matlab仿真
matlab潮流计算仿真方法

matlab潮流计算仿真方法
MATLAB 是一种强大的编程语言和环境,可用于执行各种仿真和计算任务,包括电力系统潮流计算。
以下是一个简单的 MATLAB 潮流计算仿真方法的
示例:
1. 定义系统参数:首先,你需要定义电力系统的参数,如发电机、负荷、变压器等。
这些参数通常包括额定电压、额定功率、电抗、电阻等。
2. 建立系统模型:使用这些参数,你可以在 MATLAB 中建立电力系统的模型。
这通常涉及到定义节点和支路,以及为它们分配相应的参数。
3. 编写潮流计算函数:接下来,你需要编写一个用于执行潮流计算的函数。
这个函数应该能够接收系统的模型和参数,并返回计算出的潮流结果,如电压、电流、功率等。
4. 运行仿真:最后,你可以运行仿真并调用你编写的潮流计算函数。
这将返回计算出的潮流结果,你可以使用这些结果进行进一步的分析或可视化。
这只是一个简单的示例,实际上在编写 MATLAB 潮流计算仿真方法时可能
需要考虑更多因素,例如系统的约束条件、初始条件、迭代算法的收敛性等。
如果你需要具体的 MATLAB 代码示例或更详细的指导,我建议你查阅MATLAB 的官方文档或相关的教程和文献。
matlab电路仿真教程

matlab电路仿真教程Matlab是一种功能强大的软件,用于进行电路仿真和分析。
通过Matlab,用户可以轻松地进行电路分析、验证和优化。
在本教程中,我将介绍如何使用Matlab进行电路仿真,并提供一些实例来帮助您更好地理解。
首先,我们需要了解Matlab中的电路仿真工具。
Matlab提供了许多函数和工具箱,用于电路建模和仿真。
其中最常用的是Simulink和Circuits工具箱。
Simulink是一个可视化的仿真环境,用于建立和模拟电路系统。
Circuits工具箱则提供了一些基本电路元件和函数,用于电路建模和分析。
要开始使用Matlab进行电路仿真,首先需要安装Matlab和Simulink软件,并确保您具有有效的许可证。
然后,打开Matlab并导航到Simulink库。
在Simulink库中,您将找到许多电路元件,例如电阻器、电容器和电感器,以及电压源和电流源。
将合适的元件拖放到工作区域中,然后连接它们以构建您的电路。
在电路建模完成后,您需要为电路设置适当的参数。
例如,您可以指定电阻、电容和电感的值,以及电压源和电流源的值。
您还可以添加信号源和观察点,以便在仿真期间监视电路的行为。
一旦您完成了电路建模和参数设置,接下来就可以对其进行仿真了。
在Simulink工具箱中,有几种不同类型的仿真可用,例如时域仿真和频域仿真。
通过选择合适的仿真类型,并设置仿真时间和步长,您可以开始执行仿真并观察电路的响应。
在仿真完成后,您可以使用Matlab绘图工具箱中的一些函数来绘制和分析电路响应。
例如,您可以绘制电压随时间的变化曲线,或者计算电源输出和负载电流之间的关系。
通过使用Matlab的分析工具,您还可以进行降阶、优化和参数估计等进一步分析。
让我们通过一个简单的示例来说明如何使用Matlab进行电路仿真。
假设我们有一个简单的RC电路,其中包括一个电阻器和一个电容器。
我们想要了解电容器的电压如何随时间变化。
如何利用Matlab进行模拟和仿真实验

如何利用Matlab进行模拟和仿真实验Matlab是一种功能强大的数学计算和数据可视化软件。
它不仅可以进行数学模拟和仿真实验,还可以处理数据、绘制图表和实施算法。
在工程、物理学、生物学等领域,Matlab被广泛用于解决各种实际问题。
本文将介绍如何利用Matlab进行模拟和仿真实验,并探讨其在实验设计和结果分析中的应用。
一. Matlab的基本功能Matlab具有很多基本功能,如矩阵操作、数值计算、符号计算等。
这些功能使得Matlab成为进行模拟和仿真实验的理想选择。
在Matlab中,可以定义和操作矩阵,进行线性代数运算,如求解方程组、矩阵求逆等。
此外,Matlab还提供了许多内置函数,可以进行数值计算和符号计算,如求解微分方程、积分、数值优化等。
二. 模拟实验的设计在进行模拟实验之前,首先需要设计实验方案。
实验设计包括选择合适的模型和参数设置,确定实验变量和观测指标等。
在Matlab中,可以使用函数或脚本来定义模型和参数,通过修改参数值来观察实验结果的变化。
