岩心流体饱和度测定

合集下载

储层岩石流体的饱和度

储层岩石流体的饱和度

储层岩石流体的饱和度储层岩石流体的饱和度摘要:储层岩石流体的饱和度在油气田开发过程中具有十分重要的意义,例如计算地层的原始地质储量,目前地层的可开采储量,通过观测剩余油饱和度分布图来查看地层剩余油的分布等。

本文主要介绍了各流体饱和度的定义,以及测饱和度的三种方法:蒸馏抽提法,常压干馏法,色谱仪法。

关键字:饱和度,蒸馏抽提法,常压干馏法,色谱仪法1流体饱和度的定义储层岩石孔隙中充满一种流体时,孔隙中饱含该流体,则称饱和了一种流体。

当储层岩石孔隙中同时存在多种流体(原油、底层水、天然气)时,岩石孔隙被多种流体所饱和,某种流体所占的体积百分数称为该种流体的饱和度。

1.1饱和度、含水饱和度、含气饱和度根据上述定义,储层岩石孔隙中油、水、气的饱和度可以分别表示为:o o o p b V V S V V φ== (1) w w w p b wV V S V V φ== (2) gg g p b V V S V V φ== (3)式中:o S 、w S 、g S ——含油饱和度、含水饱和度、含气饱和度;o V 、w V 、g V ——油、水、气体在岩石孔隙中所占体积;p V 、b V ——岩石孔隙体积和岩石视体积;φ——岩石的孔隙度,小数。

根据饱和度的概念,o S 、w S 、g S 三者之间有如下关系:1o w g S S S ++≡ (4)当岩石中只有油、水两相,即0g S =时,o S 、w S 有如下关系:1o w S S += (5)1.2 原始含水饱和度——束缚水饱和度油藏投入开发前,并非孔隙中100%含油,而是一部分孔隙被水占据。

所谓原始含水饱和度(wi S )是油藏投入开发前储层岩石孔隙空间中原始含水体积wi V 和岩石孔隙体积p V 的比值,即:wi wi pV S V = (6) 大量的现场取心分析表明。

