2019-2020学年北京市西城区高三上学期期末考试数学试卷及答案

合集下载

2020-2021学年北京市西城区初三数学第一学期期末试卷及解析

2020-2021学年北京市西城区初三数学第一学期期末试卷及解析

2020-2021学年北京市西城区初三数学第一学期期末试卷一、选择题(本题共24分,每小题3分)第1~8题均有四个选项,符合题意的选项只有一个. 1.(3分)在抛物线245y x x =--上的一个点的坐标为( ) A .(0,4)-B .(2,0)C .(1,0)D .(1,0)-2.(3分)在半径为6cm 的圆中,60︒的圆心角所对弧的弧长是( ) A .cm πB .2cm πC .3cm πD .6cm π3.(3分)将抛物线2y x =先向右平移3个单位长度,再向上平移5个单位长度,所得抛物线的解析式为( )A .2(3)5y x =++B .2(3)5y x =-+C .2(5)3y x =++D .2(5)3y x =-+4.(3分)2020年是紫禁城建成600年暨故宫博物院成立95周年,在此之前有多个国家曾发行过紫禁城元素的邮品.图1所示的摩纳哥发行的小型张中的图案,以敞开的紫禁城大门和大门内的石狮和太和殿作为邮票和小型张的边饰,如果标记出图1中大门的门框并画出相关的几何图形(图2),我们发现设计师巧妙地使用了数学元素(忽略误差),图2中的四边形ABCD 与四边形A B C D ''''是位似图形,点O 是位似中心,点A '是线段OA 的中点,那么以下结论正确的是( )A .四边形ABCD 与四边形ABCD ''''的相似比为1:1 B .四边形ABCD 与四边形A B C D ''''的相似比为1:2 C .四边形ABCD 与四边形A B C D ''''的周长比为3:1 D .四边形ABCD 与四边形A B C D ''''的面积比为4:15.(3分)如图,AB 是O 的直径,CD 是弦,若32CDB ∠=︒,则ABC ∠等于( )A .68︒B .64︒C .58︒D .32︒6.(3分)若抛物线2(0)y ax bx c a =++≠经过(1,0)A ,(3,0)B 两点,则抛物线的对称轴为( ) A .1x =B .2x =C .3x =D .4x =7.(3分)近年来我国无人机产业迅猛发展,无人机驾驶员已正式成为国家认可的新职业,中国民用航空局的现有统计数据显示,从2017年底至2019年底,全国拥有民航局颁发的民用无人机驾驶执照的人数已由约2.44万人增加到约6.72万人.若设2017年底至2019年底,全国拥有民用无人机驾驶执照人数的年平均增长率为x ,则可列出关于x 的方程为( ) A .2.44(1) 6.72x += B .2.44(12) 6.72x +=C .22.44(1) 6.72x +=D .22.44(1) 6.72x -=8.(3分)现有函数24()2()x x a y x x x a +<⎧=⎨-⎩如果对于任意的实数n ,都存在实数m ,使得当x m =时,y n =,那么实数a 的取值范围是( ) A .54a -B .14a -C .41a -D .45a -二、填空题(本题共24分,每小题3分)9.(3分)若正六边形的边长为2,则它的外接圆半径是 .10.(3分)若抛物线2(0)y ax a =≠经过(1,3)A ,则该抛物线的解析式为 . 11.(3分)如图,在Rt ABC ∆中,90C ∠=︒,6AC =,9AB =,则sin B = .12.(3分)若抛物线2(0)y ax bx c a =++≠的示意图如图所示,则a 0,b 0,c 0(填“>”,“ =”或“<” ).13.(3分)如图,AB 为O 的直径,10AB =,CD 是弦,AB CD ⊥于点E ,若6CD =,则EB = .14.(3分)如图,PA,PB是O的两条切线,A,B为切点,若2OA=,60APB∠=︒,则PB=.15.(3分)放缩尺是一种绘图工具,它能把图形放大或缩小.制作:把钻有若干等距小孔的四根直尺用螺栓分别在点A,B,C,D处连接起来,使得直尺可以绕着这些点转动,O为固定点,OD DA CB==,DC AB BE==,在点A,E处分别装上画笔.画图:现有一图形M,画图时固定点O,控制点A处的笔尖沿图形M的轮廓线移动,此时点E处的画笔便画出了将图形M放大后的图形N.原理:若连接OA,OE,可证得以下结论:①ODA∆和OCE∆为等腰三角形,则1(180)2DOA ODA∠=︒-∠,1(1802COE∠=︒-∠);②四边形ABCD为平行四边形(理由是);③DOA COE∠=∠,于是可得O,A,E三点在一条直线上;④当35DCCB=时,图形N是以点O为位似中心,把图形M放大为原来的倍得到的.16.(3分)如图,在平面直角坐标系xOy中,(4,3)P,O经过点P.点A,点B在y轴上,PA PB=,延长PA,PB分别交O于点C,点D,设直线CD与x轴正方向所夹的锐角为α.(1)O的半径为;(2)tan α= .三、解答题(本题共52分,第17、18、20~22题每小题5分,第19题6分,第23~25题每小题5分) 17.(5分)计算:22sin60tan 45cos 30︒-︒+︒. 18.(5分)已知关于x 的方程2240x x k ++-=. (1)如果方程有两个不相等的实数根,求k 的取值范围; (2)若1k =,求该方程的根. 19.(6分)借助网格画图并说理:如图所示的网格是正方形网格,ABC ∆的三个顶点是网格线的交点,点A 在BC 边的上方,AD BC ⊥于点D ,4BD =,2CD =,3AD =.以BC 为直径作O ,射线DA 交O 于点E ,连接BE ,CE . (1)补全图形;(2)填空:BEC ∠= ︒,理由是 ; (3)判断点A 与O 的位置关系并说明理由;(4)BAC ∠ BEC ∠(填“>”,“ =”或“<” ).20.(5分)二次函数2(0)y ax bx c a =++≠的图象经过(3,0)点,当1x =时,函数的最小值为4-. (1)求该二次函数的解析式并画出它的图象;(2)直线x m =与抛物线2(0)y ax bx c a =++≠和直线3y x =-的交点分别为点C ,点D ,点C 位于点D 的上方,结合函数的图象直接写出m 的取值范围.21.