基于阈值的灰度图像分割

合集下载

基于灰度迭代阈值的高分辨率影像分割研究

基于灰度迭代阈值的高分辨率影像分割研究

Ab s t r a c t As 3 k i n d o f i mp o r t a n t me t h o d i n r e mo t e s e n s i n g i ma g e i n t e r p r e t a t i o n a n d c l a s s i f i c a t i o n,
J u I L,2 0 1 3
文章编号 : 1 0 0 0 —2 3 7 5 ( 2 0 1 3 ) 0 2 —0 2 5 2— 0 6
基 于 灰 度迭 代 阈值 的高 分 辨 率影 像 分 割研 究
谢 凯 , 王新 生
( 1 . 湖北大学资源环境学院 , 湖北 武汉 4 3 0 0 6 2 ; 2 . 0 0 6 2 ) 摘要 图像分割技术 为遥感 图像解译 和分类 的一种重要方法 , 目前 主要 应用在中分 辨率影像 中, 由于高分辨 率影 像
XI E Ka i , W ANG Xi ns he n g
( 1 . S c h o o l o f Re s o u r c e s a n d E n v i r o n me n t a l S c i e n c e , Hu b e i Un i v e r s i t y , Wu h a n 4 3 0 0 6 2, Ch i n a ;
p a p e r ,we a p p l i e d t h e n o i s e s u p p r e s s i o n a n d i mp r o v e d t h r e s h o l d s t r a t e g y t o i mp r o v e i a g m e s e m e g n t a t i o n e f f e c t

基于阈值法的图像分割技术

基于阈值法的图像分割技术

基于阈值法的图像分割技术阴国富(1.西安电子科技大学陕西西安710071;2.渭南师范学院陕西渭南714000)在对图像的研究和应用中,人们往往仅对图像中的某些部分感兴趣,这些部分称为目标或前景(其他部分称为背景),他们一般对应图像中特定的、具有独特性质的区域。

为了辨识和分析目标,需要将他们分离提取出来,在此基础上才有可能对目标进一步利用。

图像分割就是指把图像分成格局特性的区域并提取出感兴趣目标的技术和过程。

这里特性可以是象素的灰度、颜色、纹理等,预先定义的目标可以对应单个区域,也可以对应多个区域。

现有的图像分割算法有:阈值分割、边缘检测和区域提取法。

本文着重研究基于阈值法的图像分割技术。

1 阈值法图像分割1.1 阈值法的基本原理阈值分割法是一种基于区域的图像分割技术,其基本原理是:通过设定不同的特征阈值,把图像象素点分为若干类。

常用的特征包括:直接来自原始图像的灰度或彩色特征;由原始灰度或彩色值变换得到的特征。

设原始图像为f(x,y),按照一定的准则f(x,y)中找到特征值T,将图像分割为两个部分,分割后的图像为:若取:b0=0(黑),b1=1(白),即为我们通常所说的图像二值化。

1.2 阈值法图像分割方法分类全局阈值法指利用全局信息对整幅图像求出最优分割阈值,可以是单阈值,也可以是多阈值;局部阈值法是把原始的整幅图像分为几个小的子图像,再对每个子图像应用全局阈值法分别求出最优分割阈值。

其中全局阈值法又可分为基于点的阈值法和基于区域的阈值法。

阈值分割法的结果很大程度上依赖于阈值的选择,因此该方法的关键是如何选择合适的阈值。

由于局部阈值法中仍要用到全局阈值法,因此本文主要对全局阈值法中基于点的阈值法和基于区域的阈值法分别进行了研究。

根据阈值法的原理可以将阈值选取技术分为3大类:(1)基于点的全局阈值方法基于点的全局阈值算法与其他几大类方法相比,算法时间复杂度较低,易于实现,适合应用于在线实时图像处理系统。