比如,可以使用Matlab的模型库来选择合适的模型,然后使用函数传入参数值进行求解。
此外,Matlab还提供了绘图功能,可以绘制实验结果的图表,以便更直观地分析数据。
三. 仿真实验的实施在设计好实验方案后,就可以开始进行仿真实验了。
在Matlab中,可以使用已定义的模型和参数进行仿真计算。
可以通过Matlab的编程功能来实现计算过程的自动化。
比如,可以使用循环语句来迭代计算,以观察参数变化对结果的影响。
此外,Matlab还提供了随机数生成和统计分析函数,可以用于生成随机变量和分析实验数据。
四. 实验结果的分析在完成仿真实验后,需要对实验结果进行分析。
Matlab提供了丰富的数据处理和分析工具,可以对实验数据进行统计分析、绘图和可视化展示。
可以使用Matlab的数据处理函数来计算均值、标准差、相关系数等统计指标。
此外,Matlab还可以通过绘图函数来绘制直方图、散点图、线图等图形,以便更好地理解和展示数据。
学习使用MATLAB进行信号处理和仿真

学习使用MATLAB进行信号处理和仿真信号处理是一门重要的学科,它在许多领域中发挥关键作用,包括通信、图像处理、生物医学工程等。
而MATLAB作为一个功能强大的编程软件,具备丰富的信号处理和仿真工具,因此被广泛应用于信号处理领域。
本文将重点介绍如何学习使用MATLAB进行信号处理和仿真。
一、MATLAB入门要使用MATLAB进行信号处理和仿真,首先需要对MATLAB有一定的了解。
MATLAB是一种高级计算机语言,可用于数值计算、可视化和编程。
首先,我们需要学习MATLAB的基本语法和特点,包括变量的定义和操作、矩阵运算、函数的定义和调用等。
其次,熟悉MATLAB的常用工具箱,如信号处理工具箱和控制系统工具箱,它们提供了丰富的函数和算法,方便进行信号处理和仿真。
二、信号的表示与分析在信号处理中,首先需要了解信号的表示与分析方法。
MATLAB提供了多种表示信号的方法,包括时域分析和频域分析。
时域分析是通过观察信号在时间上的变化来研究信号的性质,常用的时域分析方法有时域图形显示、自相关函数和互相关函数等。
频域分析则是将信号转换到频域进行分析,常用的频域分析方法有傅里叶变换和功率谱密度估计等。
学习使用MATLAB进行信号的时域和频域分析,可以更好地理解和处理信号。
三、滤波器设计与应用滤波器是信号处理中非常常见和重要的工具。
它可以通过选择性地通过或抑制特定频率的信号,对信号进行处理。
MATLAB提供了丰富的滤波器设计和应用函数,包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器等。
我们可以利用MATLAB进行滤波器的设计、参数的调整和滤波器效果的评估等工作。
熟练掌握MATLAB中滤波器设计与应用的方法,对信号处理和仿真工作具有重要意义。
四、信号处理应用实例学习信号处理和仿真离不开实际应用实例的学习。
在这一章节中,将以几个具体的信号处理应用实例来展示MATLAB的具体使用。
比如,在通信领域中,我们可以利用MATLAB进行信号调制、解调和信道编码等工作。
MATLAB机器人仿真程序

MATLAB机器人仿真程序哎呀,说起 MATLAB 机器人仿真程序,这可真是个有趣又充满挑战的领域!我还记得有一次,我带着一群学生尝试做一个简单的机器人行走仿真。
那时候,大家都兴奋极了,眼睛里闪着好奇的光。
我们先从最基础的开始,了解 MATLAB 这个工具的各种函数和命令。
就像是给机器人准备好各种“零部件”,让它能顺利动起来。
比如说,我们要设定机器人的初始位置和姿态,这就好像是告诉机器人“嘿,你从这里出发,站好啦!”然后,再通过编程来控制它的运动轨迹。
有的同学想让机器人走直线,有的同学想让它拐个弯,还有的同学想让它走个复杂的曲线。
在这个过程中,可遇到了不少问题呢。
有个同学不小心把坐标设置错了,结果机器人“嗖”地一下跑到了不知道哪里去,大家哄堂大笑。
还有个同学在计算速度和加速度的时候出了差错,机器人的动作变得奇奇怪怪的,像是在跳“抽筋舞”。
不过,大家并没有气馁,而是一起努力找错误,修改代码。
终于,当我们看到那个小小的机器人按照我们设想的轨迹稳稳地行走时,那种成就感简直无法形容。
回到 MATLAB 机器人仿真程序本身,它其实就像是一个神奇的魔法盒子。
