专题二 等腰三角形的多解问题与角度计算技巧
初中数学专题02等腰三角形的存在性问题(原卷版)

专题二等腰三角形的存在性问题【考题研究】近几年各地的中考数学试题中,探索等腰三角形的存在性问题频频出现,这类试题的知识覆盖面较广,综合性较强,题意构思精巧,要求学生要有较高的分析问题的能力和解决问题的能力,这类问题符合课标对学生能力提高的要求。
【解题攻略】在讨论等腰三角形的存在性问题时,一般都要先分类.如果△ABC是等腰三角形,那么存在①AB=AC,②BA=BC,③CA=CB三种情况.解等腰三角形的存在性问题,有几何法和代数法,把几何法和代数法相结合,可以使得解题又好又快.几何法一般分三步:分类、画图、计算.哪些题目适合用几何法呢?如果△ABC的∠A(的余弦值)是确定的,夹∠A的两边AB和AC可以用含x的式子表示出来,那么就用几何法.①如图1,如果AB=AC,直接列方程;②如图2,如果BA=BC,那么;③如图3,如果CA=CB,那么.代数法一般也分三步:罗列三边长,分类列方程,解方程并检验.如果三角形的三个角都是不确定的,而三个顶点的坐标可以用含x的式子表示出来,那么根据两点间的距离公式,三边长(的平方)就可以罗列出来.【解题类型及其思路】解题类型:动态类型:1.一动点类型问题;2.双动点或多动点类型问题背景类型:1.几何图形背景;2.平面直角坐标系和几何图形背景解题思路:几何法一般分三步:分类、画图、计算;代数法一般也分三步:罗列三边长,分类列方程,解方程并检验.如果△ABC是等腰三角形,那么存在①AB=AC,②BA=BC,③CA=CB三种情况.已知腰长画等腰三角形用圆规画圆,已知底边画等腰三角形用刻度尺画垂直平分线.解等腰三角形的存在性问题,有几何法和代数法,把几何法和代数法相结合,可以使得解题又好又快.【典例指引】类型一【二次函数综合题中根据条件判定三角形的形状】典例指引1.抛物线2y x bx c =++与x 轴交于点A ,点B (1,0),与y 轴交于点C (0,﹣3),点M 是其顶点. (1)求抛物线解析式;(2)第一象限抛物线上有一点D ,满足∠DAB =45°,求点D 的坐标;(3)直线x t = (﹣3<t <﹣1)与x 轴相交于点H .与线段AC ,AM 和抛物线分别相交于点E ,F ,P .证明线段HE ,EF ,FP 总能组成等腰三角形.【举一反三】(2020·江西初三期中)如图①,已知抛物线y =ax 2+bx +3(a ≠0)与x 轴交于点A (1,0)和点B (-3,0),与y 轴交于点C .(1)求抛物线的解析式;(2)设抛物线的对称轴与x 轴交于点M ,问在对称轴上是否存在点P ,使△CMP 为等腰三角形?若存在,请直接写出所有符合条件的点P 的坐标;若不存在,请说明理由;(3)如图②,若点E 为第二象限抛物线上一动点,连接BE 、CE ,求四边形BOCE 面积的最大值,并求此时E 点的坐标.类型二【利用二次函数的性质与等腰三角形的性质确定点的坐标】典例指引2.(2019·山东初三期末)如图1,已知抛物线2()30y ax bx a =++≠与x 轴交于点(1,0)A 和点(3,0)B -,与y 轴交于点C .(l )求抛物线的表达式;(2)如图l ,若点E 为第二象限抛物线上一动点,连接,BE CE ,求四边形BOCE 面积的最大值,并求此时E 点的坐标;(3)如图2,在x 轴上是否存在一点D 使得ACD ∆为等腰三角形?若存在,请求出所有符合条件的点D 的坐标;若不存在,请说明理由.【举一反三】(2019·广东省中山市中山纪念中学三鑫双语学校初三期中)如图,已知抛物线y =ax 2+bx +c 的图象与x 轴交于A (2,0),B (﹣8,0)两点,与y 轴交于点C (0,﹣8).(1)求抛物线的解析式;(2)点F是直线BC下方抛物线上的一点,当△BCF的面积最大时,求出点F的坐标;(3)在(2)的条件下,是否存在这样的点Q(0,m),使得△BFQ为等腰三角形?如果有,请直接写出点Q的坐标;如果没有,请说明理由.类型三【确定满足等腰三角形的动点的运动时间】典例指引3.(2018济南中考)如图1,抛物线平移后过点A(8,,0)和原点,顶点为B,对称轴与轴相交于点C,与原抛物线相交于点D.(1)求平移后抛物线的解析式并直接写出阴影部分的面积;(2)如图2,直线AB与轴相交于点P,点M为线段OA上一动点,为直角,边MN与AP相交于点N,设,试探求:①为何值时为等腰三角形;②为何值时线段PN的长度最小,最小长度是多少.【举一反三】如图所示,抛物线y=ax2+bx+c(a≠0)经过A(﹣1,0)、B(3,0)、C(0,3)三点.点D从C出发,沿线段CO以1个单位/秒的速度向终点O运动,过点D作OC的垂线交BC于点E,作EF∥OC,交抛物线于点F.(1)求此抛物线的解析式;(2)小明在探究点D运动时发现,①当点D与点C重合时,EF长度可看作O;②当点D与点O重合时,EF长度也可以看作O,于是他猜想:设点D运动到OC中点位置时,当线段EF最长,你认为他猜想是否正确,为什么?(3)连接CF、DF,请直接写出△CDF为等腰三角形时所有t的值.【新题训练】1.(2020·江西初三)如图,在平面直角坐标系中,已知点A(﹣2,﹣4),直线x=﹣2与x轴相交于点B,连接OA,抛物线y=﹣x2从点O沿OA方向平移,与直线x=﹣2交于点P,顶点M到点A时停止移动.(1)线段OA 所在直线的函数解析式是 ;(2)设平移后抛物线的顶点M 的横坐标为m ,问:当m 为何值时,线段P A 最长?并求出此时P A 的长. (3)若平移后抛物线交y 轴于点Q ,是否存在点Q 使得△OMQ 为等腰三角形?若存在,请求出点Q 的坐标;若不存在,请说明理由.2.(2018·山东中考真题)如图,在平面直角坐标系中,二次函数2y ax bx c =++交x 轴于点()4,0A -、()2,0B ,交y 轴于点()0,6C ,在y 轴上有一点()0,2E -,连接AE .