图像分割处理实验报告

图像分割处理实验报告

图像分割处理实验报告1. 引言图像分割是计算机视觉中的重要任务之一,其目标是将图像划分成具有相似特征的子区域。

图像分割在很多应用领域中都有着广泛的应用,比如医学影像分析、目标检测和图像编辑等。

本实验旨在探索不同的图像分割算法,并比较它们在不同场景下的效果和性能。

2. 实验方法2.1 实验数据本实验选取了一组包含不同场景的图像作为实验数据集,包括自然景观、人物肖像和城市街景等。

每张图像的分辨率为500x500像素。

2.2 实验算法本实验使用了两种经典的图像分割算法进行比较,分别是基于阈值的分割和基于边缘的分割。

2.2.1 基于阈值的分割基于阈值的分割算法是一种简单而直观的方法,其原理是根据像素值的亮度信息将图像分割成不同的区域。

在本实验中,我们将图像的灰度值与一个事先设定的阈值进行比较,如果大于阈值则设为白色,否则设为黑色,从而得到分割后的图像。

2.2.2 基于边缘的分割基于边缘的分割算法利用图像中的边缘信息进行分割,其原理是检测图像中的边缘并将其作为分割的依据。

在本实验中,我们使用了Canny边缘检测算法来提取图像中的边缘信息,然后根据边缘的位置进行分割。

2.3 实验流程本实验的流程如下:1. 加载图像数据集;2. 对每张图像分别应用基于阈值的分割算法和基于边缘的分割算法;3. 计算分割结果和原始图像之间的相似度,使用结构相似性指标(SSIM)进行评估;4. 分析并比较两种算法在不同场景下的分割效果和性能。