通过输入不同的指令和参数,我们可以创造出各种各样的机器人运动场景。
比如说,我们可以模拟机器人在不同地形上的行走,像是平坦的地面、崎岖的山路或者是湿滑的冰面。
这时候,我们就要考虑摩擦力、重力等各种因素对机器人运动的影响。
想象一下,机器人在冰面上小心翼翼地走着,生怕滑倒,是不是很有趣?而且,MATLAB 机器人仿真程序还能帮助我们优化机器人的设计。
比如说,如果我们发现机器人在某个动作上消耗了太多的能量,或者动作不够灵活,我们就可以通过调整程序中的参数来改进。
这就像是给机器人做了一次“整形手术”,让它变得更完美。
另外,我们还可以用它来进行多机器人的协同仿真。
想象一下,一群机器人在一起工作,有的负责搬运东西,有的负责巡逻,它们之间需要相互配合,避免碰撞。
这就需要我们精心设计它们的通信和协调机制,让它们像一支训练有素的团队一样高效工作。
MATLAB仿真

第2章 MATLAB仿真 与其它高级语言相比较,MATLAB具有独特的优势: (1) MATLAB是一种跨平台的数学语言。采用MATLAB 编写的程序可以在目前所有的操作系统上运行 ( 只要这些系 统上安装了MATLAB平台)。MATLAB程序不依赖于计算机 类型和操作系统类型。
(2) MATLAB是一种超高级语言。MATLAB平台本身是 用C语言写成的,其中汇集了当前最新的数学算法库,是许 多专业数学家和工程学者多年的劳动结晶。 MATLAB 意味着站在巨人的肩膀上观察和处理问题,所 以在编程效率,程序的可读性、可靠性和可移植性上远远超 过了常规的高级语言。这使得 MATLAB 成为了进行科学研 究和数值计算的首选语言。
第2章 MATLAB仿真 MATLAB中可以方便地进行复数运算,例如计算
5
a b
2
,其中,a=15+j3,b=5e j2。
>>a=15+j*3,b=5*exp(j*2),(a.^2+b).^(1/5)[回车] 6. MATLAB 提供了极为便利的数据可视化手段,可 以作出任意函数的图像。作为快速入门,在此以一个
二维作图为例,作出函数 y=e-x/10sinx 在 x∈[ -1,10 ]范
第2章 MATLAB仿真 (5) MATLAB具有强大的绘图功能。利用MATLAB的 绘图功能,可以轻易地获得高质量的(印刷级)曲线图。具 有多种形式来表达二维、三维图形,并具有强大的动画 功能,可以非常直观地表现抽象的数值结果。这也是 MATLAB广为流行的重要原因之一。 (6) MATLAB具有串口操作、声音输入输出等硬件操 控能力。随着版本的提高,这种能力还会不断加强,使 得人们利用计算机和实际硬件相连接的半实物仿真的梦 想得以轻易实现。 (7) MATLAB程序可以直接映射为DSP芯片可接受的 代码,大大提高了现代电子通信设备的研发效率。
MATLAB环境下的仿真软件

MATLAB环境下的仿真软件MATLAB是一种功能强大的数学仿真软件,它能够进行各种领域的仿真模拟和数据分析。
在MATLAB环境下,用户可以使用编程语言对各种数学问题进行建模,并且能够方便地进行数据可视化和结果分析。
本文将介绍MATLAB环境下的仿真软件的基本特点和相关应用。
首先,MATLAB环境下的仿真软件具有以下几个基本特点:1. 编程语言:MATLAB使用自身的编程语言,它结合了许多其他编程语言的特点,如C、FORTRAN等。
用户可以使用MATLAB编写脚本文件,便于对仿真模型进行建模、逻辑控制和可视化处理。
2. 广泛的库函数:MATLAB提供了丰富的库函数,用户可以直接调用这些函数进行数学计算、数据处理和图形绘制等。
这些库函数包括线性代数、信号处理、图像处理、数值计算等各个领域。
3. 图形界面:MATLAB提供了友好的图形界面,使用户能够轻松地进行模型建立、仿真运行和结果分析。
用户可以通过拖动、点击操作来创建和编辑仿真模型,同时实时查看仿真结果。
4. 数据可视化:MATLAB具有强大的数据可视化功能,可以将仿真结果以各种形式呈现,如二维曲线图、三维图形、动画等。
这些图形能够直观地展示仿真结果,方便用户进行分析和比较。
5. 跨学科应用:MATLAB广泛应用于各个学科领域,包括工程、物理、化学、生物、经济等。
用户可以根据自己的需求,选择相应的工具箱进行模型建立和仿真。