(1)求二次函数的表达式;(2)若点D 为抛物线在x 轴负半轴上方的一个动点,求ADE ∆面积的最大值;(3)抛物线对称轴上是否存在点P ,使AEP ∆为等腰三角形,若存在,请直接写出所有P 点的坐标,若不存在请说明理由.3.(2016·广西中考真题)在平面直角坐标系中,抛物线223y x x =--+与x 轴交于A ,B 两点(A 在B 的左侧),与y 轴交于点C ,顶点为D . (1)请直接写出点A ,C ,D 的坐标;(2)如图(1),在x 轴上找一点E ,使得△CDE 的周长最小,求点E 的坐标;(3)如图(2),F 为直线AC 上的动点,在抛物线上是否存在点P ,使得△AFP 为等腰直角三角形?若存在,求出点P的坐标,若不存在,请说明理由.4.(2019·广东广州市第二中学初三)如图(1),在平面直角坐标系中,矩形ABCO,B点坐标为(4,3),抛物线y=12-x2+bx+c经过矩形ABCO的顶点B、C,D为BC的中点,直线AD与y轴交于E点,与抛物线y=12-x2+bx+c交于第四象限的F点.(1)求该抛物线解析式与F点坐标;(2)如图,动点P从点C出发,沿线段CB以每秒1个单位长度的速度向终点B运动;同时,动点M从点A出发,沿线段AE 13个单位长度的速度向终点E运动.过点P作PH⊥OA,垂足为H,连接MP,MH.设点P的运动时间为t秒.①问EP+PH+HF是否有最小值,如果有,求出t的值;如果没有,请说明理由.②若△PMH是等腰三角形,求出此时t的值.5.(2019·湖南中考模拟)如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B与y 轴交于点C(0,3),抛物线的对称轴与x轴交于点D.(1)求二次函数的表达式;(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标;(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.6.(2018·山东中考模拟)如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E时线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.7.(2019·山东中考模拟)已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C (﹣2,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P运动到什么位置时,△P AB的面积有最大值?(3)过点P作x轴的垂线,交线段AB于点D,再过点P做PE∥x轴交抛物线于点E,连结DE,请问是否存在点P 使△PDE 为等腰直角三角形?若存在,求出点P 的坐标;若不存在,说明理由.8.(2018·广东中考模拟)如图,在平面直角坐标系xOy 中,二次函数24y ax bx =+-(0a ≠)的图象与x 轴交于A (﹣2,0)、B (8,0)两点,与y 轴交于点B ,其对称轴与x 轴交于点D .(1)求该二次函数的解析式;(2)如图1,连结BC ,在线段BC 上是否存在点E ,使得△CDE 为等腰三角形?若存在,求出所有符合条件的点E 的坐标;若不存在,请说明理由;(3)如图2,若点P (m ,n )是该二次函数图象上的一个动点(其中m >0,n <0),连结PB ,PD ,BD ,求△BDP 面积的最大值及此时点P 的坐标.9.(2019·四川中考模拟)如图,已知二次函数y =﹣x 2+bx +c (c >0)的图象与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,且OB =OC =3,顶点为M .(1)求二次函数的解析式;(2)点P 为线段BM 上的一个动点,过点P 作x 轴的垂线PQ ,垂足为Q ,若OQ =m ,四边形ACPQ 的面积为S ,求S 关于m 的函数解析式,并写出m 的取值范围;(3)探索:线段BM 上是否存在点N ,使△NMC 为等腰三角形?如果存在,求出点N 的坐标;如果不存在,请说明理由.10.(2019·甘肃中考模拟)如图,已知二次函数y =ax 2+bx +c 的图象与x 轴相交于A (﹣1,0),B (3,0)两点,与y 轴相交于点C (0,﹣3). (1)求这个二次函数的表达式;(2)若P 是第四象限内这个二次函数的图象上任意一点,PH ⊥x 轴于点H ,与BC 交于点M ,连接PC . ①求线段PM 的最大值;②当△PCM 是以PM 为一腰的等腰三角形时,求点P 的坐标.11.(2019·安徽中考模拟)如图,已知直线1y x =+与抛物线2y ax 2x c =++相交于点()1,0A -和点()2,B m 两点.(1)求抛物线的函数表达式;(2)若点P 是位于直线AB 上方抛物线上的一动点,当PAB ∆的面积S 最大时,求此时PAB ∆的面积S 及点P 的坐标;(3)在x 轴上是否存在点Q ,使QAB ∆是等腰三角形?若存在,直接写出Q 点的坐标(不用说理);若不存在,请说明理由.12.(2018·江苏中考模拟)(2017南宁,第26题,10分)如图,已知抛物线2239y ax ax a =--与坐标轴交于A ,B ,C 三点,其中C (0,3),∠BAC 的平分线AE 交y 轴于点D ,交BC 于点E ,过点D 的直线l 与射线AC ,AB 分别交于点M ,N .(1)直接写出a的值、点A的坐标及抛物线的对称轴;(2)点P为抛物线的对称轴上一动点,若△P AD为等腰三角形,求出点P的坐标;(3)证明:当直线l绕点D旋转时,11AM AN均为定值,并求出该定值.13.(2019·重庆中考模拟)如图,在平面直角坐标系中,一抛物线的对称轴为直线,与y轴负半轴交于C点,与x轴交于A、B两点,其中B点的坐标为(3,0),且OB=OC.