3. 实验结果3.1 分割效果实验结果表明,基于阈值的分割算法在处理简单场景的图像时效果较好,可以比较准确地将图像分割为目标区域和背景。

然而,当图像的复杂度增加时,基于阈值的分割算法的效果明显下降,往往会产生较多的误分割。

相比之下,基于边缘的分割算法在处理复杂场景的图像时表现良好。

通过提取图像的边缘信息,该算法能够较准确地分割出图像中的目标区域,相比于基于阈值的分割算法,其产生的误分割较少。

3.2 性能评估通过计算分割结果和原始图像之间的SSIM指标,我们可以得到两种算法在不同场景下的性能评估。

图像分割 实验报告

图像分割 实验报告

图像分割实验报告图像分割实验报告一、引言图像分割是计算机视觉领域中的一个重要研究方向,它旨在将一幅图像分割成具有语义意义的不同区域。

图像分割在许多应用中发挥着关键作用,如目标检测、场景理解和医学图像处理等。

本实验旨在探索不同的图像分割方法,并对其进行比较和评估。

二、实验方法本实验选择了两种常用的图像分割方法:基于阈值的分割和基于边缘的分割。

首先,我们使用Python编程语言和OpenCV库加载图像,并对图像进行预处理,如灰度化和平滑处理。

接下来,我们将详细介绍这两种分割方法的实现步骤。

1. 基于阈值的分割基于阈值的分割是一种简单而常用的分割方法。

它通过将图像像素的灰度值与预先设定的阈值进行比较,将像素分为前景和背景两类。

具体步骤如下:(1)将彩色图像转换为灰度图像。

(2)选择一个适当的阈值,将图像中的像素分为两类。

(3)根据阈值将图像分割,并得到分割结果。

2. 基于边缘的分割基于边缘的分割方法是通过检测图像中的边缘来实现分割的。

边缘是图像中灰度变化剧烈的区域,通常表示物体的边界。

具体步骤如下:(1)将彩色图像转换为灰度图像。

(2)使用边缘检测算法(如Canny算法)检测图像中的边缘。

(3)根据边缘信息将图像分割,并得到分割结果。

三、实验结果与讨论我们选择了一张包含多个物体的彩色图像进行实验。

首先,我们使用基于阈值的分割方法对图像进行分割,选择了适当的阈值进行实验。

实验结果显示,基于阈值的分割方法能够将图像中的物体与背景分离,并得到较好的分割效果。

接下来,我们使用基于边缘的分割方法对同一张图像进行分割。

实验结果显示,基于边缘的分割方法能够准确地检测出图像中的边缘,并将图像分割成多个具有边界的区域。

与基于阈值的分割方法相比,基于边缘的分割方法能够更好地捕捉到物体的形状和边界信息。

通过对比两种分割方法的实验结果,我们发现基于边缘的分割方法相对于基于阈值的分割方法具有更好的效果。

基于边缘的分割方法能够提供更准确的物体边界信息,但也更加复杂和耗时。

图像分割中的阈值选择方法与技巧

图像分割中的阈值选择方法与技巧

图像分割中的阈值选择方法与技巧图像分割是一种将图像划分为不同区域或对象的图像处理技术。

它在计算机视觉、电子图像处理、医学图像分析等领域具有广泛的应用。

图像分割的一个关键步骤是阈值选择,它决定了图像中不同区域的分割边界。

本文将介绍图像分割中的阈值选择方法与技巧。

阈值选择是图像分割中最常用的方法之一。

它基于像素的灰度值,通过设定一个阈值来将像素划分为两个类别:一个类别代表目标物体,另一个类别代表背景或其他物体。

阈值选择方法通常根据图像的特征和应用需求来选择最合适的阈值。

最简单的阈值选择方法是全局阈值法。

它假设整个图像中只存在两个灰度级别:目标和背景。

这种方法适用于图像中目标与背景之间有明显的灰度差异的情况。

全局阈值法的步骤是通过比较图像中所有像素的灰度值与设定的阈值,将灰度值小于阈值的像素标记为目标,大于阈值的像素标记为背景。

然而,全局阈值法并不适用于具有复杂物体和背景的图像。

为了克服这个问题,文献中提出了许多自适应阈值选择方法。

其中一个常用的方法是基于大津法的自适应方法。

大津法通过最小化目标和背景之间的类内方差,最大化类间方差来选择最佳的阈值。

这种自适应方法能够处理图像中存在多个灰度级别的情况,更适用于复杂的图像场景。

除了自适应阈值选择方法,还有其他一些技巧可以改善图像分割的效果。

一种常用的技巧是使用图像增强方法来提高图像的对比度。

图像增强方法可以通过直方图均衡化、滤波等技术来增强图像的特征,使得阈值选择更加准确。

考虑到图像中可能存在噪声的情况,可以使用平滑滤波器对图像进行去噪处理,以减少噪声对阈值选择的影响。

对于多通道图像,可以采用颜色或纹理信息来辅助阈值选择。

例如,当分割彩色图像时,可以使用颜色直方图或颜色特征来指导阈值选择。

而对于纹理图像,可以使用纹理特征来选择合适的阈值。

在图像分割的实际应用中,阈值选择往往需要考虑到图像的特性和应用需求。

因此,选择合适的阈值选择方法和技巧对于实现准确的图像分割至关重要。

otsu算法 阈值分割

otsu算法 阈值分割

otsu算法阈值分割OTSU算法是一种阈值分割算法,在图像处理中起着重要的作用。

本文将详细介绍OTSU算法的原理、步骤和应用。

一、OTSU算法原理OTSU算法基于图像的灰度直方图,通过寻找图像直方图的双峰特征,选择一个合适的阈值对图像进行分割。

其原理可以概括为:将图像分为背景和前景两部分,使得背景和前景两类的类内方差之和最小化。

