小专题(十) 运用分类讨论求解等腰三角形相关的多解问题

合集下载

小专项(十) 运用分类讨论求解等腰三角形相关的多解问题

小专项(十) 运用分类讨论求解等腰三角形相关的多解问题

小专项(十) 运用分类讨论求解等腰三角形相关的多解问题 类型1针对腰长和底边长进行分类方法归纳:在解答等腰三角形边长旳问题时,当题目中旳条件没有指明旳这条边是腰长依旧底边长时,就要分类讨论,按腰和底边两种情况分类、假设涉及边旳长度,应运用三角形旳三边关系进行辨别取舍、1、(武汉中考)平面直角坐标系中,A(2,2)、B(4,0)、假设在坐标轴上取点C ,使△ABC 为等腰三角形,那么满足条件旳点C 旳个数是(A )A 、5B 、6C 、7D 、82、如图,在Rt △ABC 中,∠ACB =90°,AB =2BC ,在直线BC 或AC 上取一点P ,使得△PAB 为等腰三角形,那么符合条件旳点P 共有(B )A 、7个B 、6个C 、5个D 、4个3、假设实数x ,y 满足|x -5|+y -10=0,那么以x ,y 旳值为边长旳等腰三角形旳周长为25、 类型2针对顶角和底角进行分类方法归纳:关于等腰三角形,只要它旳一个内角旳度数,就能算出其他两个内角旳度数,假如题中没有确定那个内角是顶角依旧底角,就要分两种情况来讨论、在分类时要注意:三角形旳内角和等于180°;等腰三角形中至少有两个角相等、4、等腰三角形有一个角为52°,它旳一条腰上旳高与底边旳夹角为多少度?解:①假设旳那个角为顶角,那么底角旳度数为(180°-52°)÷2=64°,故一腰上旳高与底边旳夹角为26°;②假设旳那个角为底角,那么一腰上旳高与底边旳夹角为38°.故所求旳一腰上旳高与底边旳夹角为26°或38°.5、假如等腰三角形中旳一个角是另一个角度数旳一半,求该等腰三角形各内角旳度数、解:设∠A ,∠B ,∠C 是该等腰三角形旳三个内角,且∠A =12∠B. 设∠A =x °,那么∠B =2x °.①假设∠B 是顶角,那么∠A ,∠C 是底角,因此有∠C =∠A =x °.∵∠A +∠B +∠C =180°,∴x +2x +x =180.解得x =45,故∠A =∠C =45°,∠B =90°;②假设∠B 是底角,∵∠A ≠∠B ,∴∠A 是顶角,∠C =∠B =2x °.∵∠A +∠B +∠C =180°,∴x +2x +2x =180.解得x =36,故∠A =36°,∠B =∠C =72°.综上所述,等腰三角形旳各内角分别为45°、45°、90°或36°、72°、72°.类型3针对锐角、直角和钝角三角形进行分类方法归纳:依照等腰三角形顶角旳大小能够将其分为锐角、直角或钝角三角形、不同旳三角形其高、中线、垂直平分线旳交点位置均不同,比如锐角三角形腰上旳高旳交点在那个三角形旳内部;直角三角形腰上旳高旳交点为两直角边旳交点;钝角三角形腰上旳高旳交点在那个三角形旳外部,因此在解答时需要分类讨论、6、△ABC 中,AB =AC ,AB 旳垂直平分线与AC 所在旳直线相交成50°旳角,求底角旳度数、解:由题意可推断该三角形不可能是直角三角形,可能是锐角三角形或钝角三角形,故分两种情况讨论:①如图1,垂直平分线DE 与腰AC 相交,且∠AED =50°,那么∠A =40°,因此∠B =∠C =70°; ②如图2,垂直平分线DE 与腰AC 旳反向延长线相交,且∠AED =50°,那么∠EAD =40°,∠BAC =140°,因此∠B =∠C =20°.综上可知,等腰三角形旳底角为70°或20°.7、一个等腰三角形一边上旳高等于另一边旳一半,那么等腰三角形底角旳度数是多少?解:设∠A 为顶角,那么∠ABC 、∠ACB 为底角、(1)假设∠A 为锐角,如图1,作BD ⊥AC 于点D ,依照题意有BD =12AB ,∠BDA =90°, ∴∠A =30°,∠ABC =∠ACB =75°;(2)假设∠A 为直角,依照题意“等腰三角形一边上旳高等于另一边旳一半”,这种情况无解;(3)假设∠A 为钝角,有三种情况:①如图2,作AD ⊥BC 于点D ,依照题意有AD =12AB ,∠ADB =90°, ∴∠ABC =∠ACB =30°;②如图3,作BD ⊥CA 旳延长线于点D ,依照题意有BD =12BC ,∠ADB =90°, ∴∠ABC =∠ACB =30°;③如图4,作BD ⊥CA 旳延长线于点D ,依照题意有BD =12AB ,∠ADB =90°, ∴∠BAD =30°,∠ABC =∠ACB =15°.综上所述,等腰三角形底角旳度数是75°、30°或15°.8、AC 为等腰△ABD 旳腰BD 上旳高,且∠CAB =60°.求那个三角形各内角旳度数、解:①如图1,高AC 在△ABD 旳内部,因为∠CAB =60°,∠ACB =90°,因此∠B =30°.因为BA =BD ,因此∠BAD =∠D =75°;②如图2,高AC 在△ABD 旳外部,因为∠CAB =60°,∠ACB =90°,因此∠ABC =30°.因此∠ABD =150°.因为BA =BD ,因此∠BAD =∠D =15°;③如图3,高AC 在△ABD 旳外部,因为∠CAB =60°,∠ACB =90°,因此∠B =30°.因为DA =DB ,因此∠BAD =∠B =30°.因此∠ADB =120°.综上所述,那个三角形各内角旳度数分别为30°,75°,75°或150°,15°,15°或120°,30°,30°.。