(1)求此抛物线的解析式;(2)若点G(2,y)是该抛物线上一点,点P是直线AG下方的抛物线上一动点,当点P运动到什么位置时,△APG的面积最大?求出此时P点的坐标和△APG的最大面积.(3)若平行于x轴的直线与该抛物线交于M、N两点(其中点M在点N的右侧),在x轴上是否存在点Q,使△MNQ为等腰直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.14.(2019·辽宁中考模拟)抛物线y=ax2+bx﹣3(a≠0)与直线y=kx+c(k≠0)相交于A(﹣1,0)、B(2,﹣3)两点,且抛物线与y轴交于点C.(1)求抛物线的解析式;(2)求出C、D两点的坐标(3)在第四象限抛物线上有一点P,若△PCD是以CD为底边的等腰三角形,求出点P的坐标.15.(2020·浙江初三期末)如图,抛物线y=﹣12x2+2x+6交x轴于A,B两点(点A在点B的右侧),交y轴于点C,顶点为D,对称轴分別交x轴、线段AC于点E、F.(1)求抛物线的对称轴及点A的坐标;(2)连结AD,CD,求△ACD的面积;(3)设动点P从点D出发,沿线段DE匀速向终点E运动,取△ACD一边的两端点和点P,若以这三点为顶点的三角形是等腰三角形,且P为顶角顶点,求所有满足条件的点P的坐标.16.(2020·湖北初三期末)如图,已知二次函数的图象经过点A(4,4),B(5,0)和原点O,P为二次函数图象上的一个动点,过点P作x轴的垂线,垂足为D(m,0),并与直线OA相较于点C.(1)求出二次函数的解析式;(2)当点P在直线OA的上方时,求线段PC的最大值;(3)当点P在直线OA的上方时,是否存在一点P,使射线OP平分∠AOy,若存在,请求出P点坐标;若不存在.请说明理由;(4)当m>0时,探索是否存在点P,使得△PCO为等腰三角形,若存在,求出P点的坐标;若不存在,请说明理由.17.(2019·吉林初三)如图1,抛物线与y =﹣211433x x ++与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,连接AC 、BC ,点D 是线段AB 上一点,且AD =CA ,连接CD .(1)如图2,点P 是直线BC 上方抛物线上的一动点,在线段BC 上有一动点Q ,连接PC 、PD 、PQ ,当△PCD 面积最大时,求PQ +10CQ 的最小值; (2)将过点D 的直线绕点D 旋转,设旋转中的直线l 分别与直线AC 、直线CO 交于点M 、N ,当△CMN 为等腰三角形时,直接写出CM 的长.18.(2020·江苏初三期末)在平面直角坐标系xOy 中,抛物线2y x mx n =-++与x 轴交于点A ,B ( A 在B的左侧)(1)如图1,若抛物线的对称轴为直线3,4x AB =-= .①点A 的坐标为( , ),点B 的坐标为( , ); ②求抛物线的函数表达式;(2)如图2,将(1)中的抛物线向右平移若干个单位,再向下平移若干个单位,使平移后的抛物线经过点O ,且与x 正半轴交于点C ,记平移后的抛物线顶点为P ,若OCP ∆是等腰直角三角形,求点P 的坐标.。
2014届中考数学(华师版)复习方案:19等腰三角形

∵BD、CE 是两条高,∴∠BDC=∠CEB=90°. 又∵BC=CB,∴△BDC≌△CEB (AAS). ∴∠EBC=∠DCB, ∴AB=AC. ∴△ABC 是等腰三角形. (2)点 O 在∠BAC 的平分线上.理由如下: 连接 AO. ∵△BDC≌△CEB,∴DB=EC. ∵OB=OC,∴ OD=OE. 又∵∠BDC=∠CEB=90°,AO=AO, ∴△ADO≌△AEO(HL).∴∠DAO=∠EAO. ∴点 O 是在∠BAC 的平分线上.
考点聚焦
归类探究
回归教材
第19课时┃ 等腰三角形
归 类 探 究
探究一 等腰三角形的性质的运用
命题角度: 1. 等腰三角形的性质; 2. 等腰三角形“三线合一”的性质.
例 1 如图 19-1,在等腰三角形 ABC 中, AB=AC,AD 是 BC 边上的中线,∠ABC 的平分 线 BG,交 AD 于点 E,EF⊥AB,垂足为 F. 求证:EF=ED.
考点聚焦
归类探究
回归教材
第19课时┃ 等腰三角形
考点4
线段的垂直平分线
经过线段的中点且与这条线段垂直的直线叫做这条线 段的垂直平分线 线段垂直平分线上的点与这条线段两个端点的距离
定义
性质
相等 ________
与一条线段两个端点距离相等的点,在这条线段的
判定
垂直平分线 上 _______________
上的高互相重合,简称“三线合一”
考点聚焦
归类探究
回归教材
第19课时┃ 等腰三角形
(1)等腰三角形两腰上的高相等 (2)等腰三角形两腰上的中线相等 (3)等腰三角形两底角的平分线相等 拓 (4)等腰三角形一腰上的高与底边的夹角等于顶角的一半
2015年人教版中考数学总复习课件(考点聚焦+归类探究+回归教材):第19课时 等腰三角形(共32张PPT)

失分盲点 分类讨论防漏解 (1)遇到等腰三角形的问题时,注意边有腰与底之分,角 有底角和顶角之分; (2)遇到高线的问题要考虑高在形内和形外两种情况.
考点聚焦 归探究四
等边三角形的判定与性质的综合应用
命题角度: 等边三角形的判定与性质的综合.
考点聚焦
归类探究
回归教材
第19课时┃ 等腰三角形
例4 [2014· 温州] 如图19-3,在等边三角形ABC中,点 D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE, 交BC的延长线于点F. (1)求∠F的度数; (2)若CD=2,求DF的长.
图19-3
考点聚焦
归类探究
回归教材
第19课时┃ 等腰三角形
考点聚焦
归类探究
回归教材
第19课时┃ 等腰三角形
探究二
等腰三角形的判定
命题角度: 等腰三角形的判定.
