基于阈值的图像分割方法研究与实现
基于VC++图像阈值分割与轮廓提取技术研究与实现

基于VC++的图像阈值分割与轮廓提取技术的研究与实现摘要:目前,随着计算机图像处理技术的飞速发展,医学图像分割技术在医疗诊断中的应用也越来越广泛。
本文分析了区域的图像分割算法,提出了结合距离正则化的水平集演化模型的自适应算法,基于vc++6.0软件对人体心脏核磁共振图像进行了仿真实验分析。
关键词:图像分割;医学图像;仿真实验中图分类号:tp391.41 文献标识码:a 文章编号:1007-9599 (2012) 24-0028-031 基于区域的图像分割算法概述1.1 阈值分割算法阈值分割算法具有多种优点,包括简单便捷、性能高效等,对于目标背景与灰度级之间存在明显差异的图像来说,图像分割的效果比较理想。
阈值分割算法的应用首先要对图像进行部分预处理,为后期图像分割提供相关准备。
阈值分割算法在医学图像分割中经常用于身体骨骼、皮肤组织等医学图像。
但是,阈值分割算法也存在部分缺点,如果将阈值分割应用于灰度值差异不够明显,以及图像中噪声分布不均匀的图像中,其效果却不尽理想。
而且,阈值的选取对于医学图像的分割起着决定性作用,因此,阈值的选取也是至关重要的步骤。
1.2 区域生长及分裂合并算法区域生长算法的特点是图像分割步骤简单,经常用于对医学图像中的小部分组织进行图像分割,例如肿瘤分割、伤疤分割等等。
如果将区域生长算法与其他算法结合应用,将会达到事半功倍的分割效果。
区域生长算法的缺点是其对于图像噪声极为敏感,而且需要人工手动得到种子点。
区域分裂合并算法与区域生长算法的理念不尽相同,区域分裂合并算法是通过对图像的不断分裂得到图像的各个区域,这些区域之间具有一定的关联性,各个区域中相邻的部分根据合并准则完成合并。
1.3 分类器及聚类算法分类器包括参数分类器与非参数分类器两种。
典型的非参数分类器有parzen窗、k近邻等;而贝叶斯分类器为参数分类器的典型代表。
分类器的优点较多,包括能够有效降低算法的计算量,也不需要进行迭代运算,从而提高算法效率等等。
图像处理技术中的图像分割阈值选择方法探讨

图像处理技术中的图像分割阈值选择方法探讨图像分割是图像处理的重要步骤之一,它将一幅图像划分成多个区域或对象,使得每个区域或对象具有一定的相似性或特征。
而图像分割的关键在于选择合适的阈值,以实现准确的分割结果。
本文将探讨图像处理技术中的图像分割阈值选择方法。
图像分割的目的是将图像中的前景和背景分开,使得每个区域或对象能够得到独立的处理。
在许多应用中,分割准确性对于后续处理步骤的成功非常关键。
因此,选择适当的阈值方法至关重要。
在图像处理中,有许多常用的图像分割阈值选择方法,比如全局阈值法、自适应阈值法、Otsu阈值法等。
下面将对这些方法进行详细的介绍和比较。
首先是全局阈值法,它是最简单和最常见的分割方法之一。
该方法假设图像中的前景和背景的灰度值具有明显的差异,并且像素的灰度值可以根据一个固定的阈值进行分类。
通常情况下,阈值可以通过试错法或者统计分析的方法来选择。
全局阈值法的优点是简单易用,计算速度快,适用于许多场景。
然而,该方法对于图像中存在灰度值分布不均匀或者背景复杂的情况表现不佳。
接下来是自适应阈值法,该方法能够根据图像中局部区域的特征动态地选择阈值。
它假设图像中的前景和背景的灰度值在局部区域内具有一定的相似性,并且像素的灰度值可以根据其局部区域的平均或中值来分类。
自适应阈值法的优点是能够适应图像中的灰度值变化和背景复杂的情况,但是计算复杂度会相应增加。
最后是Otsu阈值法,它是一种基于图像灰度直方图特性的自动分割方法。
Otsu 阈值法通过最大类间方差的方法选择阈值,即使得前景和背景之间的差异最大。
它能够自动选择合适的阈值,适用于各种图像。
Otsu阈值法的优点是能够自动化选择阈值,但是对于某些特殊图像,可能无法得到理想的分割结果。