再谈分类讨论在等腰三角形问题中的应用

再谈分类讨论在等腰三角形问题中的应用

再谈分类讨论在等腰三角形问题中的应用我们在解决等腰三角形相关的问题时,往往容易产生漏解或增解现象,主要原因是审题不清,考虑不全面.下面再次通过实例来说明分类讨论思想在等腰三角形中的应用,帮助大家更好地掌握分类讨论思想方法.一、与边长有关的分类讨论解题中经常遇到两种问题:一是已知等腰三角形的两边长,要求等腰三角形的周长;二是已知等腰三角形的周长和一条边长,求其它两边的长,或已知等腰三角形的周长和两边的数量关系,求腰长或底边长.这两种问题往往未指明哪条边是腰,哪条边是底边,因此就需要针对具体问题进行分类讨论.在这类问题中有两个关键点需要注意:①哪是底边哪是腰;②是否符合三角形的三边关系定理.这两个关键点在解题中缺一不可.此类题型记忆口诀:底边不可大,腰不可小,要符合三边关系定理.1.知两边,求周长例1 已知等腰三角形的两边长分别为5cm 和9 cm ,求三角形的周长.分析 当腰长为5 cm ,底边长为9 cm 时,周长=5+5 +9=19(cm);当腰长为9 cm ,底边长为5 cm 时,周长=9+9+5=23(cm).例2 已知等腰三角形的两边长分别为4cm 和9 cm ,求三角形的周长.分析 当腰长为9 cm ,底边长为4 cm 时,周长=9+9 +4=22(cm);当腰长为4 cm 时,底边长为9 cm 时,因为4+4<9不符合三角形三边关系,故三角形的周长为22 cm.2.已知周长,求两边例3 已知等腰三角形的周长为14 cm,一边长为4 cm ,求其它两边的长度. 分析 若腰长为4 cm ,则底边长为14 cm -2×4 cm=6(cm);若底边长为4 cm ,则腰长为(14-4)÷2=5(cm).所以其它两边长分别为4 cm,6 cm,或5cm,5 cm.例4 已知等腰三角形的周长为24 cm,两边之差为6 cm ,求其腰长.分析 设腰长为x cm ,底边长为y cm.若x y >,由题意,可得2246x y x y +=⎧⎨-=⎩,解得104x y =⎧⎨=⎩. 所以腰长为10 cm.若x y <,可得2246x y y x +=⎧⎨-=⎩,解得612x y =⎧⎨=⎩. 因为6 +6=12不符合三边关系定理,舍去.二、与角有关的分类讨论对于等腰三角形,在遇到与角有关的问题时,若条件中未指明已知角是顶角还是底角,就要注意利用分类讨论的思想,先假设已知角是顶角或底角,然后运用等边对等角,以及三角形内角和定理进行求解运算.1.知一角,求两角此类问题涉及到三种情况:①已知内角为锐角,则它可能为底角还可能为顶角;②已知内角为直角,则它只能为顶角;③已知内角为钝角,则它只能为顶角.若题目给出的已知角为外角,只需将与外角匹配的内角求出,再对照以上三种情况进行求解.例5 已知等腰三角形的一个内角的度数为50°,求其它两个角的度数.(分析略.答案:50°,80°,或65°,65°)例6 已知等腰三角形的一个外角为100°,求其它的两个角的度数.(分析略.答案:80°,20°,或50°,50°)2.知两角比值,求各角此类问题需要就两角中的其中一角为顶角或底角两种情况进行讨论.例7 在等腰ABC ∆中,:5:2A B ∠∠=,求A ∠的度数.分析 若A ∠为顶角,则5180100522A ∠=⨯︒=︒++; 若A ∠为底角,则 518075552A ∠=⨯︒=︒++. 3.知高与腰的夹角,求各角三角形高的位置由三角形的类型确定,所以要对三角形是钝角三角形、直角三角形、还是锐角三角形这三种情况进行分类讨论,同时在分类讨论的基础上,防止在解题的过程中出现漏解.例8 已知等腰三角形一腰上的高与另一腰的夹角为30°,求顶角的度数.分析 根据已知条件,分别就该等腰三角形为钝角三角形或锐角三角形两种情形分类讨论.先利用数形结合思想作图如下(如图1、图2).根据图形不难得出顶角度数为60°或120°.例9 已知BD 是等腰ABC ∆一腰上的高,且50ABD ∠=︒,求ABC ∆顶角的度数. 分析 本题只知ABC ∆中,B ∠是底角,而未知A ∠是顶角还是底角,且未知ABC ∆是钝角三角形还是锐角三角形,因此要分类讨论:①若点A 为顶角顶点,ABC ∆是钝角三角形时,则顶角140BAC ∠=︒;②若点A 为顶角顶点,ABC ∆是锐角三角形时,则顶角40A ∠=︒;③若点A 为底角顶点时,则ABC ∆只能为钝角三角形,则顶角100ACB ∠=︒.综上所述,ABC ∆顶角的度数为140°或40°或100°(如图3、4、5).三、中线划分周长问题等腰三角形中边上的中线一共三条,底边中线将等腰三角形分成左右全等的两个直角三角形,而腰上的中线则可能将等腰三角形分成上下两个边长不相等的三角形.当题目要求回答等腰三角形边长时,需要就给出的两段周长进行分类讨论,即讨论两种对应情况.同时,在涉及三角形边长的计算时,一定要注意验证结果是否满足三角形两边之和大于第三边这一定理.例10 已知一等腰三角形一腰上的中线,将这个等腰三角形的周长分成9和12两部分,求这个等腰三角形的腰长和底边长.分析 设腰长为2x ,底边长为y ,由题意可得2912x x x y +=⎧⎨+=⎩,解得39x y =⎧⎨=⎩. 则腰长为6, 底边长为9;或2129x x x y +=⎧⎨+=⎩,解得45x y =⎧⎨=⎩. 则腰长为8,底边长为5.四、坐标系中的顶点问题在等腰三角形出现在坐标系中,同样需要对已知顶点的位置、构成的等腰三角形是锐角三角形、直角三角形还是钝角三角形进行分类讨论,只有把可能出现的三角形类型讨论清楚,这种类型的问题才不会漏解.例11 已知点(2,0),(0,2)A B ,试在x 轴上确定点M ,使得MAB ∆为等腰三角形,试写出所有满足条件的点M 的坐标.分析 此题只给出了等腰三角形的一条边,所以讨论该边是底边的情况,然后讨论该边是腰的情况.若该边为底边,则x 轴上有且仅有一点为等腰三角形顶点;若该边为腰,则可先假设A 点为圆心,以AB 为半径画圆,与x 轴相交的点即为解.然后假设B 点为圆心,以AB 为半径画圆,与x 轴相交的点即为解,如图6所示.根据坐标系及边长对应相等关系得出M 点坐标,即存在四个M 点,分别为: 12(222,0),(2,0)M M +-,34(222,0),(0,0)M M -.五、形状分割问题等腰三角形的分割问题是等腰三角形例题中的难点,关键在于如何确定分类标准.从顶角分类入手,这类问题就能迎刃而解.例12 如果经过等腰三角形的一顶点的直线,能把它分成两个等腰三角形,求等腰三角形顶角的度数.分析 讨论顶角分别是直角、钝角和锐角三种情况.当顶角为直角时,如图7,根据“等腰三角形三线合一”可得当点D 为BC 中点时,AD BD CD ==,因此90BAC ∠=︒满足题意;当顶角为钝角时,如图8.若需满足,,AB BD AD DC AB AC ===,则顶角108BAC ∠=︒;当顶角为锐角时,则可能存在两种分割情况:①如图9, ,AD BD BC AB AC ===,则顶角36A ∠=︒;②如图10, ,,AD BD BC CD AB AC === ,则顶角180()7A ︒∠=. 总之,分类讨论要遵循不重不漏的原则,还要确定分类的标准,然后进行分析、推理、归纳综合,才能得到正确的答案.。