考点聚焦
归类探究
回归教材
第19课时┃ 等腰三角形
例2 [2014· 襄阳] 如图19-2,在△ABC中,点D,E分 别在边AC,AB上,BD与CE交于点O,给出下列三个条件: ①∠EBO=∠DCO;②BE=CD;③OB=OC. (1)上述三个条件中,由哪两个条件可以判定△ABC是等 腰三角形(用序号写出所有成立的情形)? (2)请选择(1)中的一种情形,写出证明过程.
解:(1)∵△ABC为等边三角形, ∴∠A=∠B=∠ACB=60°. ∵DE∥AB, ∴∠EDF=∠B=60°,∠DEC=∠A=60°. ∵EF⊥DE, ∴∠DEF=90°, ∴∠F=180°-∠DEF-∠EDF=30°.
考点聚焦
归类探究
回归教材
第19课时┃ 等腰三角形
(2)∵∠DEC=60°,∠DEF=90°, ∴∠CEF=30°=∠F, ∴CE=CF. 又∵∠EDF=∠CED=∠ACB=60°, ∴△CDE为等边三角形, ∴CD=CE, ∴DF=DC+CF=DC+CE=2CD. ∵CD=2, ∴DF=4.
2022人教版数学《精品 等腰三角形的判定2》配套教案(精选)

第2课时等腰三角形的判定教学目标1、理解并掌握等腰三角形的判定定理及推论2、能利用其性质与判定证明线段或角的相等关系.教学重点:等腰三角形的判定定理及推论的运用教学难点:正确区分等腰三角形的判定与性质,能够利用等腰三角形的判定定理证明线段的相等关系.教学过程:一、复习等腰三角形的性质二、新授:I提出问题,创设情境出示投影片.某地质专家为估测一条东西流向河流的宽度,选择河流北岸上一棵树(B点)为B标,然后在这棵树的正南方(南岸A点抽一小旗作标志)沿南偏东60°方向走一段距离到C处时,测得∠ACB为30°,这时,地质专家测得AC的长度就可知河流宽度.学生们很想知道,这样估测河流宽度的根据是什么?带着这个问题,引导学生学习“等腰三角形的判定”.II引入新课1.由性质定理的题设和结论的变化,引出研究的内容——在△ABC中,苦∠B=∠C,则AB= AC吗?作一个两个角相等的三角形,然后观察两等角所对的边有什么关系?2.引导学生根据图形,写出已知、求证.2、小结,通过论证,这个命题是真命题,即“等腰三角形的判定定理”(板书定理名称).强调此定理是在一个三角形中把角的相等关系转化成边的相等关系的重要依据,类似于性质定理可简称“等角对等边”.4.引导学生说出引例中地质专家的测量方法的根据.III例题与练习1.如图2其中△ABC是等腰三角形的是[ ]2.①如图3,已知△ABC中,AB=AC.∠A=36°,则∠C______(根据什么?).②如图4,已知△ABC中,∠A=36°,∠C=72°,△ABC是______三角形(根据什么?).③若已知∠A=36°,∠C=72°,BD平分∠ABC交AC于D,判断图5中等腰三角形有______.④若已知AD=4cm,则BC______cm.3.以问题形式引出推论l______.4.以问题形式引出推论2______.例:如果三角形一个外角的平分线平行于三角形的一边,求证这个三角形是等腰三角形.分析:引导学生根据题意作出图形,写出已知、求证,并分析证明.练习:5.(l)如图6,在△ABC中,AB=AC,∠ABC、∠ACB的平分线相交于点F,过F 作DE//BC,交AB于点D,交AC于E.问图中哪些三角形是等腰三角形?(2)上题中,若去掉条件AB=AC,其他条件不变,图6中还有等腰三角形吗?练习:IV课堂小结1.判定一个三角形是等腰三角形有几种方法?2.判定一个三角形是等边三角形有几种方法?3.等腰三角形的性质定理与判定定理有何关系?4.现在证明线段相等问题,一般应从几方面考虑?V布置作业:第2章图形的轴对称复习课学习目标:1、理解轴对称与轴对称图形的概念,掌握轴对称的性质.2、掌握线段的垂直平分线、角的平分线的性质及应用.3、理解等腰三角形的性质并能够简单应用.4、理解等边三角形的性质并能够简单应用.5、能够按要求做出简单的平面图形的轴对称图形,初步体会从对称的角度欣赏设计简单的轴对称图案.重点:掌握线段的垂直平分线、角的平分线的性质、等腰三角形的性质及应用.难点:轴对称图形以及关于某条直线成轴对称的概念,等腰三角形的性质应用复习过程:【课前准备】如何画一个图形关于某条直线对称的图形?【课内探究】知识点整理:1、如果一个图形沿着某条直线折叠..后,直线两旁的部分能够互相重合..,那么这个图形就叫做轴对称图形,这条直线叫做这个图形的对称轴.轴对称图形是—个具有特殊性质的图形.常见的轴对称图形有:线段、角、等腰三角形、等边三角形、矩形、菱形、正方形、等腰梯形、正n 边形、圆形.2、 把一个图形沿着某条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线就是它们的对称轴.而两个图形中的各自的相对应点叫做关于这条直线的对称点.(1) 轴对称是指两个图形之间的位置关系;(2) 关于某条直线对称的两个图形是互相重合的;如果两个图形关于某直线对称,那么对称轴是对应点所连的线段的垂直平分线.牛刀小试:下面几种图形,一定是轴对称图形的是( )3、有两条边相等的三角形叫做等腰三角形.巩固训练:(1)已知△ABC 中,AB = AC ,其周长为18cm ,AB = 5cm ,则BC = .(2)已知等腰三角形的腰长为4cm ,底边长为6cm ,则它的周长为 .(3)已知等腰三角形的两边长分别为6cm 、3cm ,则它的周长是 .