matlab控制系统仿真课程设计
计算机仿真技术与CAD基于MATLAB的控制系统第四版课程设计

计算机仿真技术与CAD基于MATLAB的控制系统第四版课程设计一、课程设计的背景随着计算技术的发展,越来越多的机电设备采用了控制系统,从而提高了生产力和工作效率。
因此,控制系统的设计和仿真技术也得到了越来越广泛的应用。
为了提高控制系统的性能,提高系统的可靠性和稳定性,需要采用控制系统设计和仿真技术。
在此背景下,本次课程设计旨在通过MATLAB软件对控制系统进行仿真设计,从而提高学生的控制系统设计和仿真技能。
二、课程设计的目的本次课程设计的目的主要包括以下几个方面:1.提高学生的控制系统设计和仿真能力;2.增强学生的MATLAB编程技术;3.帮助学生理解控制系统的基本原理及其应用;4.增强学生团队合作和沟通能力。
三、课程设计的内容和要求本次课程设计主要有以下内容和要求:3.1 选题背景和意义选题需要有明确的背景和意义,可以结合实际应用场景进行选择。
3.2 系统分析与模型建立学生需要对待设计的控制系统进行系统分析,并建立相应的模型。
包括控制系统的框图、信号流图、传递函数、状态空间等。
3.3 控制器的设计与仿真学生需要对设计的控制系统设计相应的控制器,并进行仿真评估。
包括根轨迹法、频域设计法、状态反馈控制、PID控制等。
3.4 性能分析与评价学生需要对仿真结果进行性能分析与评价。
包括阶跃响应,超调量,稳态误差等。
3.5 实验设计与编程实现学生需要将设计的控制系统进行实验设计,并用MATLAB编写程序进行实现与测试。
3.6 结果分析与总结学生需要对实验结果进行分析与总结,从控制效果、系统应用等方面加以评价。
四、课程设计的实施方法本次课程设计的实施方法主要包括以下几个方面:1.采取团队合作的方式进行任务分配和工作安排;2.利用网上资源和实验平台,进行实践学习与实验操作;3.在课程设计的过程中,主要采用课堂授课和实验操作相结合的方式进行;4.通过实验操作和讨论,进行知识交流和实践探索。
五、课程设计的评价方法本次课程设计的评价主要从以下几个方面进行:1.对学生在选题、模型分析、控制器设计、仿真评价等方面的表现和成果进行评价;2.对学生实验操作能力和MATLAB编程水平进行评价;3.对团队合作和沟通能力进行评价;4.对报告和总结的撰写质量进行评价。
基于matlab的pid控制仿真课程设计

这篇文章是关于基于Matlab的PID控制仿真课程设计的,主要内容包括PID控制的基本原理、Matlab的应用、课程设计的目的和意义、课程设计的具体步骤和具体操作步骤。
文章采用客观正式的语气,结构合理,旨在解释基于Matlab的PID控制仿真课程设计的重要性和实施方法。
1. 简介PID控制是一种常见的控制算法,由比例项(P)、积分项(I)和微分项(D)组成,可以根据被控对象的实际输出与期望输出的偏差来调整控制器的输出,从而实现对被控对象的精确控制。
Matlab是一种强大的数学建模与仿真软件,广泛应用于工程领域,尤其在控制系统设计和仿真方面具有独特优势。
2. PID控制的基本原理PID控制算法根据被控对象的实际输出与期望输出的偏差来调整控制器的输出。
具体来说,比例项根据偏差的大小直接调整输出,积分项根据偏差的积累情况调整输出,微分项根据偏差的变化速度调整输出。
三者综合起来,可以实现对被控对象的精确控制。
3. Matlab在PID控制中的应用Matlab提供了丰富的工具箱,其中包括控制系统工具箱,可以方便地进行PID控制算法的设计、仿真和调试。
利用Matlab,可以快速建立被控对象的数学模型,设计PID控制器,并进行系统的仿真和性能分析,为工程实践提供重要支持。
4. 课程设计的目的和意义基于Matlab的PID控制仿真课程设计,旨在帮助学生深入理解PID控制算法的原理和实现方法,掌握Matlab在控制系统设计中的应用技能,提高学生的工程实践能力和创新思维。
5. 课程设计的具体步骤(1)理论学习:学生首先需要学习PID控制算法的基本原理和Matlab在控制系统设计中的应用知识,包括控制系统的建模、PID控制器的设计原理、Matlab的控制系统工具箱的基本使用方法等。