“分类讨论”在等腰三角形中的应用

“分类讨论”在等腰三角形中的应用

“分类讨论”在等腰三角形中的应用在最近几年的全国各地中考试卷中,出现了以等腰三角形为背景,考查学生分类讨论能力的试题,为帮助同学们提高对此类问题的解题能力,现列举几例:一、要讨论谁是底边或腰长例1、已知一个等腰三角形的一边长为5,另一边长为7,则这个等腰三角形的周长()A. 12 B 17 C 19 D 17或19分析:题中并未说明5或7是底边,还是腰,应分情况讨论.解:当等腰三角形的一腰长为5时,此时7为底边,满足任意两边之和大于第三边,所以满足题意的三角形的周长为5+5+7=17;当等腰三角形的一腰长为7时,此时5为底边,也满足任意两边之和大于第三边,故满足题意的三角形的周长为7+7+5=19.综上知选D.例2、有一个等腰三角形,三边分别是3x-2,4x-3,6-2x,求等腰三角形的周长.分析:已知等腰三角形三边长,说明有两边相等,但不知谁是腰,必须分三种情况分析.解:(1)当3x-2=4x-3时,即x=1,则三边为1,1,4,由于1+1<4,所以不成立;(2)当3x-2=6-2x时,即85x=,则三边长为141714555、、,由于141417555+>,所以成立;(3)当4x-3=6-2x时,即x=1.5,则三边为2.5,3,3,由于2.5+3>3,所以成立.由上可知等腰三角形周长为9或8.5.说明:如果等腰三角形的腰长为A,底边长为B,则有222b b aa+<<.二、要讨论腰与底谁较大例3、一等腰三角形的周长为20cm,从底边上的一个顶点引腰的中线,分三角形周长为两部分,其中一部分比另一部分长2cm,求腰长.分析:题目中的条件是一部分比另一部分长2cm,这里可能是腰比底长,也可能是底比腰长,应分两种情况讨论,因为是中线,周长分成的两部分之差就是腰长与底边长之差.解:不妨设腰长为x cm,底边长为y cm ,根据题意有(1)当腰长大于底边时,有2220x yx y-=⎧⎨+=⎩,解得221633x y==、;(2)当腰长小于底边时,有2220y xx y-=⎧⎨+=⎩,解得68x y==、;因为两种情形都符合三角形的三边关系定理,故腰长为223cm或6cm.说明:分类讨论后,要用三角形三边关系定理来判断所给三边能否构成三角形,从而避免造成错解.三、要讨论谁是底角或顶角例4、(1)等腰三角形的一个角是30°,求底角.(2)等腰三角形的一个角是100°,求底角.分析:等腰三角形的一个角可能指底角,也可能指顶角,须分情况讨论,但顶角可以是锐有、直角、钝角,而底角只能是锐角.解:(1)当30°是底角时,底角即为30°;当30°是顶角时,底角为180302︒-︒,即为75°;(2)因100°只能是顶角,所以底角是1801002︒-︒,即为40°.说明:等腰三角形的底角只能为锐角,不能为直角、钝角,但顶角可以为锐角、直角、钝角.四、要讨论高在三角形内部或外部例5、已知等腰三角形ABC中,BC边上的高12AD BC=,求∠BAC的度数.分析:题中未交代哪条边是底边,哪条边是腰,所以必须分三种情况讨论.解:(1)当BC为底边时,则D是BC中点,△ABC为等腰直角三角形∠BAC=90°;(2)当BC为腰,且高AD在△ABC内部时,1122AD BC AB==,∠B=30°,所以∠BAC=75°;(3)当BC为腰,且高AD在△ABC的外部时,1122AD BC AB==,∠DBA=30°;所以∠BAC=15°.综上所述∠BAC的度数可以为15°、75°、90°.说明:由于题目的图形未画出,因此考虑情况时要周全,不要出现漏解.试一试:1、在活动课上,小红已有两根长为4cm、8cm的小木棒,现打算拼一个等腰三角形,则小红应取的第三根小木棒长是_____Cm.2、在平面直角坐标系中,已知点为A(-2,0),B(2,0)画出等腰三角形ABC(画出一个即可),并写出你画出的ABC的顶点C的坐标.3、下面是数学课堂的一个学习片段,,阅读后, 请回答下面的问题:学习等腰三角形有关内容后,张老师请同学们交流讨论这样一个问题:“已知等腰三角形ABC的角A等于30°,请你求出其余两角”.同学们经片刻的思考与交流后,李明同学举手说:“其余两角是30°和120°”;王华同学说:“其余两角是75°和75°” ,还有一些同学也提出了不同的看法……(1)假如你也在课堂中,你的意见如何? 为什么?(2)通过上面数学问题的讨论, 你有什么感受? (用一句话表示)“分类讨论”在等腰三角形中的应用当面临的问题不宜用一种方法处理或同一种形式叙述时,我们就要想到“分类讨论”——“分而治之,各个击破”.下面就让“分类讨论”思想在等腰三角形中“大放光彩”吧!例1 等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为()A、60°B、120°C、60°或150°D、60°或120°分析:分两种情况,①当顶角是锐角时,如图1,∵∠ABD=30°,∠ADB=90°,∴∠A=60°;②当顶角是钝角时,如图2,∵∠ABD=30°,∠ADB=90°,∴∠BAD=60°,∴∠BAC =120°.所以顶角度数为60°或120°,所以选D .例2 等腰三角形的周长为13,其中一边长为3,则该等腰三角形的底边长为( ) A 、7 B 、3 C 、5或3 D 、5分析:长为3的边可能是底边,也可能是腰,因此有两种情况,①若长为3的边为底边,则该等腰三角形的底边长为3; ②若长为3的边为腰,则该等腰三角形的底边长为(13-3)÷2=5.故选C .说明:边长为3的边、可能是底边,不要只认为它是腰.例3 已知点A 和点B ,以点A 和点B 为其中两个点作位置不同的等腰直角三角形,一共可以作出( )A 、2个B 、4个C 、6个D 、8个分析:如图3,以线段AB 为底边可作出两个等腰直角三角形,以AB 为腰可作出4个等腰直角三角形,因此,共可作出6个等腰直角三角形,故选C . 说明:解题时容易忽视为腰长的情况,因此,分析问题一定要用心,充分考虑各种情形. 例4 如图4,在等边△ABC 所在的平面内求一点P ,使△P AB 、△PBC 、△P AC 都是的等腰三角形,你能找到几个这样的点?画图描述它们的位置.分析:如图4,△ABC 三条边的垂直平分线的交点1p 满足条件,分别以点A 、点B 为圆心,AB 为半径画圆弧,交AC 的垂直平分线于2p 、3p 两点,则△、、、AC P BC P AB P 222∆∆、、、AC P BC P AB P 333∆∆也是等腰三角形,同样可以在AB 、BC 的垂直平分线上再找到4个点P ,使△P AB 、△PBC 、△P AC 是等腰三角形.所以共有7个点.画出的图形如图4.说明:此题乍一看只能确定在△ABC 内一点,关键要注意三个等腰三角形的腰是哪两条边.分类讨论探究题既是中考热点又是考生易错点,克服方法是解题时常提醒自己:“还有其它情况吗?”切记!…图1B 图2 图3B。