(4)已知等腰三角形一边长为3,另一边为5,则它的周长是 .4、线段垂直平分线、角平分线、等腰三角形的性质:① 等腰三角形的两个底角相等;1、 什么叫轴对称图形?2、 什么叫做两个图形关于某一条直线成轴对称?3、 “轴对称图形”与“两个图形关于某一条直线成轴对称”有什么区别?4、 什么叫做线段的垂直平分线?线段的垂直平分线有什么性质?如何用尺规作出线段的垂直平分线?5、 角的平分线具有什么性质?如何做角平分线?6、 等腰三角形有哪些性质?等边三角形呢?已知哪些条件,可以用尺规做出等腰三角形?7、 如果两个图形关于某直线对称,那么这两个图形具有什么性质?E D B C A ② 等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合;(三线合一) ③ 等腰三角形是轴对称图形,它的对称轴是顶角平分线(或底边上的高或底边上的中线)所在的直线.巩固训练:(1) 已知△ABC 中,AB = AC ,∠C = 50°,则∠B = .(2) △ABC 中,AB = AC ,若AD ⊥BC 于D ,则∠1 ∠2,BD CD.(3) 已知等腰三角形的一个底角为45°,则它的顶角为 .(4) 已知等腰三角形的一个角是70°,则其余两个角的度数是 .(5) 已知等腰三角形的一个角是120°,则其余两个角的度数是 . 思考:本章的作图有哪几种类型?(1)作线段的垂直平分线;(2)作角的平分线;(3)作等腰三角形;(4)作对称点.【巩固提升】1、已知A (-1,1),在y 轴上找一点P,使△AOP 是等腰三角形.这样的P 点可能有几个?2、已知Rt △ABC 中,∠C=90°,DE 垂直平分AB(1)若∠CAD=20°,则∠B=____°(2)若AC=4,BC=5,则△ACD 的周长为______.(3) 若∠B=30°,则∠CAD=____°图中共有几组相等的线段?为什么?【课堂小结】通过今天的学习,你对本章又增加了哪些新的认识?【达标检测】1、下列图形中一定是轴对称的图形是( ).A 、梯形B 、直角三角形C 、角D 、平行四边形2、等腰三角形的一个内角是50°,则另外两个角的度数分别是( ).A 、65° 65°B 、50°80°C 、65°65°或50°80°D 、50° 50°3、如果等腰三角形的两边长是6和3,那么它的周长是( ).A 、9B 、12C 、12或 15D 、154、到三角形的三个顶点距离相等的点是( ).A 、三条角平分线的交点B 、三条中线的交点C 、三条高的交点D 、三条边的垂直平分线的交点第1课时 等腰三角形的性质【知识与技能】1.理解掌握等腰三角形的性质.2.运用等腰三角形性质进行证明和计算.、发展形象思维.【过程与方法】、观察、证明等腰三角形的性质,发展学生推理能力.2.通过运用等腰三角形的性质解决有关问题,提高运用知识和技能解决问题的能力.【情感态度】引导学生对图形的观察、发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中取得成功的体验.【教学重点】等腰三角形的性质及应用.【教学难点】等腰三角形的证明.一、情境导入,初步认识问题 1 让学生根据自己的理解,做一个等腰三角形.要求学生独立思考,动手做图后,再互相交流评价.可按下列方法做出:作一条直线l,在l上取点A,在l外取点B,作出点B关于直线l的对称点C,连接AB,AC,CB,则可得到一个等腰三角形.问题2 老师拿出事先准备好的长方形纸片,按下图方式折叠剪裁.观察并讨论:△ABC有什么特点?教师指导,并介绍等腰三角形的相关概念,及等腰三角形是轴对称图形.【教学说明】教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知教师依据学生讨论发言的情况,归纳等腰三角形的性质:①∠B=∠C→两个底角相等.②BD=CD→AD为底边BC上的中线.③∠BAD=∠CAD→AD为顶角∠BAC的平分线.∠ADB=∠ADC=90°→AD为底边BC上的高.指导学生用语言叙述上述性质.性质1等腰三角形的两个底角相等(简写成:“等边对等角”).性质2等腰三角形的顶角平分线、底边上的中线,底边上的高重合(简记为:“三线合一”).教师指导对等腰三角形性质的证明.1.证明等腰三角形底角的性质.教师要求学生根据猜想的结论画出相应的图形,写出已知和求证.在引导学生分析思路时强调:∠B=∠C,需证明以∠B,∠C为元素的两个三角形全等,需要添加辅助线构造符合证明要求的两个三角形.(2)添加辅助线的方法可以有多种方式:如作顶角平分线,或作底边上的中线,或作底边上的高等.“三线合一”的性质.【教学说明】在证明中,设计辅助线是关键,引导学生用全等的方法去处理,在不同的辅助线作法中,由辅助线带来的条件是不同的,重视这一点,要求学生板书证明过程,以体会一题多解带来的体验.例如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求△ABC各角的度数.解:∵AB=AC,BD=BC=AD,∴∠ABC=∠C=∠BDC,∠A=∠ABD(等边对等角).设∠A=x,则∠BDC=∠A+∠ABD=2x,从而∠ABC=∠C=∠BDC=2x.于是在△ABC中,有∠A+∠ABC+∠C=x+2x+2x=180°,解得x=36°于是在△ABC中,有∠A=36°,∠ABC=∠C=72°.