除了以上介绍的常用方法外,还有一些其他的图像分割阈值选择方法,如基于聚类分析的方法、基于直方图的方法等。
这些方法在特定的应用场景中可能会有更好的效果,但是也有一定的局限性。
基于阈值法的图像分割技术

基于阈值法的图像分割技术阴国富(1.西安电子科技大学陕西西安710071;2.渭南师范学院陕西渭南714000)在对图像的研究和应用中,人们往往仅对图像中的某些部分感兴趣,这些部分称为目标或前景(其他部分称为背景),他们一般对应图像中特定的、具有独特性质的区域。
为了辨识和分析目标,需要将他们分离提取出来,在此基础上才有可能对目标进一步利用。
图像分割就是指把图像分成格局特性的区域并提取出感兴趣目标的技术和过程。
这里特性可以是象素的灰度、颜色、纹理等,预先定义的目标可以对应单个区域,也可以对应多个区域。
现有的图像分割算法有:阈值分割、边缘检测和区域提取法。
本文着重研究基于阈值法的图像分割技术。
1 阈值法图像分割1.1 阈值法的基本原理阈值分割法是一种基于区域的图像分割技术,其基本原理是:通过设定不同的特征阈值,把图像象素点分为若干类。
常用的特征包括:直接来自原始图像的灰度或彩色特征;由原始灰度或彩色值变换得到的特征。
设原始图像为f(x,y),按照一定的准则f(x,y)中找到特征值T,将图像分割为两个部分,分割后的图像为:若取:b0=0(黑),b1=1(白),即为我们通常所说的图像二值化。
1.2 阈值法图像分割方法分类全局阈值法指利用全局信息对整幅图像求出最优分割阈值,可以是单阈值,也可以是多阈值;局部阈值法是把原始的整幅图像分为几个小的子图像,再对每个子图像应用全局阈值法分别求出最优分割阈值。
其中全局阈值法又可分为基于点的阈值法和基于区域的阈值法。
阈值分割法的结果很大程度上依赖于阈值的选择,因此该方法的关键是如何选择合适的阈值。
由于局部阈值法中仍要用到全局阈值法,因此本文主要对全局阈值法中基于点的阈值法和基于区域的阈值法分别进行了研究。
根据阈值法的原理可以将阈值选取技术分为3大类:(1)基于点的全局阈值方法基于点的全局阈值算法与其他几大类方法相比,算法时间复杂度较低,易于实现,适合应用于在线实时图像处理系统。
图像分割 实验报告

图像分割实验报告图像分割实验报告一、引言图像分割是计算机视觉领域中的一个重要研究方向,它旨在将一幅图像分割成具有语义意义的不同区域。
图像分割在许多应用中发挥着关键作用,如目标检测、场景理解和医学图像处理等。
本实验旨在探索不同的图像分割方法,并对其进行比较和评估。
二、实验方法本实验选择了两种常用的图像分割方法:基于阈值的分割和基于边缘的分割。
首先,我们使用Python编程语言和OpenCV库加载图像,并对图像进行预处理,如灰度化和平滑处理。
接下来,我们将详细介绍这两种分割方法的实现步骤。
1. 基于阈值的分割基于阈值的分割是一种简单而常用的分割方法。
它通过将图像像素的灰度值与预先设定的阈值进行比较,将像素分为前景和背景两类。
具体步骤如下:(1)将彩色图像转换为灰度图像。
(2)选择一个适当的阈值,将图像中的像素分为两类。
(3)根据阈值将图像分割,并得到分割结果。
2. 基于边缘的分割基于边缘的分割方法是通过检测图像中的边缘来实现分割的。
边缘是图像中灰度变化剧烈的区域,通常表示物体的边界。
具体步骤如下:(1)将彩色图像转换为灰度图像。
(2)使用边缘检测算法(如Canny算法)检测图像中的边缘。
(3)根据边缘信息将图像分割,并得到分割结果。
三、实验结果与讨论我们选择了一张包含多个物体的彩色图像进行实验。
首先,我们使用基于阈值的分割方法对图像进行分割,选择了适当的阈值进行实验。
实验结果显示,基于阈值的分割方法能够将图像中的物体与背景分离,并得到较好的分割效果。
接下来,我们使用基于边缘的分割方法对同一张图像进行分割。
实验结果显示,基于边缘的分割方法能够准确地检测出图像中的边缘,并将图像分割成多个具有边界的区域。