(5分)如图,AB 为O 的直径,AC 为弦,点D 在O 外,BCD A ∠=∠,OD 交O 于点E . (1)求证:CD 是O 的切线; (2)若4CD =, 2.7AC =,9cos 20BCD ∠=,求DE 的长.22.(5分)如图,正方形ABCD 的边长为4,点E 在AB 边上,1BE =,F 为BC 边的中点.将正方形截去一个角后得到一个五边形AEFCD ,点P 在线段EF 上运动(点P 可与点E ,点F 重合),作矩形PMDN ,其中M ,N 两点分别在CD ,AD 边上.设CM x =,矩形PMDN 的面积为S .(1)DM = (用含x 的式子表示),x 的取值范围是 ; (2)求S 与x 的函数关系式;(3)要使矩形PMDN 的面积最大,点P 应在何处?并求最大面积.23.(7分)已知抛物线212y x x =-+.(1)直接写出该抛物线的对称轴,以及抛物线与y 轴的交点坐标; (2)已知该抛物线经过1(34,)A n y +,2(21,)B n y -两点. ①若5n <-,判断1y 与2y 的大小关系并说明理由;②若A ,B 两点在抛物线的对称轴两侧,且12y y >,直接写出n 的取值范围.24.(7分)在Rt ABC ∆中,90ACB ∠=︒,30ABC ∠=︒,3BC =ABC ∆绕点B 顺时针旋转(0120)αα︒<︒得到△A BC '',点A ,点C 旋转后的对应点分别为点A ',点C '.(1)如图1,当点C '恰好为线段AA '的中点时,α= ︒,AA '= ; (2)当线段AA '与线段CC '有交点时,记交点为点D .①在图2中补全图形,猜想线段AD 与A D '的数量关系并加以证明; ②连接BD ,请直接写出BD 的长的取值范围.25.(7分)对于平面内的图形1G 和图形2G ,记平面内一点P 到图形1G 上各点的最短距离为1d ,点P 到图形2G 上各点的最短距离为2d ,若12d d =,就称点P 是图形1G 和图形2G 的一个“等距点”. 在平面直角坐标系xOy 中,已知点(6,0)A ,(0B ,23).(1)在(3,0)R ,(2,0)S ,3)T 三点中,点A 和点B 的等距点是 ; (2)已知直线2y =-.①若点A 和直线2y =-的等距点在x 轴上,则该等距点的坐标为 ; ②若直线y a =上存在点A 和直线2y =-的等距点,求实数a 的取值范围; (3)记直线AB 为直线1l ,直线23:l y =,以原点O 为圆心作半径为r 的O .若O 上有m 个直线1l 和直线2l 的等距点,以及n 个直线1l 和y 轴的等距点(0,0)m n ≠≠,当m n ≠时,求r 的取值范围.参考答案与试题解析一、选择题(本题共24分,每小题3分)第1~8题均有四个选项,符合题意的选项只有一个. 1.【解答】解:当0x =时,5y =-,因此(0,4)-不在抛物线245y x x =--, 当2x =时,4859y =--=-,因此(2,0)不在抛物线245y x x =--上, 当1x =时,1458y =--=-,因此(1,0)不在抛物线245y x x =--上, 当1x =-时,1450y =+-=,因此(1,0)-在抛物线245y x x =--上, 故选:D .2.【解答】解:弧长为:6062()180cm ππ⨯=. 故选:B .3.【解答】解:将抛物线2y x =先向右平移3个单位长度,得:2(3)y x =-; 再向上平移5个单位长度,得:2(3)5y x =-+, 故选:B .4.【解答】解:四边形ABCD 与四边形A B C D ''''是位似图形,点O 是位似中心,点A '是线段OA 的中点,:1:2OA OA ∴'=, :1:2A B AB ∴''=,∴四边形ABCD 与四边形A B C D ''''的相似比为2:1,周长的比为2:1,面积比为4:1.故选:D . 5.【解答】解:AB 是O 的直径,90ADB ∴∠=︒, 90ADC CDB ∴∠+∠=︒,90903258ADC CDB ∴∠=︒-∠=︒-︒=︒, ABC ADC ∠=∠, 58ABC ∴∠=︒,故选:C .6.【解答】解:抛物线2y x bx c =++经过(1,0)A 、(3,0)B 两点,∴抛物线对称轴为直线1322x +==, 故选:B .7.【解答】解:设2017年底至2019年底,全国拥有民用无人机驾驶执照人数的年平均增长率为x , 则可列出关于x 的方程为22.44(1) 6.72x +=, 故选:C . 8.【解答】解:222(1)1y x x x =-=--,∴函数22y x x =-的最小值为1-,把1y =-代入4y x =+得,14x -=+,解得5x =-,由图象可知,当54a -时,对于任意的实数n ,都存在实数m ,使得当x m =时,函数y n =, 故选:A .二、填空题(本题共24分,每小题3分) 9.【解答】解:如图所示,连接OB 、OC ; 此六边形是正六边形, 360606BOC ︒∴∠==︒, OB OC =,BOC ∴∆是等边三角形, 2OB OC BC ∴===.故答案为:2.10.【解答】解:把(1,3)A 代入2(0)y ax a =≠中, 得231a =⨯, 解得3a =,所以该抛物线的解析式为23y x =. 故答案为:23y x =.11.【解答】解:在Rt ABC ∆中,90C ∠=︒,6AC =,9AB =, 则62sin 93AC B AB ===, 故答案为:23. 12.【解答】解:抛物线开口方向向上, 0a ∴>,对称轴在y 轴的右侧, 0b ∴<,抛物线与y 轴交于负半轴, 0c ∴<.故答案为>,<,<.13.【解答】解:连接OC ,如图所示: 弦CD AB ⊥于点E ,6CD =, 132CE ED CD ∴===,在Rt OEC ∆中,90OEC ∠=︒,3CE =,152OC AB ==, 22534OE ∴=-=, 15412BE OB OE AB OE ∴=-=-=-=, 故答案为:1.14.【解答】解:PA 、PB 是O 的两条切线,60APB ∠=︒,2OA OB ==, 1302BPO APB ∴∠=∠=︒,BO PB ⊥.24PO AO ∴==,22224223PB PO OB ∴=-=-=. 故答案是:23.15.