专题10 多个等腰三角形求角度(解析版)

专题10 多个等腰三角形求角度(解析版)

专题10 多个等腰三角形求角度1.如图,在第一个△ABA 1中,∠B =20°,AB =A 1B ,在A 1B 上取一点C ,延长AA 1到A 2,使得A 1A 2=A 1C ,得到第二个△A 1A 2C ;在A 2C 上取一点D ,延长A 1A 2到A 3,使得A 2A 3=A 2D ;…,按此做法进行下去,则第5个三角形中,以点A 4为顶点的等腰三角形的底角的度数为( )A .5°B .10°C .175°D .170°【答案】A【解析】【分析】 根据第一个△ABA 1中,∠B =20°,AB =A 1B ,可得∠BA 1A =80°,依次得∠CA 2A 1=40°…即可得到规律,从而求得以点A 4为顶点的等腰三角形的底角的度数.【详解】解:1ABA △中,20B ∠=︒,1AB A B =,1180802B BA A ︒-∠∴∠==︒, 121A A AC =,1BA A ∠是△12A A C 的外角, 121402BA A CA A ∠∴∠==︒ 同理可得:3220DA A ∠=︒,4310EA A ∠=︒,1802n n A -︒∴∠=, ∴以点4A 为顶点的等腰三角形的底角的度数为:548052A ︒∠==︒. 故选:A .【点睛】本题考查了等腰三角形的性质、规律型:图形的变化类,解决本题的关键是根据等腰三角形的性质求出底角的度数然后发现规律.2.如图,8∠=︒BOC ,点A 在OB 上,且1OA =.按下列要求画图:以A 为圆心,1为半径向右画弧交OC 于点1A ,得第1条线段1AA ;再以1A 为圆心,1为半径向右画弧交OB 于点2A ,得第2条线段12A A ;再以2A 为圆心,1为半径向右画弧交OC 于点3A ,得第3条线段23A A ;……这样画下去,直到得第n 条线段,之后就不能再画出符合要求的线段了,则n 的值是( )A .9B .10C .11D .12【答案】C【解析】【分析】根据等腰三角形的性质和三角形的外角的性质依次可得∠A 1AA 2的度数,∠A 3A 1A 2的度数,∠A 3A 2A 4的度数,∠A 4A 3C 的度数,…依次得到规律,再根据三角形外角小于90°,即弧线与角的另一边无交点,即可求解.【详解】由题意可知:AO =A 1A ,A 1A =A 2A 1,…则∠AOA 1=∠OA 1A ,∠A 1AA 2=∠A 1A 2A ,…∵∠BOC =8°,∴∠A 1AA 2=16°,∠A 3A 1A 2=24°,∠A 3A 2A 4=32°,∠A 4A 3C =40°,…∴8°n <90°,解得n <1114, ∵n 为整数,故n =11.故选C.【点睛】此题主要考查等腰三角形的性质,解题的关键是根据题意找到规律进行求解.3.如图,△ABC 中,AB =AC ,AD =DE ,∠BAD =19°,∠EDC =11°,则∠DAE 的度数为( )A .59°B .57°C .61°D .60° 【答案】C【解析】【分析】设DAE x ∠=,则由等腰三角形的性质可得,180192x C ︒-︒-∠=,AED x ∠=,利用三角形的外角性质可得AED C EDC ∠=∠+∠,由此解方程求出x ,即DAE ∠的度数.【详解】解:设DAE x ∠=,AB AC =,∴1801801922BAC x C ︒-∠︒-︒-∠==, AD DE =,∴AED DAE x ∠=∠=,AED C EDC ∠=∠+∠,∴18019112x x ︒-︒-=+︒, 解得61x =︒,∴61DAE ∠=︒.故选:C .【点睛】本题考查了等腰三角形的性质,三角形的内角和定理,三角形外角的性质,熟练掌握相关性质定理是解题的关键.4.如图,已知∠MON =30°,点A 1,A 2,A 3,…在射线ON 上,点B 1,B 2,B 3,…在射线OM 上,△A 1B 1A 2,△A 2B 2A 3,△A 3B 3A 4,…均为等边三角形,若OA 1=1,则△A 8B 8A 9的边长( )A .16B .64C .128D .256【答案】C【解析】【分析】据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2…进而得出答案.【详解】如图,∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°-120°-30°=30°,又∵∠3=60°,∴∠5=180°-60°-30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2=16,…∴△AnBnAn+1的边长为2n-1,∴△A8B8A9的边长为28-1=27=128.故选C.【点睛】本题考查的是等边三角形的性质以及等腰三角形的性质,根据已知得出A 3B 3=4B 1A 2,A 4B 4=8B 1A 2,A 5B 5=16B 1A 2进而发现规律是解题关键.5.“三等分角”大约是在公元前五世纪由古希腊人提出来的借助如图①所示的“三等分角仪”能三等分任意一角.如图②,这个“三等分角仪”由两根有槽的棒OA ,OB 组成,两根棒在O点相连并可绕O 转动,点C 固定,点D ,E 可在槽中滑动,OC CD DE ==.