在MATLAB环境下,仿真软件可以应用于多个领域,下面以几个具体的案例来说明:1. 电路仿真:用户可以使用MATLAB的电路仿真工具箱,对电路进行模拟和分析。
用户可以通过电路图的方式建立模型,然后通过设置参数和初始条件,进行仿真运行。
仿真结果可以呈现电压、电流等变化曲线,方便用户进行电路分析和优化设计。
2. 控制系统仿真:用户可以使用MATLAB的控制系统工具箱,对控制系统进行建模和仿真。
用户可以通过传递函数或状态空间模型来描述控制系统,然后进行仿真运行。
如何使用Matlab进行控制系统仿真

如何使用Matlab进行控制系统仿真概述控制系统在工程领域中扮演着重要角色,它用于控制和管理各种工程过程和设备。
而控制系统仿真则是设计、开发和测试控制系统的关键环节之一。
Matlab作为一种功能强大的工程计算软件,提供了丰富的工具和功能,可以帮助工程师进行控制系统仿真。
本文将简要介绍如何使用Matlab进行控制系统仿真,以及一些实用的技巧和建议。
1. Matlab的基础知识在开始控制系统仿真之前,有一些Matlab的基础知识是必要的。
首先,了解Matlab的基本语法和命令,熟悉Matlab的工作环境和编辑器。
其次,学会使用Matlab的集成开发环境(IDE)进行编程和数学建模。
熟悉Matlab的常用函数和工具箱,并了解如何在Matlab中导入和导出数据。
2. 定义系统模型在进行控制系统仿真之前,需要定义系统的数学模型。
根据具体情况选择合适的建模方法,如传递函数、状态空间或差分方程等。
在Matlab中,可以使用tf、ss 或zpk等函数来创建系统模型,并指定系统的参数和输入信号。
此外,Matlab还提供了Simulink这一强大的图形化建模环境,方便用户以图形化界面设计系统模型。
3. 设计控制器控制系统仿真的关键是设计合适的控制器,以实现所需的控制目标。
Matlab提供了各种控制器设计方法和工具,如PID控制器、根轨迹法、频域方法等。
用户可以使用Matlab的Control System Toolbox来设计和分析控制器,并在仿真中进行验证。
此外,Matlab还支持自适应控制和模糊控制等高级控制方法,可根据具体需求选择合适的方法。
4. 进行仿真实验在完成系统模型和控制器设计后,可以开始进行控制系统仿真实验。
首先,确定仿真实验的输入信号,如阶跃信号、正弦信号或随机信号等。
然后,使用Matlab中的sim函数将输入信号应用到系统模型中,并观察系统的输出响应。
通过调整控制器参数或设计不同的控制器,分析系统的性能和稳定性,并优化控制器的设计。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.1 快速入门(续用户将观察到现实世界中非线性因 素和各种随机因素对系统行为的影响。
在 SIMULINK 环境中,用户可以在仿真进程中改变感兴趣 的参数,实时地观察系统行为的变化。
在MATLAB 5.3 版中,可直接在 SIMULINK 环境中运作的 工具包很多,已覆盖通信、控制、信号处理、DSP、电力系 统等诸多领域,所涉内容专业性极强。 本讲由浅入深地讲述 SIMULINK 对各种数学、工程问题的 建模、仿真和分析的基本方法,采用“算例”作为主体,配以 适量的归纳性表述。 例3_1_1:信号发生器和示波器。
9
3.4 系统建模 3.4.1 连续系统建模
线性系统建模举例 例3_4_1:复位积分器的功用示例。 在仿真启动时,积分器从零开始对 0.5 t 进行积分。当复位口 信号 t-5=0 瞬间,积分器被重置为零。此后,再对0.5 ( t-5 ) 进行积分。 例3_4_2:积分模块直接构造微分方程求解模型。 假设从实际自然界(力学、电学、生态等)或社会中,抽象 出有初始状态为0的二阶微分程 x 0.2 x 0.4 x 0.2u, (t ) u (t )是单位阶跃函数。本例演示如何用积分器直接构搭求解该微 分方程的模型。 例3_4_3:直接利用传递函数模块求解方程。 对二阶微分程进行拉氏变换:s 2 X (s) 0.2sX (s) 0.4 X (s) 0.2U (s)
15
3.5.1 用封装的办法创建模块(续)
