∈,于是sin sin sin sin(2)2A C A A π+=+-2219sin cos 22sin sin 12(sin )48A A A A A =+=-++=--+,∵04A π<<,∴20sin A <<221992(sin )488A <--+≤,由此可知sin sin A C +的取值范围是29]28.(2014·湖北卷)某实验室一天的温度(单位:℃)随时间t (单位:h)的变化近似满足函数关系:f (t )=10-3cos π12t -sin π12t ,t ∈[0,24).(1)求实验室这一天的最大温差.(2)若要求实验室温度不高于11℃,则在哪段时间实验室需要降温?即sin ⎝⎛⎭⎪⎫π12t +π3<-12.又0≤t <24,因此7π6<π12t +π3<11π6,即10<t <18.故在10时至18时实验室需要降温.(2014·江西卷)已知函数f (x )=sin(x +θ)+a cos(x +2θ),其中a ∈R,θ∈⎝ ⎛⎭⎪⎫-π2,π2.(1)当a =2,θ=π4时,求f (x )在区间[0,π]上的最大值与最小值;(2)若f ⎝ ⎛⎭⎪⎫π2=0,f (π)=1,求a ,θ的值.【解析】(1)f (x )=sin ⎝ ⎛⎭⎪⎫x +π4+2cos ⎝⎛⎭⎪⎫x +π2=22(sin x +cos x )-2sin x =22cos x -22sin x =sin ⎝ ⎛⎭⎪⎫π4-x .因为x ∈[0,π],所以π4-x ∈⎣⎢⎡⎦⎥⎤-3π4,π4,故f (x )在区间[0,π]上的最大值为22,最小值为-1. (2)由⎩⎪⎨⎪⎧f ⎝ ⎛⎭⎪⎫π2=0,f (π)=1,得⎩⎪⎨⎪⎧cos θ(1-2a sin θ)=0,2a sin 2θ-sin θ-a =1. 又θ∈⎝ ⎛⎭⎪⎫-π2,π2,知cos θ≠0, 所以⎩⎪⎨⎪⎧1-2a sin θ=0,(2a sin θ-1)sin θ-a =1,解得⎩⎪⎨⎪⎧a =-1,θ=-π6.(2014·四川卷)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫3x +π4.(1)求f (x )的单调递增区间;(2)若α是第二象限角,f ⎝ ⎛⎭⎪⎫α3=45cos ⎝⎛⎭⎪⎫α+π4cos 2α,求cos α-sin α的值.当sin α+cos α=0时,由α是第二象限角,得α=3π4+2k π,k ∈Z,此时,cos α-sin α=- 2.当sin α+cos α≠0时,(cos α-sin α)2=54.由α是第二象限角,得cos α-sin α<0,此时cos α-sin α=-52. 综上所述,cos α-sin α=-2或-52. (2013·北京卷)在△ABC 中,a =3,b =2 6,∠B=2∠A. (1)求cos A 的值; (2)求c 的值.【解析】(1)因为a =3,b =2 6,∠B=2∠A, 所以在△ABC 中,由正弦定理得3sin A =2 6sin 2A .所以2sin Acos A sin A =2 63.故cos A =63. (2)由(1)知cos A =63,所以sin A =1-cos 2A =33. 又因为∠B=2∠A,所以cos B =2cos 2A -1=13.所以sin B =1-cos 2B =2 23.在△ABC 中,sin C =sin(A +B) =sin AcosB +cos Asin B =5 39. 所以c =a sin Csin A=5.(2013·全国卷)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,(a +b +c)(a -b +c)=ac. (1)求B ; (2)若sin Asin C =3-14,求C.=32, 故A -C =30°或A -C =-30°,因此C =15°或C =45°. (2013·浙江卷)已知α∈R,sin α+2cos α=102,则tan 2α=( ) A.43 B.34 C .-34 D .-43 【答案】C【解析】由(sin α+2cos α)2=1022'得sin 2α+4sin αcos α+4cos 2α=104=52,4sin αcos α+1+3cos 2α=52,2sin 2α+1+3×1+cos 2α2=52,故2sin 2α=-3cos 2α2,所以tan2α=-34,选择C.(2013·重庆卷)4cos 50°-tan 40°=( ) A. 2 B.2+32C. 3 D .2 2-1 【答案】C1.在△ABC 中,AB =3,AC =1,B =30°,△ABC 的面积为32,则C =( ) A.30° B.45°C.60°D.75°解析 法一 ∵S △ABC =12·AB ·AC ·sin A =32,即12×3×1×sin A =32,∴sin A =1, 由A ∈(0°,180°),∴A =90°,∴C =60°.