与基于阈值的分割方法相比,基于边缘的分割方法能够更好地捕捉到物体的形状和边界信息。
通过对比两种分割方法的实验结果,我们发现基于边缘的分割方法相对于基于阈值的分割方法具有更好的效果。
基于边缘的分割方法能够提供更准确的物体边界信息,但也更加复杂和耗时。
医学图像配准与分割方法研究与实践

医学图像配准与分割方法研究与实践医学图像配准与分割是医学影像处理中的两个重要任务,可以帮助医生更准确地诊断和治疗疾病。
图像配准旨在将多个医学图像对齐,使得它们在空间上或时间上完全或部分重叠。
而图像分割则是将医学图像中的组织、器官或异常区域进行分离和区分。
本文将介绍医学图像配准和分割的一些常见方法,并探讨其在实际应用中的研究与实践。
一、医学图像配准方法研究与实践医学图像配准是通过将多个医学图像进行准确对齐,实现多图像之间的一致性。
在医学影像处理中,常见的配准方法包括基于特征的方法和基于相似度度量的方法。
1. 基于特征的方法基于特征的配准方法通过提取图像中的特征点或特征区域来进行图像匹配。
其中,最常见的特征包括角点、边缘、纹理等。
常用的算法包括SIFT(尺度不变特征变换)、SURF(加速稳健特征)和ORB(旋转不变特征)等。
这些方法通过对特征点的检测、描述和匹配来实现图像配准。
在实践中,基于特征的方法往往具有较好的配准效果和鲁棒性。
2. 基于相似度度量的方法基于相似度度量的配准方法通过计算图像间的相似度来进行匹配。
常用的相似度度量指标包括互信息、相关系数和互相关等。
这些方法通过优化相似度度量指标来寻找最优的变换参数,从而实现图像的配准。
在实践应用中,基于相似度度量的方法通常能够得到较好的配准结果,并且具有较高的计算效率。
二、医学图像分割方法研究与实践医学图像分割是将医学图像中的组织、器官或异常区域进行分离和区分的过程。
常见的医学图像分割方法包括基于阈值的方法、基于边缘的方法和基于区域的方法。
1. 基于阈值的方法基于阈值的分割方法是最简单也是最直观的方法之一。
它通过选取适当的阈值来将图像进行二值化,将感兴趣的组织或区域与背景进行区分。
常见的阈值分割方法有全局阈值法、自适应阈值法和区域生长法等。
尽管基于阈值的方法简单易用,但对于复杂图像和噪声较多的情况下,效果不佳。
2. 基于边缘的方法基于边缘的分割方法通过检测图像中的边缘信息进行分割。
医学影像中的图像分割技术研究

医学影像中的图像分割技术研究一、背景介绍随着医学成像技术不断的发展,医学影像在临床医疗领域已经成为了不可或缺的一部分。
然而,海量的医学影像数据对临床医生和医学研究工作者的影像学分析提出了新的挑战。
一项重要的任务是医学影像中的图像分割,即将一张医学影像图像分为若干不同的区域以帮助临床医生和研究人员更好地理解该区域的构造和特性。
基于这一任务,许多图像分割技术得到了广泛的研究和应用。
二、医学影像中的图像分割技术1. 基于阈值的图像分割技术基于阈值的图像分割技术是一种快速、简单的图像分割方法,广泛应用于医学影像中。
基本原理是将像素值高于或低于预先定义的阈值的像素分为两个部分,从而实现图像的分割。
但此方法在面对医学影像中复杂结构的图像时,分割效果很可能出现错误。
2. 基于边缘检测的图像分割技术基于边缘检测的图像分割技术是利用边缘信息对图像进行分割的方法,主要分两步进行。
首先,对图像进行边缘检测,提取边缘信息。
然后,利用这些边缘信息将图像分割为不同的部分。
但这种方法对图像中噪声的敏感度很高,同时对于一些形状较为复杂的结构分割效果也较差。
3. 基于区域生长的图像分割技术基于区域生长的图像分割技术是一种运用种子点的方法将图像分为不同的区域。
基本原理是从种子点开始,对相邻像素点的灰度值进行比较,将符合条件的像素点归为同一区域,直到所有符合条件的像素点都被归为同一区域。
该方法能够有效处理复杂的图像结构,并且对噪声的抗干扰能力较强。