二、OTSU算法步骤1. 计算灰度直方图:首先,需要计算图像的灰度直方图,统计每一灰度级的像素点个数。

2. 计算总体平均灰度值:使用公式计算图像的总体平均灰度值,通过对每个灰度级的像素点数乘以其对应的灰度值,并将结果相加,最后再除以图像像素总数。

3. 遍历所有可能的阈值:从0到灰度级的最大值,遍历所有可能的阈值,计算对应的类内方差。

4. 计算类内方差:对每个阈值,将图像分为两部分,计算背景和前景的类内方差。

类内方差定义为背景和前景两部分像素点的平均方差之和。

5. 找到最小类内方差对应的阈值:经过上一步骤的遍历,找到使类内方差最小的阈值,即为OTSU算法计算得到的最佳阈值。

三、OTSU算法应用1. 图像二值化:OTSU算法常被用于图像二值化处理,将图像转为黑白二值图像。

通过OTSU算法计算得到的最佳阈值,将图像中的像素点根据阈值分为背景和前景两部分。

2. 图像分割:OTSU算法也可以用于图像分割。

通过将图像根据OTSU算法计算得到的阈值进行分割,可以将图像中感兴趣的物体从背景中分离出来,便于后续处理和分析。

3. 文字识别:OTSU算法在文字识别中具有广泛应用。

通过OTSU算法得到的最佳阈值,可以对图像中的文字区域进行有效分割,提高文字识别的准确性和鲁棒性。

4. 医学图像处理:OTSU算法在医学图像处理中的应用也比较广泛。

通过OTSU算法可以对医学图像进行分割,提取出感兴趣的区域,辅助医生做出准确的诊断。

四、总结OTSU算法是一种基于图像灰度直方图的阈值分割算法,通过寻找使类内方差最小的阈值,将图像分割成背景和前景。

图像处理中的图像分割算法使用方法

图像处理中的图像分割算法使用方法

图像处理中的图像分割算法使用方法图像分割是图像处理中的重要任务之一,它的目的是将图像划分为多个具有独立语义信息的区域。

图像分割在许多应用领域中都有广泛的应用,例如医学图像分析、计算机视觉、图像识别等。

本文将介绍几种常见的图像分割算法及其使用方法。

一、阈值分割算法阈值分割算法是图像分割中最简单且常用的方法之一。

它基于图像中像素的灰度值,将图像分成多个区域。

该算法的基本思想是,选择一个合适的阈值将图像中低于该阈值的像素设为一个区域,高于该阈值的像素设为另一个区域。

常用的阈值选择方法包括固定阈值选择、动态阈值选择等。

使用方法:1. 预处理:对图像进行灰度化处理,将彩色图像转化为灰度图像。

2. 阈值选择:选择一个合适的阈值将图像分割为两个区域。

可根据图像的直方图进行阈值选择,或者使用试探法确定一个适合的阈值。

3. 区域标记:将低于阈值的像素标记为一个区域,高于阈值的像素标记为另一个区域。

4. 后处理:对分割结果进行后处理,如去除噪声、填补空洞等。

二、基于边缘的分割算法基于边缘的分割算法利用图像中边缘的信息来进行图像分割。

该算法的基本思想是,根据图像中的边缘信息将图像分成多个区域。

常用的基于边缘的分割方法有Canny边缘检测、Sobel边缘检测等。

使用方法:1. 预处理:对图像进行灰度化处理。

2. 边缘检测:利用Canny或Sobel等边缘检测算法提取图像中的边缘信息。

3. 边缘连接:根据提取到的边缘信息进行边缘连接,形成连续的边缘线。

4. 区域生成:根据边缘线来生成图像分割的区域。

5. 后处理:对分割结果进行后处理,如去除噪声、填补空洞等。

三、基于区域的分割算法基于区域的分割算法是将图像划分为多个具有独立语义信息的区域,其基本思想是通过分析像素之间的相似性将相邻像素组合成一个区域。

常用的基于区域的分割方法有均值迭代、区域增长等。

使用方法:1. 预处理:对图像进行灰度化处理。

2. 区域初始化:将图像划分为不同的区域,可按照固定大小进行划分,或根据图像的特征进行划分。

基于阈值的分割原理

基于阈值的分割原理

基于阈值的分割原理基于阈值的分割原理是数字图像处理中常用的一种分割方法,其基本思想是将图像中的像素根据其灰度值与预设的阈值进行比较,将灰度值高于阈值的像素归为一类,低于阈值的像素归为另一类。

该方法简单易懂,计算量小,因此被广泛应用于图像处理领域。

一、阈值分割基本原理1.1 阈值阈值是指在进行二值化处理时所设定的一个灰度级别,用来区分图像中不同灰度级别的像素点。

通常情况下,我们将图像中所有灰度大于该阈值的点视为目标物体区域内部点,将灰度小于该阈值的点视为背景区域内部点。

1.2 阈值分割过程在进行阈值分割时,我们需要先确定一个合适的初始阈值。

通常情况下,我们可以选择图像中所有像素点灰度平均数作为初始阈值。

然后将所有灰度大于该初始阈值的点视为目标物体区域内部点,将小于该初始阈值的点视为背景区域内部点,并计算出两个区域内像素灰度值的平均数。

将两个平均数再求平均,得到新的阈值,重复上述过程直到新的阈值与上一次计算的阈值相等或者差异小于一个预设的容差范围。

1.3 阈值分割应用阈值分割可以应用于很多领域中,如图像增强、目标检测、字符识别等。

在图像增强中,我们可以通过调整阈值来实现图像亮度和对比度的调整;在目标检测中,我们可以通过设置不同的阈值来实现对不同大小、形状、颜色等特征的物体进行区分;在字符识别中,我们可以通过设置合适的阈值来实现对字符轮廓进行提取和识别。