若81BDE ∠=︒,则AOB ∠的度数是( )A .24°B .27°C .30°D .33°【答案】B【解析】【分析】 设∠O =x ,根据等腰三角形的性质和三角形外角的性质可得∠BDE =∠O +∠OED =3x =81°,再根据三角形内角和定理即可解决问题.【详解】解:设∠O =x ,∵OC =CD ,∴∠O =∠CDO =x ,∴∠DCE =2x ,∵DC =DE ,∴∠DCE =∠DEC =2x ,∴∠BDE =∠O +∠OED =3x =81°,∴x =27°,∴∠AOB =27°.故选:B【点睛】本题主要考查了等腰三角形的性质,三角形外角的性质,三角形内角和定理等知识,熟练掌握三角形外角的性质是解题的关键.6.某兴趣小组开展了一次探究活动,过程如下:设()090BAC θθ∠=︒<<︒,现把长度相等....的小棒依次摆放在射线AB 、AC 之间,并使小棒两端分别落在两射线上,从点A 1开始,依次向右摆放,其中A 1A 2为第1根小棒,且A 1A 2=AA 1.若只能摆放5根小棒,则θ的范围是( ).A .15°<θ<18°B .15°<θ≤18°C .15°≤θ<18°D .15°≤θ≤18°【答案】C【解析】【分析】根据三角形外角的性质以及等腰三角形的性质,用θ表示出其它角度,再题目条件,列出不等式,即可求出最后的范围.【详解】解:∵A 1A 2=AA 1,∴12AA A 为等腰三角形,再根据三角形外交的性质,得212A A C A ∠=∠,又∵小棒长度都相等,∴123A A A △为等腰三角形,∴231212A A A A AC A ∠=∠=∠, ∴232313BA A A A A A A ∠=∠+∠=∠,同理可得到434534A A C A A A A ∠=∠=∠,64546555A A A A A A A θ∠=∠=∠=,654656A A C A A A A θ∠=∠+∠=,又∵只能摆放五根小棒,∴690590θθ≥︒⎧⎨<︒⎩, 解得1518θ︒≤<︒,故选:C .【点睛】本题只要考察了一元一次不等式,等腰三角形的性质以及三角形外角的性质,解题的关键是找到等量关系,列出相应的不等式,求出最后答案.7.如图,点B ,C 在射线AN 上,点D ,E 在射线AM 上,且AB BE CE CD AD ====,则A ∠的度数是( )A .28︒B .30C .34︒D .36︒【答案】D【解析】【分析】设A x ∠=,根据等边对等角可得ACD AEB x ∠=∠=,由外角的性质2CBE CDE x ∠=∠=,根据三角形内角和定理5180A BCE CED x ∠+∠+∠==︒即可.【详解】解:设A x ∠=, AB BE CE CD AD ====∴ACD AEB x ∠=∠=,由三角形的外角的性质得;2CBE CDE x ∠=∠=,根据等边对等角得,2BCE CED x ∠=∠=,根据三角形内角和定理,5180A BCE CED x ∴∠+∠+∠==︒,36x ∴=︒,36A ∴∠=︒,故选:D .【点睛】本题考查了等腰三角形两底角相等的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质、三角形内角和,解题的关键是找到角与角之间的关系,通过三角形内角和定理建立等式求解.8.如图,在第1个1ABA △中,30B ∠=︒,1AB A B =,在1A B 上取一点C ,延长1AA 到2A ,使得121A A AC =;在2A C 上取一点D ,延长12A A 到3A ,使得232A A A D =;…按此作法进行下去,第n 个三角形的以n A 为顶点的内角的度数为( )A .1302n +︒B .1752nC .1752n +︒D .1302n -︒ 【答案】B【解析】【分析】先根据等腰三角形的性质求出∠BA 1A 的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠CA 2A 1,∠DA 3A 2及∠EA 4A 3的度数,找出规律即可得出第n 个三角形的以An 为顶点的内角的度数.【详解】解:∵在△ABA 1中,∠B =30°,AB =A 1B ,∴∠BA 1A =180°−∠B 2=75°,∵A 1A 2=A 1C ,∠BA 1A 是△A 1A 2C 的外角,∴∠CA 2A 1=∠BA 1A 2=75°÷2=37.5°;同理可得∠DA 3A 2=18.75°,∠EA 4A 3=9.375°,∴第n 个三角形的以An 为顶点的内角的度数为1752n , 故选:B .【点睛】本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠CA 2A 1,∠DA 3A 2及∠EA 4A 3的度数,找出规律是解答此题的关键.9.如图,ABC 中,∠A =30°,AB =AC ,D 、E 分别是AC 、AB 上两点,且BD =BE =BC ,连接DE ,则∠BDE =_________【答案】67.5°【解析】【分析】先根据等腰三角形的性质和三角形内角和定理求出∠C =∠ABC =75°,再由BD =BC ,得到75BDC C ∠=∠=︒,则45EBD ABC DBC ∠=∠-∠=︒,由BD =BE ,则18067.52EBD BDE BED ︒-∠∠=∠==︒. 