(2)案例分析:学生根据教师提供的PID控制实例,在Matlab环境下进行仿真分析,了解PID控制算法的具体应用场景和性能指标。
(3)课程设计任务:学生根据所学知识,选择一个具体的控制对象,如温度控制系统、水位控制系统等,利用Matlab建立其数学模型,设计PID控制器,并进行系统的仿真和性能分析。
matlab仿真模型课程设计

matlab仿真模型课程设计一、课程目标知识目标:1. 学生能理解Matlab仿真模型的基本概念和原理;2. 学生掌握运用Matlab软件构建和运行仿真模型的基本方法;3. 学生了解仿真模型在工程和科研领域的应用。
技能目标:1. 学生能运用Matlab软件进行数据采集、处理和分析;2. 学生具备独立设计简单的仿真模型并进行验证的能力;3. 学生能够通过仿真实验,分析实验结果,提出改进措施。
情感态度价值观目标:1. 学生对Matlab仿真模型产生兴趣,提高学习主动性和积极性;2. 学生在团队合作中培养沟通能力和协作精神;3. 学生通过解决实际问题,培养创新意识和实际操作能力;4. 学生了解仿真技术在国家发展和社会进步中的重要作用,增强社会责任感和使命感。
课程性质:本课程为实践性较强的选修课程,旨在通过Matlab仿真模型的学习,提高学生运用计算机软件解决实际问题的能力。
学生特点:学生具备一定的数学基础和编程能力,对新鲜事物充满好奇,喜欢动手实践。
教学要求:结合课本内容,注重理论与实践相结合,充分调动学生的主观能动性,培养学生的实际操作能力和团队协作能力。
通过本课程的学习,使学生能够将所学的仿真模型知识应用于实际问题的解决。
二、教学内容1. Matlab软件基础操作与数据类型- 软件界面与基本操作- 数据类型及其运算规则2. Matlab编程基础- 控制语句与循环语句- 函数与脚本文件编写3. 仿真模型构建与运行- 建立数学模型- 搭建仿真模型框架- 模型参数设置与优化4. 数据采集与处理- 数据导入与导出- 数据预处理方法- 数据可视化分析5. 仿真实验与结果分析- 实验设计原则与方法- 实验结果分析技巧- 结果验证与误差分析6. 仿真模型应用案例- 工程领域的应用案例- 科研领域的应用案例- 创新性应用探讨教学大纲安排:第1周:Matlab软件基础操作与数据类型第2周:Matlab编程基础第3-4周:仿真模型构建与运行第5周:数据采集与处理第6周:仿真实验与结果分析第7周:仿真模型应用案例教学内容与课本关联性:教学内容依据课本章节进行组织,涵盖课本中仿真模型相关的基础知识、编程技巧、实际应用等方面,确保学生能够系统地掌握Matlab仿真模型相关知识。
matlab仿真实训课程设计

matlab仿真实训课程设计一、课程目标知识目标:1. 理解Matlab仿真的基本原理,掌握仿真模型的构建方法;2. 学会运用Matlab进行数据可视化,分析仿真结果,并提取有效信息;3. 掌握结合课本知识,运用Matlab解决实际问题的能力。
技能目标:1. 能够独立进行Matlab仿真实验,熟练操作Matlab软件;2. 学会编写简单的Matlab程序,实现对仿真模型的参数调整和优化;3. 能够运用Matlab工具箱进行数据分析和处理,提高问题解决效率。
情感态度价值观目标:1. 培养学生对Matlab仿真的兴趣,激发学生探索科学问题的热情;2. 培养学生的团队协作意识,提高沟通与表达能力;3. 引导学生认识到仿真技术在工程领域的应用价值,树立正确的工程观念。
课程性质:本课程为选修课,旨在帮助学生掌握Matlab仿真的基本技能,提高解决实际问题的能力。
学生特点:学生具备一定的编程基础和数学知识,对Matlab软件有一定了解,但实际操作能力较弱。
教学要求:结合课本内容,注重实践操作,提高学生的动手能力,使学生在实践中掌握理论知识。
将目标分解为具体的学习成果,便于教学设计和评估。
二、教学内容1. Matlab仿真基础- 介绍Matlab软件的安装与基本操作;- Matlab编程基础,包括数据类型、流程控制、函数编写等;- 理解仿真原理,掌握仿真模型构建的基本方法。