二、基于全局阈值分割原理2.1 基本思想基于全局阈值分割原理是指在整幅图像中确定一个全局唯一的阈值进行分割。

该方法简单易行且计算量小,适用于灰度变化明显且背景比较简单的图像。

2.2 全局阈值分割方法(1)最大类间方差法:该方法是求使两类间方差最大化时所对应的灰度值作为阈值。

具体而言,我们可以先将图像中所有像素点按照灰度值从小到大排序,然后分别计算每个灰度值下的前景和背景像素点数量、均值和方差。

最后计算出每个灰度下两类之间的类间方差,并选取使类间方差最大的灰度值作为阈值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对以CPT算法为主的灰度阈值化方法的研究目录:第一章:绪论第二章:图像的预处理第三章:图像分割概述第四章:灰度阈值化图像分割方法第五章:CPT算法及其对它的改进第六章:编程环境及用PhotoStar对改进的CPT算法和其他算法的实现第七章:实验结果与分析第一章:绪论1.1数字图像处理技术的发展人类传递信息的主要媒介是语音和图像。

据统计,在人类接受的信息中,听觉信息占20%,视觉占60%,其他如味觉、触觉、嗅觉总的加起来不过占20%。

所以,作为传递信息的重要媒体和手段——图像信息是十分重要的。

【5】对于图像信息的处理,即图像处理当然对信息的传递产生很大影响。

数字图像处理技术起源于20世纪20年代,当时通过海底电缆从伦敦到纽约传输了一幅图片,它采用了数字压缩技术。

1964年美国的喷气处理实验室处理了太空船“徘徊者七号”发回的月球照片,这标志着第三代计算机问世后数字图像处理概念得到应用。

其后,数字图像处理技术发展迅速,目前已成为工程学、计算机科学、生物学、医学等领域各学科之间学习和研究的对象。

经过人们几十年的努力,数字图像处理这一学科已逐渐成熟起来。

人们总是试图把各个学科应用到数字图像处理中去,并且每产生一种新方法,人们也会尝试它在数字图像处理中的应用。

同时,数字图像处理也在很多学科中发挥着它越来越大的作用。

1.2图像分割概述和本论文的主要工作图像分割的目的是把图像空间分成一些有意义的区域,是数字图像处理中的重要问题,是计算机视觉领域低层次视觉问题中的重要问题,同时它也是一个经典的难题。

几十年来,很多图像分割的方法被人们提出来,但至今它尚无一个统一的理论。

图像分割的方法很多,有早先的阈值化方法、最新的基于形态学方法和基于神经网络的方法。

阈值化方法是一种古老的方法,但确是一种十分简单而有效的方法,近几十年人们对阈值化方法不断完善和探索,取得了显著的成就,使得阈值化方法在实际应用中占有很重要的地位。

本文将主要对图像分割的阈值化方法进行探讨。

在对阈值化方法的研究过程中,本人首先将集中精力对效果比较好的阈值化方法进行探讨,并对其存在的不足加以改进,从而作出性能优良的计算机算法;由于目前很多方法各有其特点,所以将对具有不同特点的图像用不同的方法处理进行研究。

在论文正文部分还将其应用到实践中去,并对其加以评价。

第二章:图像的预处理2.1图像预处理的概述由于切片染色和输入光照条件及采集过程电信号的影响,所采集的医学图像会存在些噪声和畸变。

去掉这样的噪声和畸变,把图像具有的信息变得医生容易观看,或把图像变换成某种标准的形式,使特征提取和识别易于进行,这样的处理在图像分析和识别中使非常必要的,对于医学图像的分割来说,它直接影响分割的质量,甚至直接决定了是否能正确得到分割结果,这些前期处理通常叫做预处理,包括噪声的去处、对比度的增强、几何畸形的校正等。