【详解】解:∵∠A =30°,AB =AC , ∴180===752A C ABC ︒-︒∠∠∠, ∵BD =BC ,∴75BDC C ∠=∠=︒,∴18030DBC C BDC ∠=︒-∠-∠=︒,∴45EBD ABC DBC ∠=∠-∠=︒,∵BD =BE , ∴18067.52EBD BDE BED ︒-∠∠=∠==︒, 故答案为:67.5°.【点睛】本题主要考查了三角形内角和定理,等腰三角形的性质,熟知三角形内角和定理和等腰三角形的性质是解题的关键.10.某数学兴趣小组开展了一次数学活动,其过程如下:如图,设∠BAC =α(0°<α<90°).现把小棒依次摆放在两射线AB 、AC 之间,并使小棒两端分别落在两条射线上,从点A 1开始,用等长的小棒依次向右摆放,其中A 1A 2为第1根小棒,且A 1A 2=AA 1,若只能摆放5根相同的小棒,则α的取值范围是__________.【答案】15°≤α<18°【解析】【分析】本题需先根据已知条件,列出不等式,解出α的取值范围,即可得出正确答案.【详解】解:∵A 1A 2=AA 1,∴∠A =∠A 1A 2A =α,∵A 1A 2=A 2A 3,∴∠A 2A 1A 3=∠A 2A 3A 1=2α,∵A 3A 2=A 3A 4,∴∠A 3A 4A 2=∠A 3A 2A 4=α+2α=3α,∵A 4A 3=A 4A 5,∴∠A 4A 3A 5=∠A 4A 5A 3=α+3α=4α,∵根据三角形内角和定理和等腰三角形的性质,∴6α≥90°,5α<90°,∴15°≤α<18°.故答案为:15°≤α<18°.【点睛】本题考查了等腰三角形的性质,在解题时要注意根据题意找出规律并与等腰三角形的性质相结合是本题的关键.11.如图,D ,E 为ABC 的边BC 上两点,80AEC ∠=︒,BD AD =,DE AE CE ==,则BAC ∠的度数为______.【答案】110°##110度 【解析】【分析】由等腰三角形的性质及三角形的内角和定理可求解∠CAD =90°,利用三角形外角的性质及等腰三角形的性质可求解∠BAD 的度数,进而可求解.【详解】解:∵DE =AE =CE ,∴∠ADE =∠DAE ,∠C =∠CAE ,∵∠ADE +∠DAE +∠C +∠CAE =180°,∴∠DAE +∠CAE =∠CAD =90,∵∠AEC =80°,∴∠ADE +∠DAE =∠AEC =80°,∴∠ADE =∠EAD =40°,∵BD =AD ,∴∠B =∠BAD ,∵∠ADE =∠B +∠BAD =2∠BAD ,∴∠BAD =20°,∴∠BAC =∠BAD +∠CAD =20°+90°=110°.故答案为:110°.【点睛】本题主要考查等腰三角形的性质,三角形的内角和定理,三角形外角的性质,求解∠CAD 的度数是解题的关键.12.如图,在ABC 中,已知AB AC BD ==,215∠=︒,那么1∠的度数为________.【答案】65︒【解析】【分析】根据AB AC BD ==,可得C B ∠=∠,13∠=∠,根据三角形的内角和定理,以及三角形的外角性质列出方程组解方程组即可求解.【详解】解:如图,∵AB AC BD ==∴C B ∠=∠,13∠=∠,23180B C ∠+∠+∠+∠=︒1318022C ∴∠=∠=︒-∠-∠又12C ∠=∠+∠218022C C ∴∠+∠=︒-∠-∠318022C ∴∠=︒-∠18030503C ︒-︒∴∠==︒ 12155065C ∴∠=∠+∠=︒+︒=︒故答案为:65︒【点睛】本题考查了三角形内角和定理以及三角形的外角性质,等边对等角求角度,二元一次方程组的应用,掌握以上知识是解题的关键.13.小丽从一张等腰三角形纸片ABC (AB =AC )中恰好剪出五个如图所示的小等腰三角形,其中BC =BD ,EC =EF =FG =DG =DA ,则∠B =_________°.【答案】67.5【解析】【分析】根据等腰三角形的性质等边对等角求解即可.【详解】解:设∠ECF =x ,∵EC =EF ,∴∠EFC =∠ECF =x ,∴∠GEF =2x ,∵EF =GF ,∴∠FGE =∠GEF =2x ,∴∠DFG =∠FGE +∠ECF =3x ,∵DG=GF,∴∠GDF=∠DFG=3x,∴∠AGD=∠GDF+∠ECF=4x,∵DG=DA,∴∠A=4x,∴∠BDC=∠A+∠ECF=5x,∵BC=BD,∴∠BDC=∠BCD=5x,∴∠ACB=∠BCD+∠ECF=6x,∵AB=AC,∴∠B=∠ACD=6x,∵∠A+∠B+∠ACB=180°,∴4x+6x+6x=180°,解得:x=454︒,∴∠B=4564︒⨯=67.5°.故答案为:67.5.【点睛】本题主要考查了等腰三角形,熟练掌握等腰三角形的性质:等边对等角是解答本题的关键.14.如图,在△ABC中,AB=AC,点D是边AC上一点,AD=BD,BC=DC,则∠A的大小是_________.【答案】180 7︒【解析】【分析】由AD=BD,BC=DC可知,△ABD,△BCD为等腰三角形,设∠A=∠ABD=x,则∠CDB =∠CBD=2x,又由AB=AC可知,△ABC为等腰三角形,则∠ABC=∠C=3x,在△ABC 中,用内角和定理列方程求解.