即使是纯油气藏,其储层内部都会含有一定数量的不流动水,称之为束缚水。

束缚水一般存在于砂粒表面、砂粒接触处角隅或微毛管孔道中。

《利用核磁共振二维谱技术研究岩心含油饱和度》

《利用核磁共振二维谱技术研究岩心含油饱和度》

《利用核磁共振二维谱技术研究岩心含油饱和度》篇一一、引言随着石油勘探技术的不断发展,岩心含油饱和度的准确测定对于评估油田储量和开发效益具有重要意义。

核磁共振技术作为一种无损检测方法,在岩心物性分析中得到了广泛应用。

本文旨在探讨利用核磁共振二维谱技术对岩心含油饱和度进行研究,以期为油田开发提供更为准确的数据支持。

二、核磁共振二维谱技术概述核磁共振(NMR)技术是一种基于原子核在磁场中发生共振的物理现象而发展起来的分析方法。

在岩心物性分析中,核磁共振技术可以用于测定岩心的孔隙度、渗透率等参数。

其中,核磁共振二维谱技术是在一维谱技术的基础上发展起来的一种更为先进的技术手段。

二维谱技术能够提供更加丰富的谱线信息,包括不同类型的孔隙和流体性质的信息。

通过分析二维谱的峰位、峰强等参数,可以更加准确地确定岩心的含油饱和度。

此外,二维谱技术还具有较高的分辨率和信噪比,能够更好地应对复杂地质条件下的岩心分析需求。

三、实验方法与步骤1. 岩心样品准备:选取具有代表性的岩心样品,进行切片、磨平、干燥等处理,以便进行核磁共振实验。

2. 核磁共振实验:将处理好的岩心样品放入核磁共振实验装置中,设置适当的磁场强度和频率,进行一维和二维谱实验。

3. 数据处理与分析:将实验得到的数据进行归一化处理,利用专业软件进行二维谱分析。

通过分析峰位、峰强等参数,确定不同类型的孔隙和流体性质。

4. 含油饱和度计算:根据二维谱分析结果,结合岩心样品的孔隙度、总含油量等参数,计算岩心的含油饱和度。

四、结果与讨论1. 二维谱结果分析:通过对岩心样品的二维谱分析,可以清晰地看到不同类型的孔隙和流体性质的分布情况。

其中,油相和水相在二维谱上表现出不同的特征,可以根据这些特征区分不同类型的流体。

2. 含油饱和度计算:根据二维谱分析结果和岩心样品的孔隙度、总含油量等参数,可以计算出岩心的含油饱和度。

与传统的含油饱和度测定方法相比,利用核磁共振二维谱技术计算得到的含油饱和度具有更高的准确性和可靠性。

中国石油大学(华东)岩心流体饱和度的测定

中国石油大学(华东)岩心流体饱和度的测定

岩心流体饱和度的测定一、实验目的1. 巩固和加深油、水饱和度的概念;2. 掌握干馏仪测定岩心中油、水饱和度的原理及方法。

二、实验原理把含有油、水的岩样放入钢岩心筒内加热,通过电炉的高温将岩心中的油、水变为油、水蒸气蒸出,通过冷凝后变为液体收集于量筒中,读出油、水体积,查原油体积校正曲线,得到校正后的油体积,求出岩样孔隙体积,计算油、水饱和度:100%100%o o p o y V S V V m φ=⨯⨯=⨯, 100%100%w w pw yV S V V m φ=⨯⨯=⨯ 式中:o S —含油饱和度,%; o V —校正后的油量,mL ;φ—岩样孔隙度,小数;m —干馏后岩样的重量,g 。

w S —含水饱和度,%; w V —干馏出的水量,mL ;y γ—岩样视密度,g/cm 3;三、实验流程(a)控制面板(b)筒式电炉(c)干馏仪的水循环1—温度传感器插孔;2—岩心筒盖;3—测温管;4—岩心筒;5—岩心筒加热炉;6—管式加热炉托架;7—冷凝水出水孔;8—冷凝水进水孔;9—冷凝器。

图1BD-型饱和度干馏仪四、实验步骤1.将饱和油水的岩样放入干净的岩心筒内,拧紧上盖;2.将岩心筒放入管状立式电炉中,打开冷水循环;将温度传感器插杆装入温度传感器插孔中,把干净的量筒放在仪器出液口的下方;3.打开电源开关,设定初始温度为120℃;4.当量筒中水的体积不再增加时(约半小时以后),再把温度设为300℃,继续加热20~30分钟,直至量筒中油的体积不再增加,关上电源开关,5分钟后关掉循环水,记录量筒中油、水的体积;5.从电炉中取出温度传感器及岩心筒,用水自上而下冲洗,避免水进入筒内,然后打开上盖,倒出其中的干岩样称重并记录。

为了补偿在干馏中因蒸发、结焦或裂解所导致的原油体积读值的减少,应通过原油体积校正曲线对蒸发的原油体积进行校正。

图 2油水矫正曲线五、数据处理与计算实验所得的数据如表1所示。

由表1可知,岩样的视密度31.85g/cm y γ=,孔隙度32%φ=,干馏后的岩样质量52.g 718m =。

岩心饱和度的测定

岩心饱和度的测定

中国石油大学(华东)渗流物理实验报告实验日期:成绩:班级:石工1205 学号:姓名:教师:同组者:岩石饱和度的测定一、实验目的1.巩固和加深油、水饱和度的概念;2.掌握干馏仪测定岩心中油、水饱和度的原理及方法。

二、实验原理把含有油、水的岩样放入钢制的岩心筒内加热,通过电炉的高温将岩心中的油、水变为油、水蒸汽蒸出,通过冷凝后变为液体收集于量筒中,读出油、水体积,查原油体积校正曲线,得到校正后的油体积,求出岩样孔隙体积,计算油、水饱和度:S =Vo ⨯100%o V(2-6) pS =Vw ⨯100%w V三、实验流程与设备(2-7)四、实验操作步骤1.精确称量饱和油水岩样的质量(100~175 克),将其放入干净的岩心筒内,上紧上盖;2. 将岩心筒放入管状立式电炉中,使冷水循环,将温度传感器插杆装入温度传感器插孔中,把干净的量筒放在仪器出液口的下面;3.然后打开电源开关,设定初始温度为120℃,记录不同时间蒸出水的体积;4. 当量筒中水的体积不再增加时(约20 分钟);把温度设定为300℃,继续加热20~30 分钟,直至量筒中油的体积不再增加,关上电源开关,5 分钟后关掉循环水,记录量筒中油的体积读值。