2.2图像预处理的方法本论文研究的预处理主要是针对噪声而言,所以主要介绍两种去噪的预处理方法。

2.2.1多图像平均法多图像平均法即把一系列图像相加取平均的方法。

是医学图像处理中常用的方法,像由于瑞利散射引起的噪声用这种方法会得到很好的效果。

如果一幅图像含有噪声,可以假设这些噪声相对于每一坐标点(x,y)是不相关的,且数学期望为零。

设g(x,y) 是有噪声的图像,它是有噪声图像e(x,y)和原始图像f(x,y)叠加而成的。

即),(),(),(y x e y x f y x g +=对M 次采集的噪声图像{g i (x,y)}(i=1,2…,M)取平均。

即:),(1),(1y x gMy x g Mi i∑==可以证明它们的期望值为:),()},({y x f y x g E =如果考虑新图像和噪声图像各自均方差的关系,则有:),(),(1y x e y x g Mσσ⨯=可见随着取平均的图像的数目M 增加,噪声在每个像素位置(x,y)的影响逐步减小。

2.2.2中值滤波中值滤波是一种非线性、非参数的图像预处理技术,中值滤波器是一个含有奇数个像素的滑动窗口,窗口正中的像素的灰度由窗口内各像素的灰度值中值代替。

中值滤波很好的解决了消除脉冲干扰和保持图像边缘的问题。

如果最大值是单调增加数列中的一个噪声尖峰,则中值滤波带来有效的改善;但是,如果最大值是一个信号脉冲,则结果会使图像中的一些细线、尖锐边角缺失。

本文将通过在计算机上实现其算法对其效果进行观察、分析。

第三章:图像分割概述 3.1什么是图像分割图像分割就是将图像中具有特殊含义的不同区域区分开来,这些区域互不相交,每一个区域满足一致性。

用数学形式可以表达为:设图像为g(x,y),其中0≤x ≤Max(x),0≤y ≤Max(y)。

将图像进行分割就是将图像分割为满足以下条件的子区域g 1,g 2,g 3……。

1)),(),(1y x g y x g Nk k == ,即所有子区域组成了整幅图像;2)g k 是连通的区域;3)g k (x,y)∩g i (x,y)=Φ(k,j=1,2,3…N;k ≠j ),即任意两个子区域不存在公共元素;4)区域g k 满足一定的均匀一致性条件。

均匀一致性(或相似性)一般指同一区域内的像素点之间灰度值差异较小或灰度的变化缓慢。

3.2图像分割的方法随着图像分割在数字图像处理中的应用越来越多,不可或缺的作用越来越明显,图像分割的方法以飞快的速度发展。

经典的方法不断被改进,新方法不断出现。

下面介绍目前常用的图像分割方法。

3.2.1基于区域的分割方法:图像分割通常会用到不同对象间特性的不连续性和同一对象内部的特性相似性。

基于区域的算法侧重于利用区域内的特性相似性。

主要的基于区域的方法有: A ):灰度阈值化方法这也本文研究的重点。

将在下一章详细叙述。

B ):区域生长和分裂合并它们是两种典型的串行区域分割方法,其特点是将分割过程分解为顺序的多个步骤,其中后续的步骤要根据前面的步骤的结果进行判断而确定。

区域生长的基本思想是将具有相似性质的像素集合起来构成区域,该方法需要先选取一个种子点,然后依次将种子像素周围的相似像素合并到种子像素所在的区域中。

区域生长也很少单独使用,往往是与其它分割方法一起使用,特别适用于分割小的结构如肿瘤和伤疤。

在区域合并方法中,输入图像往往先被分为多个相似的区域,然后类似的相邻区域根据某种判断准则迭代地进行合并。

在区域分裂技术中,整个图像先被堪称一个区域,然后区域不断被分裂为四个矩形区域直到每个区域内部都是相似的。

其它常用于医学图像的基于区域的分割方法还有:分类器和聚类、基于随机场的方法、标记法等等。

3.2.2边缘检测法:基于边缘的分割方法可以说是人们最早研究的方法,基于在区域边缘上的像素灰度值的变化往往比较剧烈,它试图通过检测不同区域间的边缘来解决图像分割问题。