【解答】解:①ODA ∆和OCE ∆为等腰三角形, 1(180)2DOA ODA ∴∠=︒-∠,1(180)2COE OCE ∠=︒-∠;②AD BC =,DC AB =,∴四边形ABCD 为平行四边形(两组对边分别相等的四边形是平行四边形);③连接OA ,AE ,DOA COE ∠=∠,O ∴,A ,E 三点在一条直线上;④35DC BC =,∴设3CD AB BE x ===,5OD AD BC x ===,四边形ABCD 是平行四边形, //AD BC ∴, AOD EOC ∴∆∆∽,∴35855OC x x OD x +==, ∴图形N 是以点O 为位似中心,把图形M 放大为原来的85,故答案为:OCE ;两组对边分别相等的四边形是平行四边形;85.16.【解答】解:(1)连接OP . (4,3)P ,5OP ∴==, 故答案为:5.(2)设CD 交x 轴于J ,过点P 作PT AB ⊥交O 于T ,交AB 于E ,连接CT ,DT ,OT . (4,3)P ,4PE ∴=,3OE =,在Rt OPE ∆中,4tan 3PE POE OE ∠==, OE PT ⊥,OP OT =, POE TOE ∴∠=∠,12PDT POT POE ∴∠=∠=∠,PA PB =.PE AB ⊥, APT DPT ∴∠=∠,∴TC DT =,TDC TCD ∴∠=∠, //PT x 轴, CJO CKP ∴∠=∠,CKP TCK CTK ∠=∠+∠,CTP CDP ∠=∠,PDT TDC CDP ∠=∠+∠, TDP CJO ∴∠=∠, CJO POE ∴∠=∠,4tan tan 3CJO POE ∴∠=∠=. 补充方法:证明CJO EOP ∠=∠时,可以这样证明:90CJO TOJ ∠+∠=︒,90TOJ EOT ∠+∠=︒, CJO EOT ∴∠=∠, EOT EOB ∠=∠,CJO EOP ∴∠=∠,可得结论.故答案为:43.三、解答题(本题共52分,第17、18、20~22题每小题5分,第19题6分,第23~25题每小题5分) 17.【解答】解:原式23321(=-+ 3314+ 134=. 18.【解答】解:(1)△2241(4)204k k =-⨯⨯-=-. 方程有两个不相等的实数根,∴△0>.2040k ∴->,解得5k <;k ∴的取值范围为5k <.(2)当1k =时,原方程化为2230x x +-=, (1)(3)0x x -+=, 10x -=或30x +=,解得11x =,23x =-.19.【解答】解:(1)补全图形见图1.(2)BC 是直径,90BEC ∴∠=︒(直径所对的圆周角是直角). 故答案为:90,直径所对的圆周角是直角. (3)点A 在O 外. 理由如下:连接OA .4BD =,2CD =,6BC BD CD ∴=+=,32BCr ==. AD BC ⊥, 90ODA ∴∠=︒,在Rt AOD ∆中,3AD =,1OD BD OB =-=,∴22221310OA OD AD =++103>,OA r ∴>,∴点A 在O 外.(4)观察图象可知:BAC BEC ∠<∠. 故答案为:<.20.【解答】解:(1)当1x =时,二次函数2(0)y ax bx c a =++≠的最小值为4-,∴二次函数的图象的顶点为(1,4)-,∴二次函数的解析式可设为2(1)4(0)y a x a =--≠,二次函数的图象经过(3,0)点,2(31)40a ∴--=. 解得1a =.∴该二次函数的解析式为2(1)4y x =--;如图,(2)由图象可得0m <或3m >. 21.【解答】(1)证明:如图,连接OC .AB 为O 的直径,AC 为弦,90ACB ∴∠=︒,90OCB ACO ∠+∠=︒. OA OC =, ACO A ∴∠=∠. BCD A ∠=∠, ACO BCD ∴∠=∠. 90OCB BCD ∴∠+∠=︒. 90OCD ∴∠=︒. CD OC ∴⊥. OC 为O 的半径, CD ∴是O 的切线;(2)解:BCD A ∠=∠,9cos 20BCD ∠=, 9cos cos 20A BCD ∴=∠=.在Rt ABC ∆中,90ACB ∠=︒, 2.7AC =,9cos 20A =. 2.769cos 20AC AB A∴===. 32ABOC OE ∴===. 在Rt OCD ∆中,90OCD ∠=︒,3OC =,4CD =,∴5OD =.532DE OD OE ∴=-=-=.22.【解答】解:(1)正方形ABCD 的边长为4,CM x =,1BE =, 4DM DC CM x ∴=-=-,其中01x .故答案是:4x -,01x ; (2)如图,延长MP 交AB 于G ,正方形ABCD 的边长为4,F 为BC 边的中点,四边形PMDN 是矩形,CM x =,1BE =, //PM BC ∴,122BF FC BC ===,BG MC x ==,4GM BC ==, EGP EBF ∴∆∆∽,1EG x =-,∴EG PG EB BF =,即112x PG-=. 22PG x ∴=-,4(22)22DN PM GM PG x x ∴==-=--=+,2(4)(22)268S DM DN x x x x ∴=⋅=-+=-++,其中01x . (3)由(2)知,2268S x x =-++, 20a =-<,∴此抛物线开口向下,对称轴为322b x a =-=,即32x =,∴当32x <时,y 随x 的增大而增大. x 的取值范围为01x ,∴当1x =时,矩形PMDN 的面积最大,此时点P 与点E 重合,此时最大面积为12.23.【解答】解:(1)212y x x =-+,∴对称轴为直线1112()2x =-=⨯-,令0x =,则0y =,∴抛物线与y 轴的交点坐标为(0,0),(2)(34)(21)5A B x x n n n -=+--=+,1(34)1333(1)A x n n n -=+-=+=+,1(21)1222(1)B x n n n -=--=-=-.