4. 基于图论的图像分割技术基于图论的图像分割技术将像素看作图中的节点,在节点之间建立连接关系。
在分割过程中,将节点之间的连线权值看作像素之间的相似性,将图像分为不同的区域。
该方法可以很好的解决医学影像中复杂结构分割问题,但其计算复杂度较大,分割速度比较慢。
三、总结医学影像中的图像分割技术在临床医学中具有重要的应用价值。
但由于医学影像的复杂性,不同的图像分割方法都存在自己的优缺点。
因此,在实际应用过程中,需要结合具体的医学影像特点选择合适的图像分割方法,并进行不断地优化和改进,以达到更好的分割效果。
如何利用图像处理技术实现图像的阈值分割

如何利用图像处理技术实现图像的阈值分割图像阈值分割是一种基本的图像处理技术,它可以将图像分割成不同的区域,以便于进一步的分析和处理。
在本文中,我们将探讨如何利用图像处理技术实现图像的阈值分割。
让我们了解阈值分割的基本概念。
阈值分割是通过将图像的像素按照一定的标准分成两个或多个不同的区域。
这个标准就是阈值,像素值大于阈值的被分到一个区域,像素值小于阈值的被分到另一个区域。
阈值分割可以用来提取图像中的目标区域,去除图像的背景,或者将图像进行二值化处理。
实现图像的阈值分割,通常需要经过以下几个步骤:1. 图像预处理:我们需要对图像进行预处理,以便更好地进行阈值分割。
预处理的方法包括灰度化、去噪和图像增强等。
2. 灰度化:将彩色图像转换为灰度图像。
这是因为在大多数情况下,图像的阈值分割是基于像素的灰度值进行的。
3. 去噪:当图像受到噪声影响时,阈值分割的效果往往不理想。
因此,我们需要对图像进行去噪处理,以减少噪声对阈值分割的影响。
去噪的方法包括中值滤波、高斯滤波和均值滤波等。
4. 图像增强:图像增强的目的是加强图像的对比度和边缘信息,以便更好地进行阈值分割。
图像增强的方法包括直方图均衡化、拉普拉斯增强和梯度增强等。
5. 选择合适的阈值:在图像预处理之后,我们需要选择一个合适的阈值进行分割。
选择阈值的方法有很多种,常见的有固定阈值法、自适应阈值法和Otsu阈值法等。
不同的方法适用于不同的图像。
6. 图像分割:根据选择的阈值,将图像的像素分成不同的区域。
像素值大于阈值的被分到一个区域,像素值小于阈值的被分到另一个区域。
除了上述基本步骤,还有一些进阶的技术可以用于改进阈值分割的效果,如自适应阈值、多阈值分割以及基于概率模型的阈值分割等。
这些方法可以根据图像特点和需求进行选择和调整,以获得更好的分割结果。
综上所述,利用图像处理技术实现图像的阈值分割是一个相对简单但却非常重要的任务。
通过合理的图像预处理、选择适当的阈值细分割算法,我们可以得到准确的图像分割结果,为后续的图像分析和处理提供有力的支持。
医疗影像处理中的图像分割算法使用方法与技巧

医疗影像处理中的图像分割算法使用方法与技巧医疗影像处理是一种应用广泛的技术,为临床诊断和治疗提供了重要支持。
在医疗影像中,图像分割是一个关键的步骤,它能够将影像中的不同区域或结构进行提取,为医生提供更准确的信息。
图像分割算法的使用方法和技巧对于提高分割效果具有重要意义。
本文将介绍医疗影像处理中常见的图像分割算法及其使用方法与技巧。
一、基于阈值的图像分割算法基于阈值的图像分割算法是最简单和最常用的方法。
它通过设定一个或多个阈值来将图像分割为不同的区域。
在医疗影像处理中,通过选择适当的阈值,我们可以将感兴趣的区域从背景中分离出来,例如分割出肿瘤或器官。
在使用基于阈值的算法进行图像分割时,以下几点技巧是需要注意的:1. 预处理:在进行图像分割之前,通常需要对图像进行一些预处理操作,例如去噪、增强对比度等。
这样可以提高分割的结果质量。
2. 自适应阈值:在某些情况下,图像中的亮度和对比度可能会发生变化。
为了应对这种情况,可以使用自适应阈值的算法,根据图像不同区域的统计信息来选择合适的阈值。