A)并行微分算子并行微分算子法对图像中灰度的变化进行检测,通过一阶导数极值点或二阶导数过零点来检测边缘,通常用的一阶导数算子有梯度算子、Prewitt 算子和Sobel 算子;二阶导数算子有Laplacian 算子,还有Kirsch 算子和Walls 算子等非线性算子。

梯度算子不仅对边缘信息敏感,而且对图像噪声也很敏感。

为了 减少噪声对图像的影像,通常在求导之前先对图像进行滤波。

B)基于曲面拟合和边界曲线拟合的方法曲面拟合方法的基本思想是将灰度看成高度,用一个曲面来拟合一个小窗口内的数据,然后根据该曲面来决定边缘点。

基于边界曲线拟合的方法用平面曲线来表示不同区域之间的图像边界线,试图根据图像梯度等信息找出能正确表示边界的曲线从而得到图像分割的目的。

C)基于形变模型的方法基于形变模型的方法综合利用了区域与边界信息,结合了几何学、物理学和近似理论。

它们通过使用从图像数据获得的约束信息和目标的位置、大小和形状等先验知识,可有效地对目标进行分割、匹配和跟踪分析。

从物理学角度,可将形变模型看成是一个在施加外力和内部约束条件下自然反应的弹性物体。

3.2.3基于模糊集理论的方法图像分割问题是典型的结构不良问题,而模糊集理论具有描述不良问题的能力,所以模糊理论被引入到图像处理和分析领域,其中包括用模糊集理论来解决分割问题。

基于模糊理论的图像分割方法包括模糊阈值分割方法、模糊聚类分割方法和模糊连接度分割方法等。

模糊阈值技术利用不同的s 型隶属函数来定义模糊目标,通过优化过程最后选择一个具有最小不确定性的s 函数,用该函数表示目标以及属于该目标像素之间的关系,这样得到的s 型函数的交叉点为阈值分割需要的阈值,这种方法的困难在于隶属度函数的选择。

模糊C 均值聚类(FCM, Fuzzy C-Means)方法通过优化表示图像像素点和C 个类中心之间的相似性的目标函数来获得局部极大值,从而得到最优聚类。

这种方法的缺点是计算量大。

FCM 方法常被用于医学图像的分割。

3.2.4图像分割中的其它方法除了上述几大类分割方法,图像分割领域中的方法和文献还有很多,如图谱引导法、基于数学形态学方法、基于神经网络的图象分割方法、以及将尺度空间理论运用于该领域的方法等。

特别是基于形态学的图象分割和基于神经网络的图象分割分别由于其符合人体视觉和具有“智能分析”的特点,近几年发展特别迅速。

第四章:灰度阈值化图像分割方法 4.1 什么是灰度阈值化图像分割灰度阈值化方法是确定一个或几个灰度门限来区分物体和背景,用像素的灰度值同门限值进行比较来划分像素到背景区或物体区。

这种分割方法对于物体与背景之间存在明显差异的景物十分有效,但近些年随着对阈值化方法的不断探索,很多新方法对物体与背景之间差异不很明显的景物的分割效果也是相当不错的。

实际上,在任何实际应用的图像处理系统中,最终都要用到阈值化技术。

设给定的灰度图像为f(x,y)∈[t 1,t 2],用一定的方法得到一个或多个阈值或子集t ⊂[t 1,t 2]。

现以子集 t 为例说明图像阈值化分割,因为利用一个或多个阈值的原理跟它是一样的。

根据个像素是否属于t 将其进行分类,即: =),(y x g {),(,),(,t y x f a ty x f b xy xy ∈∉ (1)其中,a xy ,b xy 分别为指定的灰度值或原灰度值。

如果取a xy =1,b xy =0,则分割后的图像为二值图像。

目标与背景具有最大的对比度。

如果取a xy =f(x,y),bxy=0,则分割后的图像背景为0,目标保留原灰度,属于背景干净的目标图像。

4.2 阈值化方法的分类阈值化方法的难点是对阈值的选取,所以对阈值化方法的研究主要集中在对选取阈值的方法的探索。

但在此之前我们有必要了解一下几种原则不同的阈值化方法。

4.2.1直接阈值法对于区域内部灰度基本一致,而区域间的灰度存在较大差异的图像,如染色体图像、手写图像等,可以直接给定阈值进行分割。

相关文档
最新文档