2. 数据可视化与分析- 学会使用Matlab进行数据可视化,如二维、三维图形绘制;- 掌握曲线拟合、插值、图像处理等数据分析方法;- 结合课本案例,进行实际操作练习。
3. 仿真实验与问题求解- 根据课本内容,选择合适的问题进行Matlab仿真实验;- 学会调整仿真模型参数,优化实验结果;- 分析实验数据,提取有效信息,解决实际问题。
4. 工具箱应用- 介绍Matlab常用工具箱,如信号处理、控制系统、神经网络等;- 学会运用工具箱进行数据分析和处理,提高问题解决效率;- 结合课本案例,进行实际应用练习。
matlab课程设计自动控制原理

matlab课程设计自动控制原理一、教学目标本课程的目标是使学生掌握自动控制原理的基本概念和MATLAB在自动控制领域的应用。
通过本课程的学习,学生应能理解自动控制系统的组成、工作原理和设计方法,熟练运用MATLAB进行自动控制系统的分析和仿真。
知识目标:学生通过本课程的学习,应掌握自动控制基本理论、MATLAB基本操作和自动控制系统仿真方法。
技能目标:学生应能熟练使用MATLAB进行自动控制系统的建模、仿真和分析,具备一定的实际问题解决能力。
情感态度价值观目标:培养学生对自动控制技术的兴趣和热情,提高学生运用现代技术手段进行科学研究的能力,培养学生的创新精神和团队合作意识。
二、教学内容本课程的教学内容主要包括自动控制原理的基本概念、MATLAB的基本操作和自动控制系统的仿真方法。
1.自动控制原理:包括自动控制系统的组成、数学模型、稳定性分析、控制器设计和校正方法等。
2.MATLAB基本操作:包括MATLAB的安装和启动、变量和数据类型、矩阵运算、编程和函数的使用等。
3.自动控制系统仿真:包括MATLAB仿真环境的设置、Simulink的介绍和应用、控制系统仿真的方法和步骤等。
三、教学方法本课程采用讲授法、案例分析法和实验法相结合的教学方法。
1.讲授法:通过教师的讲解,使学生掌握自动控制原理的基本概念和MATLAB的基本操作。
2.案例分析法:通过分析实际案例,使学生理解和掌握自动控制系统的建模和仿真方法。
3.实验法:通过上机实验,使学生熟练掌握MATLAB自动控制系统仿真工具的使用,提高学生的实际操作能力。
四、教学资源本课程的教学资源包括教材、多媒体资料和实验室设备。
1.教材:选用《自动控制原理》和《MATLAB基础教程》作为主要教材,为学生提供系统的理论知识和实践指导。
2.多媒体资料:制作课件、教学视频等,以图文并茂的形式展示自动控制原理和MATLAB的操作方法。
3.实验室设备:提供计算机和MATLAB软件,供学生进行自动控制系统的仿真实验。
matlab控制系统课程设计

matlab控制系统课程设计一、课程目标知识目标:1. 学生能掌握MATLAB软件的基本操作,并运用其进行控制系统的建模与仿真。
2. 学生能理解控制系统的基本原理,掌握控制系统的数学描述方法。
3. 学生能运用MATLAB软件分析控制系统的稳定性、瞬态响应和稳态性能。
技能目标:1. 学生能运用MATLAB软件构建控制系统的模型,并进行时域和频域分析。
2. 学生能通过MATLAB编程实现控制算法,如PID控制、状态反馈控制等。
3. 学生能对控制系统的性能进行优化,并提出改进措施。
情感态度价值观目标:1. 学生通过课程学习,培养对自动化技术的兴趣和热情,提高创新意识和实践能力。
2. 学生在团队协作中,学会沟通与交流,培养合作精神和集体荣誉感。
3. 学生能认识到控制系统在现代工程技术中的重要作用,增强社会责任感和使命感。
课程性质:本课程为实践性较强的课程,注重理论知识与实际应用相结合。
学生特点:学生具备一定的数学基础和控制理论基础知识,对MATLAB软件有一定了解。
教学要求:教师需采用案例教学法,引导学生运用MATLAB软件进行控制系统设计,注重培养学生的实际操作能力和解决问题的能力。
同时,将课程目标分解为具体的学习成果,以便进行教学设计和评估。
二、教学内容1. 控制系统概述:介绍控制系统的基本概念、分类及发展历程,使学生了解控制系统的基本框架。
- 教材章节:第一章 控制系统概述2. 控制系统的数学模型:讲解控制系统的数学描述方法,包括微分方程、传递函数、状态空间方程等。