3. 多阈值分割:有时候,一个阈值无法对图像进行有效分割。
这时可以尝试使用多阈值分割算法,根据不同的阈值对图像进行多次分割,然后结合结果。
二、基于边缘的图像分割算法基于边缘的图像分割算法是利用图像中的边缘信息来分割图像的一种常见方法。
边缘是图像中灰度值变化较大的地方,通过检测图像中的边缘,可以将物体与背景分离出来。
以下是使用基于边缘的图像分割算法时的几个技巧:1. 边缘检测:为了得到图像的边缘信息,需要使用边缘检测算法,例如Canny算法、Sobel算法等。
在使用这些算法时,需要调整参数,以得到最佳的边缘检测结果。
2. 边缘连接:边缘检测算法有时会产生不连续的边缘线段。
为了得到完整的边缘,需要对边缘进行连接操作,将不连续的线段连接起来。
3. 边缘融合:在某些情况下,图像中的边缘可能会有重叠或交叉的情况。
为了解决这个问题,可以使用边缘融合算法,将重叠的边缘进行合并,提高分割的准确性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本科毕业设计(2011届)题目基于阈值的图像分割方法研究与实现摘要本毕业设计主要研究基于Hough变换的图像结构提取方法,通过MATLAB语言编程来实现两种典型的图像阈值分割算法(最大类间方差法和迭代法),并对这两种算法进行比较分析。
其主要工作步骤如下:首先介绍数字图像处理和图像分割的基本理论知识。
接着对几种图像分割方法进行了介绍。
然后了解图像阈值化原理,并在此基础上对两种典型的图像阈值分割算法(最大类间方差法和迭代法)的原理进行了介绍。
最后通过MATLAB语言编程实现这两种算法,分别得到这两种算法的分割性能,并对这两种算法的分割性能进行比较。
结果表明在大多数情况下,最大类间方差法比迭代法更稳定。
关键词:数字图像处理;阈值化;最大类间方差法;迭代法;直方图ABSTRACTThe main aim of this thesis is to analyze image segmentation method based on thresholding, then implement two typical algorithms (Otsu method and Iterative method) by MATLAB language programming, and compare the two algorithms. Its main work procedure is as follows:First the basic theories of digital image processing and image segmentation are introduced. Then several image segmentation algorithms are introduced. Based on knowing the theory of image thresholding, we introduce the theory of two typical algorithms (Otsu method and Iterative method). Finally through MATLAB language programming, we can get the segmentation performance of the two algorithms respectively, and compare the two algorithm’s segmentation performance. The result shows that Otsu method is more stable than Iterative method in most cases.Key words:digital image processing; thresholding; Otsu method; Iterative method;image histogram.