【教学说明】等腰三角形“等边对等角”及“三线合一”性质,可以实现由边到角的转化,从而可求出相应角的度数.要在解题过程中,学会从复杂图形中分解出等腰三角形,用方程思想和数形结合思想解决几何问题.三、运用新知,深化理解第1组练习:1.如图,在下列等腰三角形中,分别求出它们的底角的度数.2.如图,△ABC是等腰直角三角形,AB=AC,∠BAC=90°,AD是底边BC上的高,标出∠B,∠C,∠BAD,∠DAC的度数,指出图中有哪些相等线段.3.如图,在△ABC,AB=AD=DC,∠BAD=26°,求∠B和∠C的度数.第2组练习:△ABC是轴对称图形,则它一定是( )°,它的顶角的度数是( )A.80°B.20°°和20°°或50°2cm,并且它的周长为16cm.求这个等腰三角形的边长.4.如图,在△ABC中,过C作∠BAC的平分线AD的垂线,垂足为D,DE∥AB 交AC于E.求证:AE=CE.【教学说明】等腰三角形解边方面的计算类型较多,引导学生见识不同类型,并适时概括归纳,帮学生形成解题能力,注意提醒学生分类讨论思想的应用.【答案】第1组练习答案:1.(1)72°;(2)30°2.∠B=∠C=∠BAD=∠DAC=45°;AB=AC,BD=DC=AD3.∠B=77°,∠°第2组练习答案:3.设三角形的底边长为xcm,则其腰长为(x+2)cm,根据题意,得2(x+2)+x=16.解得x=4.∴等腰三角形的三边长为4cm,6cm和6cm.4.延长CD交AB的延长线于P,在△ADP和△ADC中,∠PAD=∠CAD,AD=AD,∠PDA=∠CDA,∴△ADP≌△ADC.∴∠P=∠∵DE∥AP,∴∠CDE=∠P.∴∠CDE=∠ACD,∴DE=EC.同理可证:AE=DE.∴AE=CE.四、师生互动,课堂小结这节课主要探讨了等腰三角形的性质,并对性质作了简单的应用.请学生表述性质,提醒每个学生要灵活应用它们.学生间可交流体会与收获.1.布置作业:从教材“习题”中选取.2.完成练习册中本课时的练习.本课时应把重点放在逐步展示知识的形成过程上,先让学生通过剪纸认识等腰三角形;再通过折纸猜测、验证等腰三角形的性质;然后运用全等三角形的知识加以论证.由特殊到一般、由感性上升到理性,逻辑演绎,层层展开,步步深入.。
第02讲 等腰三角形中易漏解或多解的问题(拓展提升)(解析版)

思维导图核心考点聚焦1.求等腰三角形的周长时忽略构成三角形的三边关系产生易错2.当等腰三角形中腰和底不明求角度时没有分类讨论产生易错3.求有关等腰三角形中的多解题没有分类讨论产生易错4.三角形的形状不明时与高线及其他线结合没有分类讨论产生易错1.等腰三角形的性质(1(2角的三线合一图形:1.求等腰三角形的周长,要先考虑三角形的三边是否能构成三角形考点剖析【答案】2516或52或4,则216BP BC cm ==,,,图2③如图3,当图3故答案为:9或【解析】如图,∵AB AC BD =,是AC 边上的中线,即AD CD =,∴()()15123||||cm AB AD BC CD AB BC +-+=-=-=,2121527cm AB BC AC AB BC ++=+=+=,若AB BC >,则3cm AB BC -=,又∵227cm AB BC +=,联立方程组:3227AB BC AB BC -=⎧⎨+=⎩,解得:10cm 7cm AB BC ==,,10cm 10cm 7cm 、、三边能够组成三角形;若AB BC <,则3cm BC AB -=,又∵227cm AB BC +=,联立方程组3227BC AB AB BC -=⎧⎨+=⎩,解得:8cm 11cm AB BC ==,,8cm 8cm 11cm 、、三边能够组成三角形;∴三角形的各边长为10cm 10cm 7cm 、、或8cm 8cm 11cm 、、.【变式训练】1.等腰三角形一腰上的高与另一腰的夹角为45︒,那么这个三角形的顶角为()A .45︒B .90︒C .135︒D .135︒或45︒【答案】D【解析】如图1,三角形是锐角三角形时,∵45ACD ∠=︒,∵45ACD ∠=︒,∴顶角4590135BAC ∠=︒+︒=综上所述,顶角等于45︒或135如图,当CD 在ABC CD AB⊥ 90BAC ACD ∴∠=︒+∠AB AC= 30B C ∴∠=∠=︒故答案为60︒或30︒过关检测【答案】80︒,65︒或【解析】当C ∠是顶角时,∴180C A ∠=︒-∠-∠当C ∠是底角,A ∠是顶角时,∴180652A C ︒-∠∠==当C ∠、A ∠都是底角时,∴50C A ∠=∠=︒;综上,C ∠的度数可能是故答案为:80︒,65︒或7.在平面直角坐标系中,坐标是【答案】()3,0-或(2,0-【解析】根据题意,作图如下,∵()3,0A ,()0,4B ,∴3,4OA OB ==,在Rt AOB △中,22AB OA OB =+以AB 为腰作等腰三角形ABC ,①1BC BA =,则1ABC 是以AB 为腰作等腰三角形,∴()13,0C -;②2AB AC =,则2ABC △是以AB 为腰作等腰三角形,∴AC 2=5,且3OA =,∴2532OC =-=,则()22,0C -;③3AB AC =,则2ABC △是以AB 为腰作等腰三角形,∴35AC =,∴33358OC OA AC =+=+=,则C 综上所述,点C 坐标是()3,0-或(-故答案为:()3,0-或()2,0-或(8,0)8.