故选C. 法二 由正弦定理,得sin B AC =sin C AB ,即12=sin C 3,sin C =32,又C ∈(0°,180°),∴C =60°或C =120°. 当C =120°时,A =30°,S △ABC =34≠32(舍去).而当C =60°时,A =90°, S △ABC =32,符合条件,故C =60°.故选C. 答案 C2.在△ABC 中,角A ,B ,C 对应的边分别为a ,b ,c ,若A =2π3,a =2,b =233,则B 等于( )A.π3B.5π6C.π6或5π6D.π6解析∵A=2π3,a=2,b=233,∴由正弦定理asin A=bsin B可得,sin B=basin A=2332×32=12.∵A=2π3,∴B=π6.答案 D3.在△ABC中,cos2B2=a+c2c(a,b,c分别为角A,B,C的对边),则△ABC的形状为( ) A.等边三角形 B.直角三角形C.等腰三角形或直角三角形D.等腰直角三角形答案 B4.△ABC的内角A,B,C的对边分别为a,b,c,则“a>b”是“cos 2A<cos 2B”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析因为在△ABC中,a>b⇔sin A>sin B⇔sin2A>sin2B⇔2sin2A>2sin2B⇔1-2sin2A<1-2sin2B⇔cos 2A<cos 2B.所以“a>b”是“cos 2A<cos 2B”的充分必要条件.答案 C5.已知△ABC的内角A,B,C的对边分别为a,b,c,且c-bc-a=sin Asin C+sin B,则B等于( ) A.π6B.π4C.π3D.3π4答案 C解析 根据正弦定理a sin A =b sin B =csin C =2R ,得c -b c -a =sin A sin C +sin B =ac +b, 即a 2+c 2-b 2=ac ,得cos B =a 2+c 2-b 22ac =12,故B =π3,故选C.6.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若(a 2+c 2-b 2)tan B =3ac ,则角B 的值为________. 答案π3或2π3解析 由余弦定理,得a 2+c 2-b 22ac=cos B ,结合已知等式得cos B ·tan B =32, ∴sin B =32,∴B =π3或2π3. 7.在△ABC 中,若b =5,B =π4,tan A =2,则a =______.答案 2108.已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a =2,且(2+b )(sin A -sin B )=(c -b )sin C ,则△ABC 面积的最大值为________. 答案3解析 由正弦定理,可得(2+b )(a -b )=(c -b )·c . ∵a =2,∴a 2-b 2=c 2-bc ,即b 2+c 2-a 2=bc .由余弦定理,得cos A =b 2+c 2-a 22bc =12.∴sin A =32. 由b 2+c 2-bc =4,得b 2+c 2=4+bc . ∵b 2+c 2≥2bc ,即4+bc ≥2bc ,∴bc ≤4. ∴S △ABC =12bc ·sin A ≤3,即(S △ABC )max = 3.9.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a ≠b ,c =3,cos 2A -cos 2B =3sin A cos A -3sin B cos B . (1)求角C 的大小;(2)若sin A =45,求△ABC 的面积.由a <c ,得A <C ,从而cos A =35,故sin B =sin(A +C )=sin A cos C +cos A sin C=4+3310, 所以,△ABC 的面积为S =12ac sin B =83+1825.10.如图,在△ABC 中,B =π3,AB =8,点D 在BC 边上,且CD =2,cos∠ADC =17.(1)求sin∠BAD ; (2)求BD 、AC 的长.在△ABD 中,由正弦定理得 BD =AB ·sin∠BADsin∠ADB =8×3314437=3.在△ABC 中,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC ·cos B=82+(2+3)2-2×8×5×12=49.所以AC =7.11.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且a 2-(b -c )2=(2-3)bc ,sin A sin B =cos 2C2,BC 边上的中线AM 的长为7.(1)求角A 和角B 的大小; (2)求△ABC 的面积.