①当5n <-时,10A x -<,10B x -<,0A B x x -<.A ∴,B 两点都在抛物线的对称轴1x =的左侧,且A B x x <,抛物线212y x x =-+开口向下,∴在抛物线的对称轴1x =的左侧,y 随x 的增大而增大.12y y ∴<;②若点A 在对称轴直线1x =的左侧,点B 在对称轴直线1x =的右侧时, 由题意可得3412111(34)(21)1n n n n +<⎧⎪->⎨⎪-+<--⎩,∴不等式组无解,若点B 在对称轴直线1x =的左侧,点A 在对称轴直线1x =的右侧时, 由题意可得:3412111(21)341n n n n +>⎧⎪-<⎨⎪-->+-⎩,115n ∴-<<-,综上所述:115n -<<-.24.【解答】解:(1)90C ∠=︒,3BC =,30ABC ∠=︒, tan301AC BC ∴=⋅︒=, 22AB AC ∴==, BA BA =',AC AC '='', 30ABC A BC ∴∠'=∠''=︒,ABA ∴∆'是等边三角形,60α∴=︒,2AA AB '==.故答案为:60,2.(2)①补全图形如图所示:结论:AD A D '=.理由:如图2,过点A 作A C ''的平行线,交CC '于点E ,记1β∠=. 将Rt ABC ∆绕点B 顺时针旋转α得到Rt △A BC '', 90A C B ACB ''∴∠=∠=︒,A C AC ''=,BC BC '=.21β∴∠=∠=.3190ACB β∴∠=∠-∠=︒-,290A C D A C B β''''∠=∠+∠=︒+. //AE A C ''90AED A C D β''∴∠=∠=︒+.4180180(90)90AED ββ∴∠=︒-∠=︒-︒+=︒-. 34∴∠=∠. AE AC ∴=. AE A C ''∴=.在ADE ∆和△A DC ''中, ADE A DC AED A C D AE A C ∠=∠''⎧⎪∠=∠''⎨⎪=''⎩, ADE ∴∆≅△()A DC AAS '',AD A D '∴=.②如图1中,当60α=︒时,BD 的值最大,最大值为3. 当120α=︒时,BD 的值最小,最小值1sin30212BD AB =⋅︒=⨯=, 13BD ∴.25.【解答】解:(1)点(6,0)A ,(0B ,23),(3,0)R ,(2,0)S ,(1,3)T , 3AR ∴=,21BR =,4AS =,4BS =,27AT =,2BT =, AS BS ∴=,∴点A 和点B 的等距点是(2,0)S ,故答案为:(2,0)S ;(2)①设等距点的坐标为(,0)x , 2|6|x ∴=-, 4x ∴=或8,∴等距点的坐标为(4,0)或(8,0),故答案为:(4,0)或(8,0);②如图1,设直线y a =上的点Q 为点A 相直线2y =-的等距点,连接QA ,过点Q 作直线2y =-的垂线,垂足为点C ,点Q 为点A 和直线2y =-的等距点, QA QC ∴=,22QA QC ∴=点Q 在直线y a =上,∴可设点Q 的坐标为(,)Q x a222(6)[(2)]x a a ∴-+=--. 整理得2123240x x a -+-=,由题意得关于x 的方程2123240x x a -+-=有实数根.∴△2(12)41(324)16(1)0a a =--⨯⨯-=+.解得1a -; (3)如图2,直线1l 和直线2l 的等距点在直线33:3l y = 直线1l 和y 轴的等距点在直线4:323l y x =-+或53:23l y =+ 由题意得3r 或3r .。

2019--2020学年第一学期期末考试试卷及答案

2019--2020学年第一学期期末考试试卷及答案

2019-—2020学年第一学期期末考试试卷九年级 数学一.选择题:(本大题共10小题;每小题3分,共30分)下列各题都有代号为A 、B 、C 、D 的四个结论供选择,其中只有一个结论是正确的.请将正确选项的代号填在左边的括号里. 1.下面的图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .2.下列方程中是一元二次方程的是( )A .B .C .D .3.足球比赛前,裁判通常要掷一枚硬币来决定比赛双方的场地与首先发球者,其主要原因是( ).A .让比赛更富有情趣B .让比赛更具有神秘色彩C .体现比赛的公平性D .让比赛更有挑战性 4 已知函数772--=x kx y 的图象与x 轴有交点,则k 的取值范围是( )A .47->k B .047≠-≥k k 且 C .47-≥k D .047≠->k k 且 5.如图,P 为⊙O 外一点,PA 、PB 分别切⊙O 于A 、B ,CD 切⊙O 于点E ,分别交PA 、PB 于点C 、D ,若PA=5,则△PCD 的周长为( )A .5B .7C .8D .106.如图,点O 为优弧ACB 所在圆的圆心,AOC 108∠=,点D 在AB 的延长线上,BD BC =,则D ∠= . A .540 B . 720 C . 270 D . 3007.如图,是二次函数y=ax 2+bx+c 图象的一部分,其对称轴为直线x=1,若其与x 轴一交点为A (3,0),则由图象可知,下列结论正确的是( )A 不等式ax 2+bx+c <0的解集是X>3或X<-1 B 不等式ax 2+bx+c <0的解集是-1<X<3 012=+x 12=+x y 012=+x 0122=++x xDB A O8.已知实数a ,b 分别满足,,且,则的值是( )A . 11B . -7C . 7D . -119.在学校组织的实践活动中,小新同学用纸板制作了一个圆锥模型,它的底面半径为1,高为2,则这个圆锥的侧面积是( ) A. 4πB. 3πC. 2πD. 2π10. 已知二次函数()的图象如图所示,有下列4个结论:①②;③;④;其中正确的结论有( )A .1个B .2个C .3个D .4个二.填空题:(本题共8小题;每小题4分,共32分,不需写解答过程,请把结果填在横线上。

2019-2020学年人教A版北京市通州区高三(上)期末数学试卷 含解析

2019-2020学年人教A版北京市通州区高三(上)期末数学试卷 含解析