【详解】解:∵AD =BD ,BC =DC ,∴△ABD ,△BCD 为等腰三角形,设∠A =∠ABD =x ,则∠CDB =∠CBD =2x ,又∵AB =AC ,∴△ABC 为等腰三角形,∴∠ABC =∠C =3x ,在△ABC 中,∠A +∠ABC +∠C =180°,即x +3x +3x =180°,解得x =1807︒, 即∠A =1807︒. 故答案为:1807︒. 【点睛】本题考查了等腰三角形的性质.关键是利用等腰三角形的底角相等,外角的性质,内角和定理,列方程求解.15.如图,在钢架AB 、AC 中,从左至右顺次焊上7根相等长度的钢条12PP 、23P P 、34P P …来加固钢架,且112AP PP =,则BAC ∠的最大值为______°.(结果保留整数)【答案】12【解析】【分析】设∠BAC =x ,根据等边对等角的性质以及三角形的一个外角等于与它不相邻的两个内角的和求出∠AP 6P 7,∠AP 7P 6,再根据三角形的内角和定理列式进行计算即可得解.【详解】解:设∠BAC =x ,∵AP 1=P 1P 2=P 2P 3=…=P 6P 7,∴∠A =∠AP 2P 1=x ,∴∠P 2P 1P 3=2x ,∴∠P 3P 2P 4=3x ,…,∠P 7P 8P 6=7x ,∴7x <90°且8x >90°,则11.25°<∠BAC <(907)°, 故∠BAC 的最大值约为12°.故答案为:12.【点睛】考查了等腰三角形等边对等角的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,规律探寻题,难度较大.16.如图,在ABC 中,,,AB AC BD BC AD DE EB ====,则A ∠=________.【答案】45︒【解析】【分析】设∠A =x °根据等腰三角形的性质及等边对等角性质进行分析得出∠ABC =∠C =∠BDC902x DBC A x ︒︒︒=-∠=∠=,,2x EBD ︒∠=,再利用三角形的内角和定理即可求得∠A 的度数.【详解】解:设∠A =x °∵AB =AC ,BD =BC∴∠ABC =∠C =∠BDC 902x DBC A x ︒︒︒=-∠=∠=, ∵AD =DE =BE∴∠A =∠AED =2∠EBD =2∠EDB ∴2x EBD ︒∠= ∵∠ABC =∠C ∴9022x x x ︒︒︒︒-=+ ∴x =45即∠A 等于45°.故答案为:45︒【点睛】本题考查等腰三角形的性质,等边对等角,以及三角形的内角和定理的运用.17.如图,在ABC 中,AB AC CD ==,点D 在BC 上,且AD BD =,求BAC ∠的度数.【答案】∠BAC =108°.【解析】【分析】利用AB =AC ,可得∠B 和∠C 的关系,利用AD =BD ,可求得∠CAD =∠CDA 及其与∠B 的关系,在△ABC 中利用内角和定理可求得∠B ,进一步求得∠ABC ,得到结果.【详解】解:∵AB =AC ,∴∠B =∠C ,∵BD =AD ,∴∠B =∠DAB ,∵AC =DC ,∴∠DAC =∠ADC =2∠B ,∴∠BAC =∠BAD +∠DAC =∠B +2∠B =3∠B ,又∠B +∠C +∠BAC =180°,∴5∠B =180°,∴∠B =36°,∠C =36°,∠BAC =108°.【点睛】本题主要考查等腰三角形的性质,掌握等边对等角是解题的关键,注意三角形内角和定理的应用.18.已知:如图,A 1,A 2,A 3是∠MON 的ON 边上顺次三个不同的点,B 1,B 2,B 3是∠MON 的OM 边上顺次三个不同的点,且有OA 1=A 1B 1=B 1A 2=A 2B 2=B 2A 3(1)当∠MB 1A 2=45°时,∠MON =_______;(2)若OM 边上不存在B 3点,使得A 3B 3=B 2A 3 ,则∠MON 的最小值是_______.【答案】(1)15°(2)18°【解析】【分析】(1)利用等腰三角形的性质以及三角形外角的性质求解即可; (2)由OM 边上不存在B 3点,使得A 3B 3=B 2A 3 ,则OM 边上不存在B 3点,使得323332A B B A B B =∠∠,则32390180A B B ︒≤∠<︒,再由323325A B B MON OA B MON ∠=∠+∠=∠求解即可.(1)解:∵OA 1=A 1B 1=B 1A 2=A 2B 2=B 2A 3∴1111AOB A B O =∠∠,112121B A A B A A =∠∠,∵1121111112B A A AOB A B O AOB ∠=∠+∠=∠,1212MB A MON B A O =+∠∠∠, ∴1212=3=45MB A MON B A O MON =+︒∠∠∠∠,∴∠MON =15°;故答案为:15°;(2)解:∵OM 边上不存在B 3点,使得A 3B 3=B 2A 3 ,∴OM 边上不存在B 3点,使得323332A B B A B B =∠∠,∴32390180A B B ︒≤∠<︒ ,同理可求出223224B A A MON OB A MON =+=∠∠∠∠ ,∴323325A B B MON OA B MON ∠=∠+∠=∠,∴905180MON ︒≤<︒∠,∴1836MON ︒≤<︒∠,故答案为:18°.。