5.从电炉中取出温度传感器及岩心筒,待稍凉一段时间后打开上盖,倒出其中的干岩样称重并记录。

五、实验数据处理V=3.4(ml)根据油的校正曲线可知:o由式(2-6)(2-7)得:So=37.53%,Sw=26.49%油水饱和度测定原始记录表六、小结通过本次实验,掌握干馏仪的使用,明白了测定岩心中油、水饱和度的原理及方法,巩固和加深了油、水饱和度的概念,实验时间需要很长时间,要耐心等待,此外,非常感谢老师的悉心指导。

石油大学油水饱和度测定

石油大学油水饱和度测定
61.543×0.32 1.85
× 100% = 25.3%
������������ =
2.58
61.543×0.32 1.85
× 100% = 24.2%
六、小结
通过这次实验,巩固油、水饱和度的概念,掌握干馏仪测定岩心中油、水饱和度 的原理和方法。实验为小组完成,但大部分由做孔隙度实验较快的同学完成,对 他们表示感谢。同时感谢老师对实验的细心指导。
五、实验数据处理
油水饱和度测定
油水饱和度测定原始记录表
岩 样 岩样视 孔 隙 密度ρ 度 (%) f(g/cm3 ) 32 1.85
干馏后 干馏出 干馏出 校正后 So 岩样 W 的水量 的油量 的油量 (%) Vm(ml) Vo(ml) Vo(ml) (g) 61.543 2.58 2.52 2.7 25.3
中国石油大学油层物理实验报告
班级:石工 1408 班学号: 同组者:史保强 实验日期: 2016.10.11 成绩: 1402010820 姓名:王伟强教师:
实验三岩石饱和度测定
一、 实验目的 1.巩固油、水饱和度的概念。 2.掌握干馏仪测定岩心中油、水饱和度的原理和方法。 二、 实验原理 把含有油、 水的岩样放入钢制的岩心筒内加热,通过电炉的高温将岩 心中的油、水变为油水蒸汽蒸出,通过冷凝后变为液体收集于量筒中,读 出油、水的体积,查原油的体积校正曲线,得到校正后的油替体积,求出 岩样空隙体积计算油、水饱和度: ������ ������ ������������ = × 100% ������������/������������ ������ ������ ������������ = × 100% ������������/������������ 式中 ������������ ——含油饱和度,%; ������������ ——含水饱和度,%; ������ ������ ——校正后的油量,mL; ������ ������ ——校正后的水量,mL; ������——干馏后岩样质量,g; ������——岩样孔隙度,%; ������������ ——岩样视密度,g/cm3. 三、 实验流程 流体饱和度测定流程图:

《利用核磁共振二维谱技术研究岩心含油饱和度》

《利用核磁共振二维谱技术研究岩心含油饱和度》

《利用核磁共振二维谱技术研究岩心含油饱和度》篇一一、引言随着石油勘探技术的不断发展,岩心含油饱和度的准确测定对于评估油田储量和开发效益具有重要意义。

核磁共振技术作为一种无损检测方法,具有高分辨率、高灵敏度和非侵入性等优点,被广泛应用于岩心含油饱和度的研究。

本文旨在探讨利用核磁共振二维谱技术对岩心含油饱和度进行研究的原理、方法及实际应用,以期为相关研究提供参考。

二、核磁共振二维谱技术原理核磁共振(NMR)是一种基于原子核在磁场中发生能级跃迁的物理现象的技术。

在岩心含油饱和度研究中,核磁共振二维谱技术通过分析岩石样品中氢原子核的NMR信号,得到岩心内油的分布情况及饱和度。

其原理主要基于以下两点:一是利用氢原子核的NMR信号对岩心中流体进行检测;二是通过测量不同时间的NMR信号,得到二维谱图,从而分析岩心的含油饱和度。

三、研究方法1. 样品准备:选取具有代表性的岩心样品,进行切割、磨光、烘干等处理,以消除外界因素对实验结果的影响。

2. 核磁共振实验:将处理后的岩心样品置于核磁共振仪器中,施加磁场和射频脉冲,使氢原子核发生能级跃迁并产生NMR信号。

3. 数据处理:将收集到的NMR信号进行二维谱图处理,分析岩心中油的分布及饱和度。

四、实验结果与分析1. 二维谱图解析:通过对岩心样品的NMR信号进行二维谱图处理,可以得到清晰的油水分布图。

图中不同颜色的区域代表不同含油饱和度的区域。

2. 含油饱和度计算:根据二维谱图中的信息,可以计算岩心的含油饱和度。

具体方法包括峰值积分法、T2谱分析法等。

其中,峰值积分法通过测量不同区域NMR信号的峰值大小,计算各区域的含油量及总含油量;T2谱分析法则通过分析T2谱的形状和分布,得到岩心的孔隙结构及含油饱和度信息。

3. 结果分析:通过对不同区域岩心的含油饱和度进行分析,可以得出以下结论:(1)岩心的含油饱和度与区域地质条件、储层特性等因素密切相关;(2)核磁共振二维谱技术能够准确反映岩心中油的分布及饱和度,为油田开发提供有力依据;(3)结合其他地质资料和地球物理方法,可以进一步提高岩心含油饱和度的研究精度。

含水饱和度Sw

含水饱和度Sw

4.真空蒸馏法测定油、水饱和度
与常压蒸馏法的区别在于:1)该方法 主要是对全直径岩心进行测试;2)为了使 全直径岩心中央部分的油水能够蒸馏出来, 因此设备上增加了真空装置。装置如图14-8示。
5.利用与氢化钙反应测定含水量
这个方法由S.N.RePal和法国国家阿 基坦石油学会提出,其测试步骤为:首先 把样品放在试管内,然后再放入了克重量 的氢化钙粉末。
如用公式表示,即
含油饱和度So=Vo/Vp×100% 含水饱和度Sw=Vw/Vp×100% 含气饱和度Sg=Vg/Vp×100%
式中Vp=孔隙体积,㎝3;Vo、Vw、Vg=分 别为油、气、水所占的体积,㎝3。
如果孔隙中只有油和水或者只有气和水,则有
So+Sw=1
或者
Sg+Sw=1
如果孔隙中油气水三相共存,则有
二、、 岩石的力学性质
对于裂缝性储集层以及要对油气层进行压裂改造, 岩石的力学性质将起重要的作用,关于这方面是一个 专门的学科,这里仅讨论沉积岩岩石力学性质的常用 参数。
通常用以描述岩石力学性质的参数有以下几种,即
(1)静弹性模量:它定义为岩石承受应力后所形 成的应力—应变曲线的斜率。在许多砂岩储层中,静 弹性模量与岩石孔隙度常有密切关系,可以建立两者 之间的统计公式,或者是根据静弹性模量来预测孔隙 度,或者是用孔隙度来预测静弹性模量。
图1-4-10 束缚水饱和度渗透率同孔隙度之间的经验关系 (Musket, 1949)
第七章 储集岩石的其它 物理性质
一、 岩石的导电性
岩石与其它物质一样,具有传导电流的特性,这就 是岩石的导电性。岩石的这种特性,可用比电阻ρ的大 小来确定。当横截面积为1平方厘米、长度为1厘米的岩 样,其电阻的欧姆数即为岩样比电阻的量值。由此,ρ 因次可用欧姆·米或欧姆·厘米来表示。

饱和度

饱和度
△Vp——油层压力降低△p时,岩石孔隙体积的缩小值(cm3); △p——压力差(atm,MPa)。
欧美国家采用孔隙压缩系数 值:
Cp V p Vp 1 p
Cp
,定义为油层压力每产生
单位压降时,单位岩石孔隙体积所产生的孔隙体积变化
欧美与我国的换算关系 由于 V V p b
故C