2019-2020学年高三上学期期末数学试卷一、选择题1.已知集合A={x|﹣2<x<1},B={x|﹣1<x<3},则A∪B=()A.{x|﹣2<x<3} B.{x|﹣1<x<1} C.{x|1<x<3} D.{x|﹣2<x<﹣1} 2.在复平面内,复数(其中i是虚数单位)对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.已知点A(2,a)为抛物线y2=4x图象上一点,点F为抛物线的焦点,则|AF|等于()A.4 B.3 C.D.24.若x>y>0,则下列各式中一定正确的是()A.B.tan x>tan yC.D.lnx>lny5.某三棱锥的三视图如图所示,则该三棱锥最长棱的长度为()A.B.C.D.6.甲、乙、丙、丁四名同学和一名老师站成一排合影留念.若老师站在正中间,甲同学不与老师相邻,乙同学与老师相邻,则不同站法种数为()A.24 B.12 C.8 D.67.对于向量,,“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件8.关于函数f(x)=(x2+ax﹣1)e x﹣1有以下三个判断①函数恒有两个零点且两个零点之积为﹣1;②函数恒有两个极值点且两个极值点之积为﹣1;③若x=﹣2是函数的一个极值点,则函数极小值为﹣1.其中正确判断的个数有()A.0个B.1个C.2个D.3个二、填空题:本大题共6小题,每小题5分,共30分.9.已知向量=(3,﹣2),=(1,m),若⊥(),则m=.10.在公差不为零的等差数列{a n}中,a1=2,且a1,a3,a7依次成等比数列,那么数列{a n}的前n项和S n等于.11.已知中心在原点的双曲线的右焦点坐标为,且两条渐近线互相垂直,则此双曲线的标准方程为.12.在△ABC中,a=3,,∠B=2∠A,则cos B=.13.已知a,b,a+m均为大于0的实数,给出下列五个论断:①a>b,②a<b,③m>0,④m<0,⑤.以其中的两个论断为条件,余下的论断中选择一个为结论,请你写出一个正确的命题.14.如图,某城市中心花园的边界是圆心为O,直径为1千米的圆,花园一侧有一条直线型公路l,花园中间有一条公路AB(AB是圆O的直径),规划在公路l上选两个点P,Q,并修建两段直线型道路PB,QA.规划要求:道路PB,QA不穿过花园.已知OC⊥l,BD ⊥l(C、D为垂足),测得OC=0.9,BD=1.2(单位:千米).已知修建道路费用为m 元/千米.在规划要求下,修建道路总费用的最小值为元.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.已知函数.(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x)在区间上的最大值和最小值.16.为了解某地区初中学生的体质健康情况,统计了该地区8所学校学生的体质健康数据,按总分评定等级为优秀,良好,及格,不及格.良好及其以上的比例之和超过40%的学校为先进校.各等级学生人数占该校学生总人数的比例如表:学校A学校B学校C学校D学校E学校F学校G学校H 学校比例等级优秀8% 3% 2% 9% 1% 22% 2% 3%良好37% 50% 23% 30% 45% 46% 37% 35%及格22% 30% 33% 26% 22% 17% 23% 38%不及格33% 17% 42% 35% 32% 15% 38% 24% (Ⅰ)从8所学校中随机选出一所学校,求该校为先进校的概率;(Ⅱ)从8所学校中随机选出两所学校,记这两所学校中不及格比例低于30%的学校个数为X,求X的分布列;(Ⅲ)设8所学校优秀比例的方差为S12,良好及其以下比例之和的方差为S22,比较S12与S22的大小.(只写出结果)17.如图,在四棱锥S﹣ABCD中,底面ABCD为直角梯形,AD∥BC,∠SAD=∠DAB=90°,SA=3,SB=5,AB=4,BC=2,AD=1.(Ⅰ)求证:AB⊥平面SAD;(Ⅱ)求平面SCD与平面SAB所成的锐二面角的余弦值;(Ⅲ)点E,F分别为线段BC,SB上的一点,若平面AEF∥平面SCD,求三棱锥B﹣AEF 的体积.18.已知椭圆C :(a>b>0)的长轴长为4,离心率为,点P在椭圆C上.(Ⅰ)求椭圆C的标准方程;(Ⅱ)已知点M(4,0),点N(0,n),若以PM为直径的圆恰好经过线段PN的中点,求n的取值范围.19.已知函数f(x)=x sin x+cos x.(Ⅰ)求曲线y=f(x)在点(0,f(0))处的切线方程;(Ⅱ)求函数g(x)=f(x)﹣零点的个数.20.已知项数为m(m∈N*,m≥2)的数列{a n}满足如下条件:①a n∈N*(n=1,2,…,m);②a1<a2<…<a m.若数列{b n}满足b n=,其中n=1,2,…,m,则称{b n}为{a n}的“伴随数列”.(Ⅰ)数列1,3,5,7,9是否存在“伴随数列”,若存在,写出其“伴随数列”;若不存在,请说明理由;(Ⅱ)若{b n}为{a n}的“伴随数列”,证明:b1>b2>…>b m;(Ⅲ)已知数列{a n}存在“伴随数列”{b n},且a1=1,a m=2049,求m的最大值.参考答案一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|﹣2<x<1},B={x|﹣1<x<3},则A∪B=()A.{x|﹣2<x<3} B.{x|﹣1<x<1} C.{x|1<x<3} D.{x|﹣2<x<﹣1} 【分析】根据题意,由并集的定义分析可得答案.解:根据题意,集合A={x|﹣2<x<1},B={x|﹣1<x<3},则A∪B={x|﹣2<x<3};故选:A.2.在复平面内,复数(其中i是虚数单位)对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【分析】先进行复数的除法运算,分子和分母同乘以分母的共轭复数,分母变成一个实数,分子进行复数的乘法运算,整理成复数的标准形式,写出对应点的坐标,看出所在的象限.解:∵复数===,∴复数对应的点的坐标是(,)∴复数在复平面内对应的点位于第一象限,故选:A.3.已知点A(2,a)为抛物线y2=4x图象上一点,点F为抛物线的焦点,则|AF|等于()A.4 B.3 C.D.2【分析】由题意可得抛物线的焦点和准线,而|AF|等于点A到准线的距离d=|2﹣(﹣1)|,计算可得.解:由题意可得抛物线y2=4x的焦点为F(1,0),准线的方程为x=﹣1,由抛物线的定义可知|AF|等于点A到准线的距离d,而d=|2﹣(﹣1)|=3,故|AF|=3,故选:B.4.若x>y>0,则下列各式中一定正确的是()A.B.tan x>tan yC.D.lnx>lny【分析】A.