- 教材章节:第二章 控制系统的数学模型3. MATLAB软件操作基础:介绍MATLAB软件的基本操作,包括数据类型、矩阵运算、函数编写等。
- 教材章节:第三章 MATLAB软件操作基础4. 控制系统建模与仿真:利用MATLAB软件进行控制系统的建模与仿真,分析系统的稳定性、瞬态响应和稳态性能。
- 教材章节:第四章 控制系统建模与仿真5. 控制算法及其MATLAB实现:讲解常见控制算法,如PID控制、状态反馈控制等,并通过MATLAB编程实现。
MATLAB课程设计报告(绝对完整)

课程设计任务书学生姓名:董航专业班级:电信1006班指导教师:阙大顺,李景松工作单位:信息工程学院课程设计名称:Matlab应用课程设计课程设计题目:Matlab运算与应用设计5初始条件:1.Matlab6.5以上版本软件;2.课程设计辅导资料:“Matlab语言基础及使用入门”、“Matlab及在电子信息课程中的应用”、线性代数及相关书籍等;3.先修课程:高等数学、线性代数、电路、Matlab应用实践及信号处理类相关课程等。
要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)1.课程设计内容:根据指导老师给定的7套题目,按规定选择其中1套完成;2.本课程设计统一技术要求:研读辅导资料对应章节,对选定的设计题目进行理论分析,针对具体设计部分的原理分析、建模、必要的推导和可行性分析,画出程序设计框图,编写程序代码(含注释),上机调试运行程序,记录实验结果(含计算结果和图表),并对实验结果进行分析和总结。
具体设计要求包括:①初步了解Matlab、熟悉Matlab界面、进行简单操作;②MATLAB的数值计算:创建矩阵矩阵运算、多项式运算、线性方程组、数值统计;③基本绘图函数:plot, plot3, mesh, surf等,要求掌握以上绘图函数的用法、简单图形标注、简单颜色设定等;④使用文本编辑器编辑m文件,函数调用;⑤能进行简单的信号处理Matlab编程;⑥按要求参加课程设计实验演示和答辩等。
3.课程设计说明书按学校“课程设计工作规范”中的“统一书写格式”撰写,具体包括:①目录;②与设计题目相关的理论分析、归纳和总结;③与设计内容相关的原理分析、建模、推导、可行性分析;④程序设计框图、程序代码(含注释)、程序运行结果和图表、实验结果分析和总结;⑤课程设计的心得体会(至少500字);⑥参考文献(不少于5篇);⑦其它必要内容等。
时间安排:1.5周(分散进行)参考文献:[1](美)穆尔,高会生,刘童娜,李聪聪.MA TLAB实用教程(第二版) . 电子工业出版社,2010.[2]王正林,刘明.精通MATLAB(升级版) .电子工业出版社,2011.[3]陈杰. MA TLAB宝典(第3版) . 电子工业出版社,2011.[4]刘保柱,苏彦华,张宏林. MATLAB 7.0从入门到精通(修订版) . 人民邮电出版社,2010.指导教师签名:年月日系主任(或责任教师)签名:年月日目录1 MATLAB的简介 (1)2课程设计内容 (4)2.1 (5)2.2 (2)2.3 (2)2.4 (2)2.5 (2)2.6 (2)2.7 (2)2.8 (2)2.9 (2)2.10 (2)3课程设计心得体会 (1)4参考文献 (1)1 Matlab 软件简介1.1 MATLAB产生的历史背景MATLAB 是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。
机器人matlab仿真课程设计

机器人matlab仿真课程设计一、教学目标本课程的教学目标是使学生掌握机器人Matlab仿真基本原理和方法,能够运用Matlab进行简单的机器人系统仿真。
具体分解为以下三个目标:1.知识目标:学生需要了解机器人Matlab仿真的基本原理,掌握Matlab在机器人领域中的应用方法。
2.技能目标:学生能够熟练使用Matlab进行机器人系统的仿真,包括建立仿真模型、设置仿真参数、运行仿真实验等。
3.情感态度价值观目标:通过课程学习,培养学生对机器人技术的兴趣和热情,提高学生解决实际问题的能力,培养学生的创新精神和团队合作意识。