目录1 引言 (1)2 数字图像处理基础 (2)2.1 数字图像处理的发展概况 (2)2.2 数字图像处理的目的与主要内容 (2)2.3 数字图像的表示法 (3)2.4 图像的灰度直方图 (4)3 图像分割技术及其方法 (5)3.1 图像分割的基本论述 (5)3.2 典型的图像分割方法 (6)3.3 结合特定理论的图像分割方法 (8)4 图像阈值化分割原理 (10)4.1 阈值化分割原理 (10)4.2 迭代法 (11)4.3 最大类间方差法 (12)4.4 图像阈值化技术的应用现状 (14)5 分割效果分析 (15)5.1 MATLAB的简介 (15)5.2 分割效果的评估标准 (16)5.3 分割效果分析 (16)6 结论 (24)致谢 (25)参考文献 (26)附录 (27)1 引言21世纪是科学技术迅猛发展的时代,图像作为现代信息社会中最基本的信息之一得到了广泛的应用。
数字图像处理技术是20世纪60年代发展起来的一门新兴学科,几乎在各个行业里都起到了重要作用,随着全球数字化和现代信息技术的不断发展,数字图像处理这门新兴学科也跟着得到了迅速的发展,其理论与方法进一步完善,使得数字图像处理在更多领域得到了广泛的应用,并展示出广阔的应用前景。
在数字图像处理中,图像分割是图像处理与计算机视觉领域低层次视觉中最为基础和重要的领域之一,它是对图像进行视觉分析和模式识别的基本前提。
目前图像分割技术已被广泛应用于很多的领域,如工业自动化,在线产品检验,生产过程控制,文档图像处理,遥感和生物医学图像分析,保安监视,以及军事,体育,农业工程等方面。
基于阈值选取方法的图像分割方法,因其计算简单,具有较高的运算效率、性能较稳定而成为图像分割中最基本和应用最广泛的分割技术,但是不同方法选取的阈值直接影响到图像分割的质量。
从20世纪70年代,图像阈值分割方法一直受到人们的关注和重视,到现在为止已经提出了众多基于阈值的分割算法,但是并没有通用的阈值分割理论,也没有一种图像阈值分割算法适用于所有的情况,每种图像分割算法都有其局限性。
其中,迭代法和最大类间方差法(大津法)作为两种典型的算法得到了广泛的应用。
本论文就这两种算法进行了研究与实现,通过MATLAB语言编程实现这两种算法,分别对几幅灰度图像进行分割,从而验证这两种算法的有效性,并对它们做对比分析。
2 数字图像处理基础2.1 数字图像处理的发展概况数字图像处理(Digital Image Processing)又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。
数字图像处理最早出现于20世纪50年代,当时的电子计算机已经发展到一定水平,人们开始利用计算机来处理图形和图像信息。
数字图像处理作为一门学科大约形成于20世纪60年代初期。
早期的图像处理的目的是改善图像的质量,它以人为对象,以改善人的视觉效果为目的。
图像处理中,输入的是质量低的图像,输出的是改善质量后的图像,常用的图像处理方法有图像增强、复原、编码、压缩等。
首次获得实际成功应用的是美国喷气推进实验室(JPL)。
数字图像处理取得的另一个巨大成就是在医学上获得的成果。
1972年英国EMI公司工程师Housfield发明了用于头颅诊断的X射线计算机断层摄影装置,也就是我们通常所说的CT(Computer Tomograph)。
CT的基本方法是根据人的头部截面的投影,经计算机处理来重建截面图像,称为图像重建。
1975年EMI公司又成功研制出全身用的CT装置,获得了人体各个部位鲜明清晰的断层图像。
1979年,这项无损伤诊断技术获得了诺贝尔奖,说明它对人类作出了划时代的贡献。