解 (1)由a 2-(b -c )2=(2-3)bc , 得a 2-b 2-c 2=-3bc ,∴cos A =b 2+c 2-a 22bc =32,(2)由(1)知,a =b ,由余弦定理得AM 2=b 2+(a2)2-2b ·a2·cos C =b 2+b 24+b 22=(7)2,解得b=2,故S △ABC =12ab sin C =12×2×2×32= 3.12.设f (x )=sin x cos x -cos 2⎝ ⎛⎭⎪⎫x +π4.(1)求f (x )的单调区间;精品文档. (2)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若f ⎝ ⎛⎭⎪⎫A 2=0,a =1,求△ABC 面积的最大值.解 (1)由题意知f (x )=sin 2x 2-1+cos ⎝ ⎛⎭⎪⎫2x +π22=sin 2x 2-1-sin 2x 2=sin 2x -12. 由-π2+2k π≤2x ≤π2+2k π,k ∈Z, 可得-π4+k π≤x ≤π4+k π,k ∈Z ; 由π2+2k π≤2x ≤3π2+2k π,k ∈Z, 可得π4+k π≤x ≤3π4+k π,k ∈Z . 所以f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤-π4+k π,π4+k π(k ∈Z ); 单调递减区间是⎣⎢⎡⎦⎥⎤π4+k π,3π4+k π(k ∈Z ). (2)由f ⎝ ⎛⎭⎪⎫A 2=sin A -12=0,得sin A =12, 由题意知A 为锐角,所以cos A =32. 由余弦定理a 2=b 2+c 2-2bc cos A ,可得1+3bc =b 2+c 2≥2bc ,即bc ≤2+3,且当b =c 时等号成立. 因此12bc sin A ≤2+34.所以△ABC 面积的最大值为2+34.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1.1 正弦定理(二) 课时目标
1.熟记正弦定理的有关变形公式;
2.能够运用正弦定理进行简单的推理与证明.
1.正弦定理:a
sin A =b
sin B =c
sin C =2R 的常见变形:
(1)sin A ∶sin B ∶sin C =a ∶b ∶c ;
(2)a
sin A =b
sin B =c
sin C =a +b +c
sin A +sin B +sin C =2R ;
(3)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;
(4)sin A =a 2R ,sin B =b 2R ,sin C =c
2R .
2.三角形面积公式:S =12ab sin C =12bc sin A =12ca sin B .
一、选择题
1.在△ABC 中,sin A =sin B ,则△ABC 是( )
A .直角三角形
B .锐角三角形
C .钝角三角形
D .等腰三角形
答案 D
2.在△ABC 中,若a cos A =b
cos B =c
cos C ,则△ABC 是( )
A .直角三角形
B .等边三角形
C .钝角三角形
D .等腰直角三角形
答案 B
解析 由正弦定理知:sin A
cos A =sin B cos B =sin C
cos C ,
∴tan A =tan B =tan C ,∴A =B =C .
3.在△ABC 中,sin A =34,a =10,则边长c 的取值范围是(
) A.⎝ ⎛⎭⎪⎫152,+∞ B .(10,+∞)
C .(0,10) D.⎝ ⎛⎦⎥⎤0,403
答案 D
解析 ∵c sin C =a sin A =403,∴c =403sin C .
∴0<c ≤403.
4.在△ABC 中,a =2b cos C ,则这个三角形一定是( )
A .等腰三角形
B .直角三角形
C .等腰直角三角形
D .等腰或直角三角形
答案 A
解析 由a =2b cos C 得,sin A =2sin B cos C ,
∴sin(B +C )=2sin B cos C ,
∴sin B cos C +cos B sin C =2sin B cos C ,
∴sin(B -C )=0,∴B =C .
5.在△ABC 中,已知(b +c )∶(c +a )∶(a +b )=4∶5∶6,则sin A ∶sin B ∶sin C 等于( )
A .6∶5∶4
B .7∶5∶3
C .3∶5∶7
D .4∶5∶6
答案 B
解析 ∵(b +c )∶(c +a )∶(a +b )=4∶5∶6,
∴b +c 4=c +a 5=a +b 6
. 令b +c 4=c +a 5=a +b 6
=k (k >0), 则⎩⎪⎨⎪⎧ b +c =4k c +a =5k
a +
b =6k ,解得⎩⎪⎨⎪⎧ a =72k b =52k
c =32k .