二、教学内容教学内容主要包括以下几个部分:1.Matlab基础知识:介绍Matlab的基本功能和操作,包括数据处理、图形绘制、编程等。
2.机器人数学模型:介绍机器人的运动学、动力学模型,以及传感器和执行器的数学模型。
3.机器人仿真原理:讲解机器人仿真的一般方法和步骤,包括建立仿真模型、设置仿真参数、运行仿真实验等。
4.机器人控制系统仿真:介绍机器人控制系统的结构和原理,以及如何使用Matlab进行控制系统仿真。
5.机器人路径规划仿真:讲解机器人在复杂环境中的路径规划方法,以及如何使用Matlab进行路径规划仿真。
三、教学方法为了达到上述教学目标,我们将采用以下教学方法:1.讲授法:通过讲解和演示,使学生了解机器人Matlab仿真的基本原理和方法。
2.案例分析法:通过分析实际案例,使学生掌握Matlab在机器人领域中的应用。
3.实验法:让学生亲自动手进行机器人仿真实验,巩固所学知识,提高实际操作能力。
4.小组讨论法:鼓励学生分组讨论,培养学生的团队合作意识和解决问题的能力。
四、教学资源为了支持教学内容的实施,我们将准备以下教学资源:1.教材:《机器人Matlab仿真教程》。
2.参考书:相关领域的研究论文和书籍。
3.多媒体资料:教学PPT、视频教程等。
4.实验设备:计算机、Matlab软件、机器人仿真实验平台。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课程设计报告
题目PID控制器应用
课程名称控制系统仿真院部名称机电工程学院专业
班级
学生姓名
学号
课程设计地点
课程设计学时
指导教师
金陵科技学院教务处制成绩
一、课程设计应达到的目的
应用所学的自动控制基本知识与工程设计方法,结合生产实际,确定系统的性能指标与实现方案,进行控制系统的初步设计。
应用计算机仿真技术,通过在MATLAB软件上建立控制系统的数学模型,对控制系统进行性能仿真研究,掌握系统参数对系统性能的影响。
二、课程设计题目及要求
1.单回路控制系统的设计及仿真。
2.串级控制系统的设计及仿真。
3.反馈前馈控制系统的设计及仿真。
4.采用Smith 补偿器克服纯滞后的控制系统的设计及仿真。
三、课程设计的内容与步骤
(1).单回路控制系统的设计及仿真。
(a)已知被控对象传函W(s) = 1 / (s2 +20s + 1)。
(b)画出单回路控制系统的方框图。
(c)用MatLab的Simulink画出该系统。
(d)选PID调节器的参数使系统的控制性能较好,并画出相应的单位阶约响应
曲线。
注明所用PID调节器公式。
PID调节器公式Wc(s)=50(5s+1)/(3s+1) 给定值为单位阶跃响应幅值为3。
有积分作用单回路控制系统
无积分作用单回路控制系统
大比例作用单回路控制系统
(e)修改调节器的参数,观察系统的稳定性或单位阶约响应曲线,理解控制器参数对系统的稳定性及控制性能的影响?
答:由上图分别可以看出无积分作用和大比例积分作用下的系数响应曲线,这两个PID调节的响应曲线均不如前面的理想。
增大比例系数将加快系统的响应,但是过大的比例系数会使系统有比较大的超调,并产生振荡,使稳定性变坏;增大积分时间有利于减小超调,减小振荡,使系统的稳定性增加,但是系统静差消除时间变长,加入微分环节,有利于加快系统的响应速度,使系统超调量减小,稳定性增加。
(2).串级控制系统的设计及仿真。
(a)已知主被控对象传函W
01(s) = 1 / (100s + 1),副被控对象传函W
02
(s) =
1 / (10s + 1),副环干扰通道传函W
d
(s) = 1/(s2 +20s + 1)。
(b)画出串级控制系统方框图及相同控制对象下的单回路控制系统的方框图。
(c)用MatLab的Simulink画出上述两系统。
串级控制系统
单回路控制系统
(d)选PID调节器的参数使串级控制系统的控制性能较好,并画出相应的单位阶约响应曲线,PID调节器传函:主:Wc(s)=100(40s+1)/ (s+1) 副:Wc(s)=100/(20s+1)
(e)比较单回路控制系统及串级控制系统在相同的副扰动下的单位阶约响应曲线,并说明原因?