利用不等式的基本性质即可判断出正误.B.利用三角函数的单调性周期性即可判断出正误.C.利用指数函数的单调性即可判断出正误.D.利用对数函数的单调性即可判断出正误.解:A.∵x>y>0,∴>,因此不正确;B.取x=π+,y=,满足x>y>0,但是tan x<tan y,因此不正确;C.由x>y>0,∴<,因此不正确;D.由x>y>0,∴lnx>lny,因此正确.故选:D.5.某三棱锥的三视图如图所示,则该三棱锥最长棱的长度为()A.B.C.D.【分析】首先把三视图转换为几何体,进一步利用公式的应用求出结果解:根据几何体的三视图转换为几何体为:所以:AB=.故选:C.6.甲、乙、丙、丁四名同学和一名老师站成一排合影留念.若老师站在正中间,甲同学不与老师相邻,乙同学与老师相邻,则不同站法种数为()A.24 B.12 C.8 D.6【分析】根据题意,分3步依次分析甲、乙和其他2人的站法数目,由分步计数原理计算可得答案.解:根据题意,分3步进行分析:①,老师站在正中间,甲同学不与老师相邻,则甲的站法有2种,乙的站法有2种,②,乙同学与老师相邻,则乙的站法有2种,③,将剩下的2人全排列,安排在剩下的2个位置,有A22=2种情况,则不同站法有2×2×2=8种;故选:C.7.对于向量,,“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】举例说明由不能得到;反之成立.再由充分必要条件的判定得答案.解:当,且与的夹角为120°时,有,故由,不能得到;反之,由,能够得到.∴“”是“”的必要不充分条件.故选:B.8.关于函数f(x)=(x2+ax﹣1)e x﹣1有以下三个判断①函数恒有两个零点且两个零点之积为﹣1;②函数恒有两个极值点且两个极值点之积为﹣1;③若x=﹣2是函数的一个极值点,则函数极小值为﹣1.其中正确判断的个数有()A.0个B.1个C.2个D.3个【分析】函数f(x)=(x2+ax﹣1)e x﹣1,e x﹣1>0.①令f(x)=0,可得x2+ax﹣1=0,△>0,函数恒有两个零点,可得两个零点之积,即可判断出正误;②f′(x)=[x2+(2+a)x+a﹣1]e x﹣1.令g(x)=x2+(2+a)x+a﹣1,△>0.可得方程x2+(2+a)x+a﹣1=0,有两个不相等的实数根.可得其单调性极值,函数恒有两个极值点且两个极值点之积为a﹣1,即可判断出正误;③若x=﹣2是函数的一个极值点,可得4﹣2(2+a)+a﹣1=0,解得a,即可判断出正误.解:函数f(x)=(x2+ax﹣1)e x﹣1,e x﹣1>0.①令f(x)=0,则x2+ax﹣1=0,△=a2+4>0,则函数恒有两个零点且两个零点之积为﹣1,正确;②f′(x)=[x2+(2+a)x+a﹣1]e x﹣1.令g(x)=x2+(2+a)x+a﹣1,△=(2+a)2﹣4(a﹣1)=a2+8>0.∴方程x2+(2+a)x+a﹣1=0,有两个不相等的实数根.又e x﹣1>0,∴函数f(x)有两个极值点x1,x2,不妨设x1<x2,则函数f(x)在(﹣∞,x1),(x2,+∞)上单调递增,在(x1,x2)上单调递减.∴函数恒有两个极值点且两个极值点之积为a﹣1,因此②不正确;③若x=﹣2是函数的一个极值点,则4﹣2(2+a)+a﹣1=0,解得a=﹣1.∴f′(x)=(x2+x﹣2)e x﹣1=(x+2)(x﹣1)e x﹣1.可得x=1时函数f(x)取得极小值,f(1)=(1﹣1﹣1)e0=﹣1.则函数极小值为﹣1.其中正确判断的个数有2个.故选:C.二、填空题:本大题共6小题,每小题5分,共30分.9.已知向量=(3,﹣2),=(1,m),若⊥(),则m=﹣5 .【分析】根据平面向量的坐标运算与数量积的定义,列方程求出m的值.解:向量=(3,﹣2),=(1,m),则﹣=(2,﹣m﹣2),又⊥(),所以•(﹣)=0,即3×2﹣2×(﹣m﹣2)=0,解得m=﹣5.故答案为:﹣5.10.在公差不为零的等差数列{a n}中,a1=2,且a1,a3,a7依次成等比数列,那么数列{a n}的前n项和S n等于.【分析】设公差d不为零的等差数列{a n},运用等比数列的中项性质和等差数列的通项公式,可得公差d,由等差数列的求和公式,计算可得所求和.解:在公差d不为零的等差数列{a n}中,a1=2,且a1,a3,a7依次成等比数列,可得a32=a1a7,即(2+2d)2=2(2+6d),解得d=1,(0舍去),则数列{a n}的前n项和S n=2n+n(n﹣1)=n2+n.故答案为:n2+n.11.已知中心在原点的双曲线的右焦点坐标为,且两条渐近线互相垂直,则此双曲线的标准方程为x2﹣y2=1 .【分析】设双曲线的标准方程为﹣=1(a>0,b>0),由题意可得c,结合渐近线方程和两直线垂直的条件:斜率之积为﹣1,解方程可得a,b,进而得到所求双曲线的标准方程.解:设双曲线的标准方程为﹣=1(a>0,b>0),由题意可得c==,双曲线的渐近线方程为y=±x,两条渐近线互相垂直,可得﹣=﹣1,解得a=b=1,则双曲线的标准方程为x2﹣y2=1,故答案为:x2﹣y2=1.12.在△ABC中,a=3,,∠B=2∠A,则cos B=.【分析】由已知利用正弦定理,二倍角的正弦函数公式可求cos A的值,进而利用二倍角的余弦函数公式即可求解cos B的值.解:∵a=3,,∠B=2∠A,∴由正弦定理,可得==,∴解得cos A=,∴cos B=cos2A=2cos2A﹣1=.故答案为:.13.已知a,b,a+m均为大于0的实数,给出下列五个论断:①a>b,②a<b,③m>0,④m<0,⑤.以其中的两个论断为条件,余下的论断中选择一个为结论,请你写出一个正确的命题①③推出⑤(答案不唯一还可以①⑤推出③等).【分析】利用不等式的基本性质可得由①③⇒⑤.(答案不唯一).解:因为:若a,b满足a>b,b>0,则a>b,m>0,⇒﹣==>0;即由①③⇒⑤.(答案不唯一).故答案为:①③推出⑤(答案不唯一还可以①⑤推出③等)14.如图,某城市中心花园的边界是圆心为O,直径为1千米的圆,花园一侧有一条直线型公路l,花园中间有一条公路AB(AB是圆O的直径),规划在公路l上选两个点P,Q,并修建两段直线型道路PB,QA.规划要求:道路PB,QA不穿过花园.