2。产生封装提示对话框 要产生这个系统的封装,先选取子系统模块,然后从 Edit 菜单中选取 Mask Subsystem 命令。 封装提示对话框开始时大都显示 Mask Editor 对话框的 Initialization 选项卡。 把 Slope 和 Intercept 定义为 Edit 控件。 3。产生封装模块描述和帮助文本 在 Documentation 选项卡中可以定义模块的封装类型、模 块描述和帮助文本。 4。产生模块的图标 可以在 Mask Editor 对话框的 Icon 选项卡中定义图标。
(3)双击空子系统模块Subsystem ,打开其结构模型窗。 (4)从SIMULINK库中拷贝In输入口模块、Out输出口模块、Enable使能 模块到子系统的结构模型窗;把In 模块的输出直接送到Out模块的输入端; Enable模块无须进行任何连接,且本例采用它的缺省设置;便实现了题目 所需使能子系统。 (5)完成M3_ex3_5_2窗口中各模块间的连接。 (6)双击示波器模块,打开显示窗。然后选择M3_ex3_5_2窗口菜单项 【Simulation:Start】,就可看到半波整流后的波形。
例3_1_2:实现两个正弦信号的相乘。
3
3.2 模型的创建和模型文件
3.2.1 SIMULINK 模型是什么? SIMULINK 模型有以下几层含义: • 在视觉上表现为直观的方框图; • 在文件上则是扩展名为 mdl 的ASCII代码; • 在数学上表现为一组微分方程或差分方程; • 在行为上则模拟了实际系统的动态特性 。 SIMULINK 模型通常包含三种 “组件”: • 信源( Sources):可以是常数、时钟、白噪声、正弦波、 阶梯波、扫频信号、脉冲生成器、随机数产生器等信号源; • 系统( System):即指被研究系统的 SIMULINK 方框图; • 信宿( Sink):可以是示波器、图形记录仪等。 对于具体的 SIMULINK 模型而,不一定完全地包含这三大 组件。例如:研究初始条件对系统影响就不必包含信源组件。
14
3.5.1 用封装的办法创建模块
1。封装模块功能 例3_5_1:封装线性方程 y=mx+b 的模型。 ( M3_ex3_5_1.mdl) 在 SIMULINK 中产生线性方程 y=mx+b 的模型,并生成 mx+b 子系统。 子系统mx+b 包含了一个Gain模块,命名为Slope,其增 益常数为m;一个Constant模块,命名为Intercept,其常数 值参数指定为b。这些参数代表一条直线的斜率和截距。 封装该子系统产生一个用户对话框和图标。对话框包含对 斜率和截距的提示。 用户向封装对话框输入 Slope和 Intercept 的值。封装将这 些封装参数映射给底层模块。
13
3.5 子系统的创建、封装及受控执行
利用 SIMULINK 的封装(Mask)功能 ,可以定做一个模块 或一个子系统的对话框和图标 。 引用子系统的理由是:研究分析系统时 ,进行概念抽象 (Abstraction of concepts)的需要;为提高工作效率和可靠 性,实施模块“重用(Reuse)” 的需要。 仿真建模中子系统的作用,类 似于 MATLAB 指令运行中的 M函数文件。 前面介绍了如何利用库标准模块建立被研究系统的仿真模型。 下面着重介绍如何利用“分层”思想建立比较复杂的仿真模型, 介绍建立这种分层模型所需的各种子系统( Subsystem )。 封装的一个重要用途是帮助用户创建一个对话框来接受参 数。这样就无需打开子系统中各个模块的对话框,然后再逐 个输入参数。
11
3.4.2 离散时间系统和混合系统建模
c 用组合逻辑模块产生 a, b 的“逻辑和”结果 (1) 或”结果 。 c(2)
(1)建立输入输出关系。 (2)建立模型M3_ex3_4_5.mdl 及“逻辑
12
3.4.2 离散时间系统和混合系统建模(续)
多速率离散时间系统:计算机就是这样的系统。它的CPU、 串行/并行控制器、 磁盘驱动器、输入 键盘就采用不同的工作 速率。再如通信系统也是多速率系统。 离散-连续混合系统:在现代控制系统中 ,通常被控的对象 是连续时间的(物理)子系统,而控制器是由逻辑控制器或 计算机构成的离散子系统。对于这种离散-连续混合系统,模 型参数设置页中的几乎所有 Solver 解算方法都能采用 。 可以使该模型及其所有子系统按采样速率着色:连续时间部 分用黑色;离散时间部分用红色;离散、连续混合的子系统 被着黄色。