串级控制系统
单回路控制系统
答:比较两控制系统单位阶跃响应可得到串级控制系统的效果比较好。
原因:串级控制系统改善了被控过程的动态特性,提高了系统的工作频率,具有较强的抗干扰能力,具有一定的自适应能力,能够准确及时地对系统的扰动进行校正,防止扰动对系统的影响。
(3).反馈前馈控制系统的设计及仿真。
(a)已知被控对象传函W
0(s) = 1 / (s2 +s + 1),干扰通道传函W
f
(s) = 1 / (s2
+2s + 5),前馈随机干扰信号幅值 = 50,频率 = 10。
(b)确定前馈控制器的传函W
m
(s),并画出反馈前馈控制系统的系统方框图及相应的单回路控制系统的方框图。
(c)用MatLab的Simulink画出上述两系统。
反馈前馈控制系统
单回路控制系统
(d)选PID调节器的参数使系统的控制性能较好,并画出相应的单位阶约响应曲线。
PID调节器传函:Wc(s)=30(10s+1) / (5s+1)
设干扰源幅值为50,频率为10 Hz
单回路控制系统
单回路控制系统细节部分
反馈前馈控制系统
反馈前馈控制系统细节部分
(e)比较单回路控制系统及反馈前馈控制系统在相同的单位阶约扰动下的响应曲线,并说明原因?
答:单回路与前馈反馈系统的响应差别不是很大,由上图可知不加前馈时,系统受到干扰较严重,加上前馈之后,可使系统不受干扰的影响。
前馈反馈复合控制系统既发挥了前馈作用,可及时克服主要扰动对被控量影响,又可保持了反馈控制能克服多个扰动的影响。
(4).采用Smith 补偿器克服纯滞后的控制系统的设计及仿真。
(a) 已知被控对象传函
(s) = e - 4 s / (20s + 1)。
W
(b) 画出采用Smith 补偿器的反馈控制系统的系统方框图及相应的单回路控
制系统的方框图。
(c) 用MatLab的Simulink画出上述两系统。
采用Smith补偿器的反馈控制系统
单回路控制系统
(d) 选PID调节器的参数使采用Smith 补偿器的反馈控制系统的控制性能较好,并画出相应的单位阶约响应曲线。
PID调节器传函:Wc(s)=40 /(2s+1)
(e) 比较单回路控制系统及采用Smith 补偿器的反馈控制系统在相同的单位阶跃扰动下的响应曲线,并说明原因?
采用Smith补偿器的反馈控制系统scope的图像采用Smith补偿器的反馈控制系统scope1的图像
单回路控制系统
由上图可知,采用smith补偿后,可以完全消除滞后对系统的影响,而单回路控制系统不能消除滞后,使系统输出产生失真。
Ws(s)=Wo(s)(1-e-τ
0s)=(1-e-
τ
0s)/(20s+1)
引入smith预估补偿器,使调节器锁控制的等效对象变为:
Wo(s)e-τ0s+Wo(s)(1-e-τ
0s)=(1-e-
τ
0s)/(20s+1)+e-
τ
0s/(20s+1)=1/(20s+1)=Wo(s)
从而消去纯滞后部分对系统稳定的不利影响。
四、问题和解决方法
在本课程设计中遇到不少的问题,主要体现在对PID调节的理解薄弱,导致后面的对PID参数的调节有一定的盲目性,在以上的过程中,主要体现在响应曲线的平滑性不怎么好,超调时间过长,影响对结果的分析,后通过对PID调节进行资料的查询,加深理解,使得在响应曲线的调节过程中调节变得有目的性,最终使调节出来的响应曲线符合课程设计的要求。
五、心得体会
在课程设计的过程中,通过对所遇到的问题进行分析,加深了对课本知识的理解,同时也通过课程设计,我的相应的知识水平也获得了一定的提高。
在对PID参数的调节过程中,我总结出了PID调节的几个特点:增大比例系数一般将
加快系统的响应,在有静差的情况下有利于减小静差,但是过大的比例系数会使系统有比较大的超调,并产生振荡,使稳定性变坏;增大积分时间有利于减小超调,减小振荡,使系统的稳定性增加,但是系统静差消除时间变长;增大微分时间有利于加快系统的响应速度,使系统超调量减小,稳定性增加,但系统对扰动的抑制能力减弱。
同时也通过课程设计,我的相应的知识水平也获得了一定的提高。