已知OC⊥l,BD ⊥l(C、D为垂足),测得OC=0.9,BD=1.2(单位:千米).已知修建道路费用为m 元/千米.在规划要求下,修建道路总费用的最小值为 2.1m元.【分析】根据题意找到对应的点P,Q,利用三角形相似计算即可解:根据题意,因为道路PB,QA不穿过花园,所以作AQ⊥l,垂足为Q,此时AQ最短,过B作圆O的切线BP交l于P,此时PB最短,如图:根据平行线段成比例可得AQ=0.6,即有AQ为△BMD的中位线,所以BM=2AB=2,则在Rt△BMD中,DM=1.6,又因为△PBD∽△BMD,所以PB===1.5,故修建道路总费用的最小值为1.5m+0.6m=2.1m,故答案为:2.1m.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.已知函数.(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x)在区间上的最大值和最小值.【分析】(I)先化简f(x),根据周期计算公式即可得出T.(II)利用三角函数的单调性即可得出.解:=,(Ⅰ)f(x)的最小正周期T=,(Ⅱ)因为,所以,所以当,即x=0时,f(x)取得最小值0;当,即时,f(x)取得最大值.16.为了解某地区初中学生的体质健康情况,统计了该地区8所学校学生的体质健康数据,按总分评定等级为优秀,良好,及格,不及格.良好及其以上的比例之和超过40%的学校为先进校.各等级学生人数占该校学生总人数的比例如表:学校A学校B学校C学校D学校E学校F学校G学校H 学校比例等级优秀8% 3% 2% 9% 1% 22% 2% 3%良好37% 50% 23% 30% 45% 46% 37% 35%及格22% 30% 33% 26% 22% 17% 23% 38%不及格33% 17% 42% 35% 32% 15% 38% 24% (Ⅰ)从8所学校中随机选出一所学校,求该校为先进校的概率;(Ⅱ)从8所学校中随机选出两所学校,记这两所学校中不及格比例低于30%的学校个数为X,求X的分布列;(Ⅲ)设8所学校优秀比例的方差为S12,良好及其以下比例之和的方差为S22,比较S12与S22的大小.(只写出结果)【分析】(Ⅰ)8所学校中有四所学校学生的体质健康测试成绩达到良好及其以上的比例超过40%,即可得出从8所学校中随机取出一所学校,该校为先进校的概率.(Ⅱ)8所学校中,学生不及格率低于30%的学校有学校B、F、H三所,所以X的取值为0,1,2.利用超几何分布列即可得出随机变量X的分布列.(Ⅲ)经过计算即可得出S12与S22的关系.解:(Ⅰ)8所学校中有四所学校学生的体质健康测试成绩达到良好及其以上的比例超过40%,所以从8所学校中随机取出一所学校,该校为先进校的概率为.(Ⅱ)8所学校中,学生不及格率低于30%的学校有学校B、F、H三所,所以X的取值为0,1,2.,所以随机变量X的分布列为:X0 1 2P(Ⅲ)S12=S22.17.如图,在四棱锥S﹣ABCD中,底面ABCD为直角梯形,AD∥BC,∠SAD=∠DAB=90°,SA=3,SB=5,AB=4,BC=2,AD=1.(Ⅰ)求证:AB⊥平面SAD;(Ⅱ)求平面SCD与平面SAB所成的锐二面角的余弦值;(Ⅲ)点E,F分别为线段BC,SB上的一点,若平面AEF∥平面SCD,求三棱锥B﹣AEF 的体积.【分析】(Ⅰ)证明AB⊥SA,AB⊥AD,然后证明AB⊥平面SAD.(Ⅱ)建立如图直角坐标系,求出平面SAB的法向量,平面SDC的法向量,通过向量的数量积求解即可.(Ⅲ)利用V B﹣AEF=V F﹣ABE,转化求解即可.【解答】(Ⅰ)证明:在△SAB中,因为SA=3,AB=4,SB=5,所以AB⊥SA.又因为∠DAB=90°所以AB⊥AD,因为SA∩AD=A所以AB⊥平面SAD.(Ⅱ)解:因为SA⊥AD,AB⊥SA,AB⊥AD.建立如图直角坐标系则A(0,0,0)B(0,4,0),C(2,4,0),D(1,0,0),S(0,0,3).平面SAB的法向量为.设平面SDC的法向量为所以有即,令x=1所以平面SDC的法向量为,所以.(Ⅲ)解:因为平面AEF∥平面SCD,平面AEF∩平面ABCD=AE,平面SCD∩平面ABCD=CD,所以AE∥CD,平面AEF∩平面SBC=EF,平面SCD∩平面SBC=SC,所以FE∥SC,由AE∥CD,AD∥BC得四边形AEDC为平行四边形.所以E为BC中点.又FE∥SC,所以F为SB中点,所以F到平面ABE的距离为,又△ABE的面积为2,所以V B﹣AEF=V F﹣ABE=1.18.已知椭圆C:(a>b>0)的长轴长为4,离心率为,点P在椭圆C上.(Ⅰ)求椭圆C的标准方程;(Ⅱ)已知点M(4,0),点N(0,n),若以PM为直径的圆恰好经过线段PN的中点,求n的取值范围.【分析】(Ⅰ)由椭圆的长轴长,结合离心率求出a,b,然后求解椭圆C的方程.(Ⅱ)法一:设点P(x0,y0),则,PN的中点,通过,结合函数的值域为[﹣12,20],求解n的范围即可.法二:设点P(x0,y0),则.设PN的中点为Q,利用|MP|=|MN|,通过函数的值域为[﹣12,20],求解即可.解:(Ⅰ)由椭圆的长轴长2a=4,得a=2又离心率,所以所以b2=a2﹣c2=2.所以椭圆C的方程为;.(Ⅱ)法一:设点P(x0,y0),则所以PN的中点,,.因为以PM为直径的圆恰好经过线段PN的中点所以MQ⊥NP,则,即.又因为,所以所以.函数的值域为[﹣12,20]所以0≤n2≤20所以.法二:设点P(x0,y0),则.设PN的中点为Q因为以PM为直径的圆恰好经过线段PN的中点所以MQ是线段PN的垂直平分线,所以|MP|=|MN|,即,所以.函数的值域为[﹣12,20],所以0≤n2≤20.所以.19.已知函数f(x)=x sin x+cos x.(Ⅰ)求曲线y=f(x)在点(0,f(0))处的切线方程;(Ⅱ)求函数g(x)=f(x)﹣零点的个数.【分析】(Ⅰ)求出原函数的导函数,得到函数在x=0处的导数,再求出f(0),利用直线方程的点斜式得答案;(Ⅱ)由为偶函数,g(0)=1,把求g(x)在x∈R上零点个数,转化为求g(x)在x∈(0,+∞)上零点个数即可.利用导数研究函数单调性,再由函数零点存在性定理判定.解:(Ⅰ)f'(x)=x cos x,∴f'(0)=0.