关于等腰三角形中分类讨论问题的探讨

关于等腰三角形中分类讨论问题的探讨

浅探等腰三角形中分类讨论问题南陵县弋江蒲桥初中张一中摘要:在解答数学问题时,会遇到多解情况,需要我们对各种情况进行分析并加以讨论,就是我们通常说的分类讨论思想。

所谓分类讨论思想,就是在解答数学题时有时无法用同一种形式去解决,而需要选定一个标准,根据这个标准将问题划分成几个能用不同形式去解决的小问题,将这些小问题一一解决,从而使问题得到解决,这就是分类讨论的思想。

关键词:等腰三角形分类讨论思想在日常教学练习及中考中经常会出现关于等腰三角形的题,此类题学生得分通常较低,学生没有分类思想,造成漏解情况。

下面就关于等腰三角形的各种分需类题型进行分析和讲解。

一、当已知边不能确定是腰还是底边时,需讨论例1、(1)已知等腰三角形的两边长分别为5cm和7cm,求周长。

(2)等腰三角形的两边长分别为5cm和11cm,求周长。

简析:已知条件中并没有指明5和7谁是腰长谁是底边的长,因此应由三角形的三边关系进行分类讨论。

当5是等腰三角形的腰长时,这个等腰三角形的底边长就是7,则此时等腰三角形的周长等于17;当7是腰长时,这个三角形的底边长就是5,则此时周长等于19。

故这个等腰三角形的周长等于17cm或19cm。

解(2)当腰长为5时,因为5+5<11,所以此时不能构成三角形;当腰长为11时,因为11+11>5,所以此时能构成三角形,因此三角形周长为:11+11+5=27;故这个三角形的周长为27cm。

说明:对于底和腰不等的等腰三角形,若条件中没有明确哪是底哪是腰时,应分类讨论,但必须运用三角形的三边关系来验证是否能构成三角形。

二、当已知角不能确定是顶角或底角时,需讨论例2. 已知等腰三角形的一个内角为75°则其顶角为()A. 30°B. 75°C. 105°D. 30°或75°简析:75°角可能是顶角,也可能是底角。

当75°是底角时,则顶角的度数为180°-75°×2=30°;当75°角是顶角时,则顶角的度数就等于75°。

例析等腰三角形中的多解问题

例析等腰三角形中的多解问题

例析等腰三角形中的多解问题
多解问题是指一个方程有多个解的情况,比如例析等腰三角形中的多解问题。

等腰三角形有三条线:两条相等的腰,一条组成顶点的斜边。

例析等腰三角形边长乘积等于周长的4倍,则数学表达式为: a*a*√3=4*P,其中a是等腰三角形的边长,P是周长。

因此方程有多解的情况:
1. 当腰和周长相等时,腰a=2*√3, P=4*√3,此时该等腰三角形是一个正三角形。

2. 当腰a比P大时,腰a=P/√3,腰长过长此时等腰三角形内部会有空隙。

3. 当腰a比P小时,腰a=P/(√3+1/4),此时等腰三角形内部会有溢出。

以上就是等腰三角形中的多解。

分类讨论思想在初中等腰三角形问题中的应用探究

分类讨论思想在初中等腰三角形问题中的应用探究

分类讨论思想在初中等腰三角形问题中的应用探究
分类讨论是一种解决问题的思想方法,它将问题按照不同的情况分类讨论,从而找到
解决问题的方法。

在初中数学中,分类讨论是一个常见的解题方法。

在等腰三角形问题中,分类讨论的运用可以帮助我们更好地解决各种不同的问题。

首先,我们来考虑等腰三角形的特点。

等腰三角形有两条边相等,两个底角相等。

因此,如果在等腰三角形中遇到需要求边长或者角度的问题,可以应用分类讨论。

例如,如果已知等腰三角形的一条边长和顶角,则可以利用三角函数解题。

但是如果
已知等腰三角形的两个底角,就无法直接应用三角函数求解。

这时候,我们可以运用分类
讨论的方法来解决问题。

假设等腰三角形ABD的两个底角A、B分别为α、β,如图1所示。

我们可以将问题分为两种情况来考虑。

第一种情况是当角A等于角B时,即α=β。

由于等腰三角形的两个底角相等,所以这时三角形ABD的其中一条边BD为底边,与这条底边相等的两侧边AD和DB 也相等。

因此,我们可以利用三角形的内角和公式,解得AD=DB=(180-2α)/2。

通过以上两个例子可以看出,在等腰三角形问题中,分类讨论的应用可以帮助我们更
好地解决问题。

对于已知一个角度和一条边长,我们可以直接运用三角函数求解;对于已
知两个角度的情况,我们可以采用分类讨论的方式,将问题分为两种情况来考虑,从而更
快地得到答案。

此外,在解决等腰三角形的周长、面积等问题时,分类讨论也是一个常用
的思想方法。

期末复习专题等腰三角形中的分类讨论

期末复习专题等腰三角形中的分类讨论
B C
50°
50°
B
2、以BC为一边
1、以AC为一边
C A
B A
C
A
C
3、以AB为一边
B C
A
C B
CB
A
B
A
B
C
A
B
主要思想:
不重复不遗漏!
1.角的分类:顶角、底角 2 .边的分类:腰、底边
一、遇角需讨论
1.已知等腰三角形的一个内角为80°,, 则 其顶角为__8_0_°_或__2_0_°__
A
且点D在D’的位置,E在E’的为时,
如图,与(1)类似地也可以求得
C
D’ B
∠DCE =∠ACB÷2=200。
E’
D
(3)当点D、E在点A的两侧,
A
且E点在E’的位置时,如图,
∵BE’=BC,
C
B
∴∠ BE’C=(180O- ∠CBE) ÷2= ∠CBA ÷2 ,
∵AD=AC,
E’
∴∠ADC=(1800-∠DAC)÷2=∠BAC÷2,AADD NhomakorabeaB
C
B
C
三、遇中线需讨论
变式:等腰三角形底边为5cm,一腰上的中线
把其周长分为两部分的差为3cm,则其周长
为 21cm 。
A
A
D
D
B
C
B
C
注意:要运用三角形的三边关系来验证是否能构 成三角形。
四、遇高需讨论
1.等腰三角形一腰上的高与另一腰所成的夹 角为30°,则这个等腰三角形的顶角度数 是__6_0_°_或__1_2_0_°____
C
C
D
A
E
B
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档