S
n w

aR
m
w
Archie(阿尔奇) 公式计算法模型
Rt
Ro-孔隙中完全含水时的岩石电阻率,Ω·m Rt-岩石的真电阻率(原状地层电阻率), Ω·m Rw-地层水电阻率, Ω·m φ-岩石孔隙度(有效孔隙度),小数 Sw—含水饱和度,小数
I -地层电阻率增大系数 F -地层因素 m 称为胶结指数,胶结砂岩m可取为2 a 为实验常数,一般等于1 n 为饱和度指数,一般 n =2
§2 储油(气)岩石的压缩性
一、压缩系数的概念
储油(气)岩石从沉积开始,随着沉积层的加厚和深埋,
它一直受着一个上覆地层的地静压力(也叫外压力)和
岩石孔隙流体压力(也叫内压力)的作用,而这两者之 差就是岩石骨架的压实压力。由于压实压力的作用,岩 石发生弹性形变,度量这个形变的参数就是储油(气) 岩的压缩系数。
W 1 抽提前岩心的重量 W 2 经抽提、洗净烘干后岩 W 3 测出的水的重量 V p 岩样的孔隙体积 心的重量
2)干馏法
测定原理:通过仪器对岩心进行 高温烘烤,冷凝收集以及相关校 正后得到油水体积。 一般加温过程分二个阶段 第一个阶段是先均匀加温至350- 360度(20-30分钟),主要目的 是将岩样中的束缚水解吸 第二个阶段为进一步加温至500左 右(20-30分钟),主要目的是 将岩样中的石油干馏出来。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中国石油大学油层物理实验报告
实验日期:2014年9月22日成绩:
班级:石工(实验)1202 学号:姓名:教师:
同组者:
岩心流体饱和度的测定
一. 实验目的
1.巩固和加深油、水饱和度的概念;
2.掌握干馏仪测定岩心中油、水饱和度的原理及方法。

二.实验原理
把岩心放入钢制的岩心筒4内,并将其放入管状立式电炉中进行加热,通过电炉高温将岩心中的油和水变为油蒸汽和水蒸气蒸出,再通过下部的冷凝管9冷凝,收集于量筒中,读出油、水的体积,计算油、水饱和度。

三. 实验流程
温度传感器


电控
炉制

冷入出
凝水水
管阀阀
门门出水口


流程图
四. 实验步骤
1.精确称量饱和油水岩样的质量(100~175克),将其放入干净的岩心筒内,上紧上盖;
2.将岩心筒放入管状立式电炉中,使冷水循环,将温度传感器插杆装入温度传感器插孔中,把干净的量筒放在仪器液口的下面;
3.然后打开电源开关,设定初始温度为120℃,记录不同时间蒸出的水的体积;
4.当量筒中水的体积不再增加时(约30分钟);把温度设定为300℃,继续加热30分钟,量筒中油的体积不再增加,关上电源开关,5分钟后关掉循环水,记录量筒中油的体积读值。

5.从电炉中取出温度传感器及岩心筒,用冷水从上往下冲,待稍凉一段时间后打开上盖,倒出其中的干岩样称重并记录。

五. 数据处理
查出校正后的V o=3.80ml 。

根据公式 f W V S ρφ
⨯=00*100%
⨯⨯=f ρφ
W V S w
w 100%
So=3.8*1.85/43.6/0.32*100%=50.4%
Sw=1.6*1.85/43.6/0.32*100%=21.2% 油水饱和度测定原始记录:
孔隙度 % 岩样视密度 f ρ(3cm g ) 干馏后岩样 w (g ) 干馏出的水量 w V (ml) 干馏出的油量 0V (ml) 校正后的油量 0V (ml)
0S w S 32 1.85 43.6 1.60 3.30 3.80 50.4 21.2
六.小结
实验的目的是为了测量岩心流体的饱和度,我们通过测量干馏出的油水的体积来估算出岩心中的油水饱和度,然而误差会比较大,因为岩石中的结晶水会析出,而原油也会裂解,所以造成误差,需要我们严格控制好温度和时间,尽量减少误差。

相关文档
最新文档