∴sin A ∶sin B ∶sin C =a ∶b ∶c =7∶5∶3.
6.已知三角形面积为14
,外接圆面积为π,则这个三角形的三边之积为( ) A .1 B .2
C.12
D .4 答案 A
解析 设三角形外接圆半径为R ,则由πR 2=π,
得R =1,由S △=12ab sin C =abc 4R =abc 4=14
,∴abc =1. 二、填空题
7.在△ABC 中,已知a =32,cos C =13
,S △ABC =43,则b =________. 答案 2 3
解析 ∵cos C =13,∴sin C =223
, ∴12ab sin C =43,∴b =2 3.
8.在△ABC中,角A,B,C的对边分别为a,b,c,已知A=60°,a=3,b=1,则c=________.
答案 2
解析由正弦定理
a
sin A=
b
sin B,得
3
sin 60°=
1
sin B,
∴sin B=1
2,故B=30°或150°.由a>b,
得A>B,∴B=30°,故C=90°,由勾股定理得c=2.
9.在单位圆上有三点A,B,C,设△ABC三边长分别为a,b,c,则
a sin A
+b
2sin B+
2c
sin C=________.
答案7
解析∵△ABC的外接圆直径为2R=2,
∴a
sin A=
b
sin B=
c
sin C=2R=2,
∴a
sin A+
b
2sin B+
2c
sin C=2+1+4=7.
10.在△ABC中,A=60°,a=63,b=12,S△ABC=183,则a+b+c
sin A+sin B+sin C
=________,c=________.
答案12 6
解析
a+b+c
sin A+sin B+sin C

a
sin A=
63
3
2
=12.
∵S△ABC=1
2ab sin C=
1
2×63×12sin C=183,
∴sin C=1
2,∴
c
sin C=
a
sin A=12,∴c=6.
三、解答题
11.在△ABC中,求证:a-c cos B
b-c cos A

sin B
sin A.
证明因为在△ABC中,
a
sin A=
b
sin B=
c
sin C=2R,
所以左边=2R sin A-2R sin C cos B
2R sin B-2R sin C cos A
=sin(B+C)-sin C cos B
sin(A+C)-sin C cos A

sin B cos C
sin A cos C=
sin B
sin A=右边.
所以等式成立,即a-c cos B
b-c cos A =
sin B sin A.
12.在△ABC中,已知a2tan B=b2tan A,试判断△ABC的形状.
解 设三角形外接圆半径为R ,则a 2tan B =b 2tan A
⇔a 2sin B cos B =b 2sin A cos A
⇔4R 2sin 2 A sin B cos B =4R 2sin 2 B sin A cos A
⇔sin A cos A =sin B cos B
⇔sin 2A =sin 2B
⇔2A =2B 或2A +2B =π
⇔A =B 或A +B =π2
. ∴△ABC 为等腰三角形或直角三角形. 能力提升
13.在△ABC 中,B =60°,最大边与最小边之比为(3+1)∶2,则最大角为( )
A .45°
B .60°
C .75°
D .90°
答案 C
解析 设C 为最大角,则A 为最小角,则A +C =120°,
∴sin C sin A =sin ()
120°-A sin A
=sin 120° cos A -cos 120°sin A sin A
=32tan A +12=3+12=32+12
, ∴tan A =1,A =45°,C =75°.
14.在△ABC 中,a ,b ,c 分别是三个内角A ,B ,C 的对边,若a =2,C =π4
, cos B 2=255
,求△ABC 的面积S . 解 cos B =2cos 2 B 2-1=35
, 故B 为锐角,sin B =45
. 所以sin A =sin(π-B -C )=sin ⎝ ⎛⎭⎪⎫3π4-B =7210
. 由正弦定理得c =a sin C sin A =107
, 所以S △ABC =12ac sin B =12×2×107×45=87
.
1.在△ABC 中,有以下结论:。

相关文档
最新文档