与此同时,图像处理技术在许多应用领域受到广泛重视并取得了重大的开拓性成就,属于这些领域的有航空航天、生物医学工程、工业检测、机器人视觉、公安司法、军事制导、文化艺术等,使图像处理成为一门引人注目、前景远大的新型学科。
随着图像处理技术的深入发展,从70年代中期开始,随着计算机技术和人工智能、思维科学研究的迅速发展,数字图像处理向更高、更深层次发展。
人们已开始研究如何用计算机系统解释图像,实现类似人类视觉系统理解外部世界,这被称为图像理解或计算机视觉。
很多国家,特别是发达国家投入更多的人力、物力到这项研究,取得了不少重要的研究成果。
其中代表性的成果是70年代末MIT的Marr提出的视觉计算理论,这个理论成为计算机视觉领域其后十多年的主导思想。
图像理解虽然在理论方法研究上已取得不小的进展,但它本身是一个比较难的研究领域,存在不少困难,因人类本身对自己的视觉过程还了解甚少,因此计算机视觉是一个有待人们进一步探索的新领域[1]。
2.2数字图像处理的目的与主要内容图像处理就是对图像信息进行加工处理,一般来说,对图像进行加工处理与分析主要目的有3个方面:提高图像的视感质量已达到赏心悦目的目的;提取图像中所包含的某些特征与特殊信息,以便于分计算机析;图像数据的变换、编码和压缩,以便于图像的存储和传输。
不图像处理要达到什么样的目的,都需要用计算机处理系统对图像数据进行处理,其中常见的图像处理技术有图像增强、复原、重建、编码压缩和分割等。
1 图像复原:当造成图像降质或退化的原因已知时,复原技术可以对图像进行校正。
图像复原最关键的是对每种退化都需要有一个合理的模型。
复原技术是基于模型和数据的图像恢复,其目的是消除退化的影响,从而产生一个等价于理想成像系统所获得的。
2 图像增强:图像增强是对图像质量在一定上进行改善,当造成图像退化的原因未知时,就可以用图像增强技术较为主观的改善图像的质量。
所以,图像增强技术是用于改善图像视感质量所采取的一种方法。
3 图像重建:图像重建与上述的图像复原、增强不同。
图像复原和增强的输入是图像,处理后输出的也是图像,而图像重建是指从数据到图像的处理,即输入的是某种数据,而经过处理后得到的结果是图像.4 图像编码压缩:由于数字图像所包含的信息量庞大,同时又有很多冗余信息,导致不能满足图像数据处理的需要,因此需要对图像进行编码以满足传输与存储的需要。
5 图像分割:图像分割就是将图像分成多块区域,然后将图像中有意义的特征部分提取出来,这是进一步进行图像识别、分析和理解的基础,虽然目前已研究出多种分割方法,但还没有一种普遍适用于各种图像的有效方法,因此它是目前图像处理中研究的热点之一。
2.3 数字图像的表示法一幅黑白图像可用二维函数f (x ,y )表示,其中x ,y 是平面的二维坐标,f (x ,y )表示点(x ,y )的亮度值(灰度值)。
如果是一幅彩色图像,各点值还应反应出色彩变化,即可用f (x ,y ,λ)表示,其中λ为波长。
假如是活动彩色图像,还应是时间t 的函数,即可表示为f (x ,y ,λ,t )。
对模拟图像来说,f (x ,y )显然是连续函数。
为了适应数字计算机的处理,必须对连续图像函数进行空间和幅值数字化。
空间(x ,y )的数字化称为图像采样,而幅值数字化被称为灰度级量化。
经过数字化的图像称为数字图像(或离散图像)。
灰度数字图像有两种常用的表示法:矩阵法和链码法。
在MATLAB 中数字图像是以矩阵的方式存储的。
令数字图像排列M×N 阵列,相应的矩阵表示为:()()()()()()()()()()⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------=1,11,10,11,11,10,11,01,00,0,N M f M f M f N f f f N f f f y x f (2-1) 图像阵列中每一个元素都是离散值,称为像素(pixel )。
在数字图像处理中,阵列M,N和灰度级G都是2的整数次幂。