在ABC △中,110ABC ∠=︒,点腰三角形,则CDB ∠的度数是【答案】40︒或90︒或140︒【解析】如图1中,当CDB ∠如图3中,当90DBC ∠=︒,DA 40CDB A DBA ∴∠=∠+∠=︒,故答案为:40︒或90︒或140︒.三、解答题9.如图,ABC △中,90C ∠=运动,且速度为每秒2cm ,设运动的时间为(1)当1t =时,求PBC △的面积.(2)当t 为何值时,CP 把ABC △(3)当t 为何值时,BCP △为等腰三角形?【解析】(1)解:当1t =时,PBC ∴△的面积为1BC CP ⨯=故答案为:26cm .(2)解:ABC 中,∴2AB AC BC =+∵1122AC BC ⨯=∴ 4.8CE =∴226 4.8PE =-∴27.2BP PE ==∴AP AB PB =-=∴82AC AP t +==②如果BC BP =③如果PB PC =∵PB PC =,∴12∠=∠,又∵12A ∠+∠=∠∴3A ∠=∠∴PC PA =,∴PA PB =,即P 在AB 的中点,此时()8513cm CA AP +=+=,132 6.5(t =÷=秒);综上可知,当3t =秒或5.4秒或6秒或6.5秒时,BCP 为等腰三角形.10.定义:如果1条线段将一个三角形分割成2个等腰三角形,我们把这条线段叫做这个三角形的“双等腰线”.如果2条线段将一个三角形分成3个等腰三角形,我们把这2条线段叫做这个三角形的“三等腰线”.如图(1),BE 是ABD △的“双等腰线”,AD 、BE 是ABC △的“三等腰线”.(1)请在图(2)中,作出ABC △的“双等腰线”,并标注相等角的度数①70B ∠=︒,35A ∠=︒②81B ∠=︒,27A ∠=︒.(2)直角三角形的______就是它的“双等腰线”(3)已知ABC △中,33C ∠=︒,AD 和DE 分别是ABC △的“三等腰线”,点D 在BC 边上,点E 在AB 边上,且AD DC =,BE DE =,请根据题意写出B ∠度数的所有可能的值______.【详解】(1)解:如图,取CD BC =,则70CDB B ∠=∠=︒,35A ∠=︒ ,703535ACD ∴∠=︒-︒=︒,ACD A ∴∠=∠,AD CD BC ∴==,ADC ∴ 和BCD △是等腰三角形;如图,作AB 的垂直平分线DE ,交AC 于D ,交AB 于E ,连接BD ,AD BD ∴=,27A ABD ∴∠=∠=︒,54CDB ∴∠=︒,81ABC ∠=︒ ,812754CBD BDC ∴∠=︒-︒=︒=∠,CD BC ∴=,ADB ∴ 和BCD △是等腰三角形;(2)直角三角形斜边中线把直角三角形分成两个等腰三角形,故答案为:斜边中线;(3)如图,设B x ∠=,∵33C ∠=︒,AD DC =,∴33C DAC ∠=∠=︒,180114EAD B C DAC x ∠=︒-∠-∠-∠=︒-,∴66ADB ∠=︒∵BE DE =,∴B BDE x ∠=∠=,∴2AED x ∠=,66ADE ADB BDE x ∠=∠-∠=︒-,∵AD 和DE 分别是ABC 的“三等腰线”,∴ADE V 是等腰三角形,当AD DE =时,EAD AED ∠=∠,则1142x x ︒-=,解得38B x ︒==∠;当AD AE =时,ADE AED ∠=∠,则662x x ︒-=,解得22B x ︒==∠;当AE DE =时,EAD ADE ∠=∠,则11466x x ︒-=︒-,无解;综上所述,B ∠度数的所有可能的值为38︒、22︒、66︒、57︒、48︒.故答案为:38︒、22︒.。
八年级上同步习题精讲课件专题二等腰三角形的多解问题

变形3 如图,在△ABC中,AB=AC,D为BC边上的一点, ∠B=30°,∠DAB=45°. (1)求∠DAC的度数; (2)求证:DC=AB.
(1)∠DAC=75° (2)∵∠ADC=∠B+∠DAB=30°+45°=75°= ∠DAC.∴AC=DC,∵AB=AC,∴DC=AB
变形4 如图,已知BC=CD=DE=EA,∠A=20°. (1)求∠DEC的度数; (2)求∠B的度数. (1)∠DEC=40° (2)∠B=60
变形2 如图,在△ABC中,D是BC边上一
点,且BA=BD,∠DAC= ∠1 B,∠C=
50°,求∠BAC的度数.,∠BDA=∠C+∠DAC =50°+x°.∵BD=BA,∴∠BAD=∠BDA=50°+ x°(等边对等角).∵∠B+∠BAD+∠BDA=180°, ∴2x+50+x+50+x=180.解得x=20.∴∠BAD=∠BDA =50°+20°=70°,∠BAC=∠BAD+∠DAC=70° +20°=90°
专题二 等腰三角形的多解问 题与角度计算技巧
数学 八年级上册
(浙教版)
习题精讲
一 等腰三角形的多解问题
教材母题►(教材P55作业题第4题) 等腰三角形一腰上的中线将这个等腰三角形的周长分 成15 cm和6 cm两部分.求等腰三角形的底边长. 等腰三角形腰长为10 cm,底边长为1 cm 【思想方法】 分类讨论思想:分类讨论是一种重要 的数学思想,也是各地近年来中考命题的热点.在解题 中,正确、合理的分类,可将一个复杂的问题大大地简 化,达到化繁为简、化难为易的目的. 变形1 一个等腰三角形的两边长分别为5和6,则这个等 腰三角形的周长是 16或17 .
谢谢观赏
You made my day!