第三讲 MATLAB的 SIMULINK仿真
3.1 快速入门 3.2 模型的创建和模型文件 3.3 仿真运行 3.4 系统建模 3.5 子系统的创建、封装及受控执行 3.6 常用工具箱简介 3.7 仿真设计实例 3.7.1 幅度调制的仿真 3.7.2 平衡正交调幅与解调
1
3.1 快速入门
SIMULINK是一个进行动态系统建模、仿真和综合分析的 集成软件包。它可以处理的系统包括:线性、非线性系统; 离散、连续及混合系统;单任务、多任务离散事件系统。 在 SIMULINK 提供的图形用户界面GUI上,只要进行鼠标 的简单拖拉操作就可构造出复杂的仿真模型。它外表以方块 图形式呈现,且采用分层结构。 • 从建模角度讲,这既适于自上而下(Top-down)的设计 流程(概念、功能、系统、子系统、直至器件),又适于 自下而上(Bottum-up) 逆程设计。 • 从分析研究角度讲,这种 SIMULINK 模型不仅能让用户 知道具体环节的动态细节,而且能让用户清晰地了解各器 件、各子系统、各系统间的信息交换,掌握各部分之间的 交互影响。
(A)SIMULINK模型和MATLAB指令的配合使用。 (B)sim , simset , trim 指令的应用。 (C)二阶系统相轨迹的精良图形。 (1)非线性系统由 SIMULINK 模型M3_ex3_4_4 _ mdl 表达。 (2)编写绘制传统状态轨迹(State trajectory)的M文件 M3_ ex 3_4 _4.m
17
使能子系统
例3_5_2:利用使能原理构成一个半波整流器。本例演示使能子系统的创建 及工作机理。 ( M3_ex3_5_2.mdl) (1)打开SIMULINK的新建模型窗口。
(2)从SIMULINK库中提取三个模块Sine wave、 Subsystem 、 Scope 到新 建窗。然后进行文件保存操作,并起文件名为M3_ex3_5_2 (这保存操作只 为以后调用方便,并非必要)。
7
3.3 仿真运行(续1)
3.3.2 通过命令行运行仿真 通过命令行运行仿真与通过菜单运行仿真相比 ,有如下的 一些优点: • 可以不理睬模块中的初始条件(参数 x0 ); • 可以定义任何外部输入(用参数 ut ); • 可以由一个M 文件来启动一个仿真,并且允许模块中的 参数发生改变 。 用来进行仿真的命令有四个: • 使用 set_param 命令:开始、停止或者继续仿真或者更新 模块的方框图。 get_param 命令来检查一个仿真的状态。 • 使用 sim 命令:启动仿真命令; • 使用 simset 命令:用来向 sim 命令产生或者编辑仿真参数 和积分法属性的命令; • 使用 simget 命令:可以得到选项结构体属性和参数。
4
3.2 模型的创建和模型文件(续1)
3.2.2 SIMULINK 模型的创建 创建模型文件; 选择对象; 模块的操作; 连线的操作; 对模型的注释; 创建子系统; 仿真的配置 ; 保存模型; 仿真和结果分析。
5
3.2 模型的创建和模型文件(续2)
3.2.3 SIMULINK 模型文件 SIMULINK 除了可以通过图形界面设计模块外 ,也可以 通过直接编写 mdl 文件来设计仿真模型图。 一个有输入和输出的图形界面设计模块。
可以得到:
G( s)
X ( s) 0.2 2 U ( s) s 0.2s 0.4
10
3.4.1 连续系统建模(续)
非线性系统建模举例
x1 x1 2 x 2 2 4 例3_4_4:求非线性系统 的相平面轨迹、 x 2 2 x1 x 2
平衡点,并进行稳定性分析。 本例综合演示:
16
3.5.2 条件执行子系统
在 SIMULINK 模块库中,有两个特殊模块:Enable 模块 和Trigger 模块。如果把这种模块放到某个子系统中,则该子 系统是否起作用将取决于外界的某个条件(状态或事件 )是 否满足,这样就构成了所谓的条件执行子系统 (Conditionally Executed Subsystem) 。 常用的条件执行子系统有:使能子系统 ( Enabled Subsystem );触发子系统 ( Trigged Subsystem ); 触发使能子系统 ( Trigged and Enabled Subsystem )。