我们,还在路上……
一次函数与等腰三角形的多解问题

一次函数与等腰三角形的多解问题
【例1】在平面直角坐标系中,点A的坐标是()
,,若点P在x轴上,且APO
22
△是等腰三角形,求点P的坐标。
【例2】直线1
=-与坐标轴交于A B
y x
△为等腰三角形,
、两点,点C在坐标轴上,若ABC
求点C的坐标。
练习:已知一次函数1
、两点,点P在坐标轴上,若
y+与x轴、y轴分别交于A B
△是等腰三角形,则满足条件的点P共有几个,求出点P的坐标。
ABP
【例3】 点A B C 、、的坐标分别是
)0、()01,、()41,,点P 在线段BC 上运动,当OAP △为等腰三角形时,求点P 的坐标。
练习:一次函数y=3
3x+2的图像与x 轴、y 轴分别交于点A 、B ,点C (23,0),在直线AB 上是否存在一点P ,使△ACP 为等腰三角形?若存在,求P 点的坐标;若不存在,说明理由。
拓展:如图,P 是y 轴上一动点,是否存在平行于y 轴的直线()0x t t =>,使它与直线y x
=和直线122
y x =-+分别交于点D E 、(点E 在点D 上方),且PDE △是等腰直角三角形。
若存在,求t 的值及点P 的坐标;若不存在,请说明理由。
八年级13章等腰三角形说课稿6篇

八年级13章等腰三角形说课稿6篇八年级13章等腰三角形说课稿6篇说课稿具有指导性、引导性和评价性等特点,旨在帮助教师提高教学质量,促进学生的学习成效。
说课稿需要教师根据不同学科和教学目标,结合教学资源和学生实际情况进行撰写,确保每一个环节衔接紧密,效果达到预期。
现在随着小编一起往下看看八年级13章等腰三角形说课稿,希望你喜欢。
八年级13章等腰三角形说课稿各位领导、老师们:大家好!今天我说课的内容是义务教育课程标准实验教科书《数学》八年级上册第十二章12.3.1等腰三角形性质第一课时。
下面,我从教材分析、教法分析、学法分析、教学过程、教学反思五个方面来汇报我对这节课的教学设想。
一、教材分析1、教材的地位与作用:本节课内容是在学生掌握了一般三角形和轴对称的知识,具有初步的推理证明能力的基础上进行学习的。
使学生学会分析、学会证明,在培养学生的思维能力和推理能力等方面有重要的作用。
通过等腰三角形的性质反映在一个三角形中“等边对等角”的边角关系,并且是对轴对称图形性质的直观反映(三线合一)。
它所倡导的“观察---发现---猜想---论证”的数学思想方法是今后研究数学的基本思想方法。
等腰三角形的性质也是论证两个角相等、两条线段相等、两条直线垂直的重要依据,因此,本节内容在教材中处于非常重要的地位,起着承前启后的作用。
2、教学目标:知识技能:理解掌握等腰三角形的性质;运用等腰三角形的性质进行证明和计算。
过程方法:通过实践、观察、证明等腰三角形的性质,发展学生合情推理能力和演绎推理能力。
解决问题:通过观察等腰三角形的对称性,及运用等腰三角形的性质解决有关的问题,提高学生观察、分析、归纳、运用知识解决问题的能力,发展应用意识。
情感态度:通过引导学生对图形的观察、发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心。
(根据教材内容的地位与作用及教学目标,因此我将把本节课的重点确定为:等腰三角形的性质的探究和应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变形2 等腰三角形的一个角是80°,则它顶角的度数是(B) A.80° B.80°或20° C.80°或50° D.20° 变形3 若等腰三角形一腰上的高和另一腰的夹角为25°, 则该三角形的一个底角为( D ) A.32.5° B.57.5°C.65°或57.5° D.32.5°或57.5° 变形4 已知一个等腰三角形两内角的度数之比是1∶4,则
(1)求∠DEC的度数; (2)求∠B的度数. (1)∠DEC=40°
(2)∠B=60
变形5 如图,△ABC与△DCB中,AC与BD交于点E,且
∠A=∠D,AB=DC. (1)求证:△ABE≌△DCE; (2)当∠AEB=50°时,求∠EBC的度数. (1)证明:∵∠A=∠D,∠AEB=∠DEC,AB=DC, ∴△ABE≌△DCE (2)∵△ABE≌△DCE,∴BE=CE,∴∠ECB=
专题二
等腰三角形的多解问
题与角度计算技巧
数 学 八年级上册 (浙教版)
习 题 精 讲
一
等腰三角形的多解问题
教材母题►(教材P55作业题第4题) 等腰三角形一腰上的中线将这个等腰三角形的周长分 成15 cm和6 cm两部分.求等腰三角形的底边长.
等腰三角形腰长为10 cm,底边长为1 cm
【思想方法】 分类讨论思想:分类讨论是一种重要 的数学思想,也是各地近年来中考命题的热点.在解题 中,正确、合理的分类,可将一个复杂的问题大大地简 化,达到化繁为简、化难为易的目的. 变形1 一个等腰三角形的两边长分别为5和6,则这个等 腰三角形的周长是 16或17 .
如图,在△ABC中,AB=AC,CD是∠ACB的角平分线, DE∥BC,交AC于点E,且∠CDE=25°,求∠A,∠B的度数. ∠A=80°,∠B=50° 【思想方法】 “等边对等角”是 与等腰三角形有关的角度计算的主 要根据,常与三角形的外角的性质, 角平分线的性质,平行线的性质结
合在一起考查.
变形1 如图,△ABC中,AB=AC,∠B=36°,点D 是BC边上一点,CD=AC,求∠1与∠2的度数. ∠1=72°,∠2=36°
这个等腰三角形顶角的度数为( C ) A.20°或100° B.120° C.20°或120°
D.36°
变形5 等腰三角形一腰上的中线把这个三角形的周长分成 12 cm和21 cm两部分.求这个等腰三角形的底边长. 这个等腰三角形的底边长为5 cm
二
等腰三角形的角度计算
教材母题►(教材P58作业题第5题)
∠EBC.∵∠EBC+∠ECB=∠AEB=50°,∴∠EBC=25°
变形6 如图,点B,D,F在AN上,点C,E在AG上,且AB= BC=CD,EC=ED=EF,∠A=20°,求∠FEG的大小. ∠FEG=100°
变形3 如图,在△ABC中,AB=AC,D为BC边上的一点,
∠B=30°,∠DAB=45°. (1)求∠DAC的度数; (2)求证:DC=AB. (1)∠DAC=75° (2)∵∠ADC=∠B+∠DAB=30°+45°=75°=
∠DAC.∴AC=DC,∵AB=AC,∴DC=AB
变形4 如图,已知BC=CD=DE=EA,∠A=20°.
变形2 如图,在△ABC中,D是BC边上一
点,且BA=BD,∠DAC= 50°,求∠BAC的度数.
1 ∠B,∠C= 2
设∠DAC=x°,则∠B=2x°,∠BDA=∠C+∠DAC =50°+x°.∵BD=BA,∴∠BAD=∠BDA=50°+
x°(等边对等角).∵∠B+∠B来自D+∠BDA=180°,∴2x+50+x+50+x=180.解得x=20.∴∠BAD=∠BDA =50°+20°=70°,∠BAC=∠BAD+∠DAC=70° +20°=90°