又f(0)=1,∴曲线y=f(x)在点(0,f(0))处的切线方程为y=1;(Ⅱ)∵为偶函数,g(0)=1,∴要求g(x)在x∈R上零点个数,只需求g(x)在x∈(0,+∞)上零点个数即可.,令g'(x)=0,得,k ∈N,∴g(x )在单调递增,在单调递减,在单调递增,在单调递减,在单调递增k∈N*,列表得:x 0 …g'(x)0 + 0 ﹣0 + 0 ﹣0 …g (x )1 ↗极大值↘极小值↗极大值↘极小值…由上表可以看出g(x )在(k∈N )处取得极大值,在(k∈N)处取得极小值,又;.当k∈N*且k≥1时,,(或,).∴g(x)在x∈(0,+∞)上只有一个零点.故函数零点的个数为2.20.已知项数为m(m∈N*,m≥2)的数列{a n}满足如下条件:①a n∈N*(n=1,2,…,m);②a1<a2<…<a m.若数列{b n}满足b n=,其中n=1,2,…,m,则称{b n}为{a n}的“伴随数列”.(Ⅰ)数列1,3,5,7,9是否存在“伴随数列”,若存在,写出其“伴随数列”;若不存在,请说明理由;(Ⅱ)若{b n}为{a n}的“伴随数列”,证明:b1>b2>…>b m;(Ⅲ)已知数列{a n}存在“伴随数列”{b n},且a1=1,a m=2049,求m的最大值.【分析】(Ⅰ)根据题目中“伴随数列”的定义得,所以数列1,3,5,7,9不存在“伴随数列”.(Ⅱ)只要用作差法证明{b n}的单调性即可,(Ⅲ)∀1≤i<j≤m,都有,因为,b1>b2>…>b m.因为,所以a n﹣a n﹣1≥m﹣1,又a m﹣a1=(a m﹣a m﹣1)+(a m﹣1﹣a m﹣2)+…+(a2﹣a1)≥(m﹣1)+(m﹣1)+…+(m﹣1)=(m﹣1)2.所以2049﹣1≥(m﹣1)2,即可解得m的最大值.解:(Ⅰ)数列1,3,5,7,9不存在“伴随数列”.因为,所以数列1,3,5,7,9不存在“伴随数列”.(Ⅱ)证明:因为,1≤n≤m﹣1,n∈N*,又因为a1<a2<…<a m,所以有a n﹣a n+1<0,所以,所以b1>b2>…>b m成立.(Ⅲ)∀1≤i<j≤m,都有,因为,b1>b2>…>b m.所以,所以,所以,因为,所以a n﹣a n﹣1≥m﹣1,又a m﹣a1=(a m﹣a m﹣1)+(a m﹣1﹣a m﹣2)+…+(a2﹣a1)≥(m﹣1)+(m﹣1)+…+(m﹣1)=(m﹣1)2.所以2049﹣1≥(m﹣1)2所以(m﹣1)2≤2048,所以m≤46,又,所以m≤33,例如:a n=64n﹣63(1≤n≤33),满足题意,所以,m的最大值是33.。

2019-2020学年北京市人大附中高三(上)统练数学试卷(八)

2019-2020学年北京市人大附中高三(上)统练数学试卷(八)

2019-2020学年北京市人大附中高三(上)统练数学试卷(八)试题数:17,总分:1001.(单选题,5分)设全集为R,集合A={x|x2-1>0},集合B={y|y=3x,x∈R},则A∩B=()A.(-∞,-1)B.(-∞,-1]C.(1,+∞)D.[1,+∞)2.(单选题,5分)直线l与圆x2+y2+2x-4y+1=0相交于A,B两点,若弦AB的中点(-2,3),则直线l的方程为()A.x+y-3=0B.x+y-1=0C.x-y+5=0D.x-y-5=03.(单选题,5分)将函数y=sin(x+ π4)的图象上各点的纵坐标不变,横坐标缩短到原来的1 2,再向右平移π4个单位,所得到的图象解析式是()A.y=sin2xB.y=sin 12xC.y=sin(2x+ π4)D.y=sin(2x- π4)4.(单选题,5分)已知方程x217−k + y2k−8=1表示焦点在x轴上的双曲线,下列结论正确的是()A.k的取值范围为8<k<17B.k的取值范围为k<8C.双曲线的焦距为10D.双曲线的实轴长为105.(单选题,5分)在△ABC中,a=8,b=10,△ABC的面积为20√3,则△ABC中最大角的正切值是()A. 5√33B. −√3C. −√33D. 5√33或−√36.(单选题,5分)若双曲线x2a2−y2b2=1的渐近线方程为2y±x=0,则椭圆x2a2+y2b2=1的离心率为()A. √32B. 12C. √22D. 137.(单选题,5分)在平面直角坐标系中,有不共线的三点A,B,C,已知AB,AC所在直线的斜率分别为k1,k2,则“k1k2>-1”是“∠BAC为锐角”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件8.(单选题,5分)对于曲线C:y=f(x)上任意一点A(x1,y1),在曲线C上都存在唯一的B(x2,y2),满足线段AB的中点在直线l:y-2=0上,则称直线l为曲线C的“腰线”,则下列曲线中:① y=e x;② y=x3-x;③ y=2sinx;④ y=lnx.则l为“腰线”的曲线的条数为()A.1B.2C.3D.49.(填空题,4分)直线2x+(m+1)y+4=0与直线mx+3y-6=0平行,那么m的值是___ .10.(填空题,4分)在等比数列{a n}中,a2=2,且1a1+1a3=54,则a1+a3的值为___ .11.(填空题,4分)直线l:y=kx-1被圆C:(x-2)2+y2=4截得的弦长为4,则k的值为___ .12.(填空题,4分)已知m,4,n是等差数列,那么(√2)m•(√2)n =___ ;mn的最大值为___ .13.(填空题,4分)如图(1)是反映某条公共汽车线路收支差额(即营运所得票价收入与付出成本的差)y与乘客量x之间关系的图象.由于目前该条公交线路亏损,公司有关人员提出了两种调整的建议,如图(2)(3)所示.给出下列说法:① 图(2)的建议是:降低成本,并保持票价不变;② 图(2)的建议是:提高成本,并提高票价;③ 图(3)的建议是:提高票价,并保持成本不变;④ 图(3)的建议是:提高票价,并降低成本.其中所有说法正确的序号是___ .14.(填空题,4分)曲线C是平面内到直线l1:x=-1和直线l2:y=1的距离之积等于常数k2(k>0)的点的轨迹.给出下列四个结论:① 曲线C过点(-1,1);② 曲线C关于点(-1,1)对称;③ 若点P在曲线C上,点A,B分别在直线l1,l2上,则|PA|+|PB|不小于2k;④ 设p0为曲线C上任意一点,则点P1关于直线x=-1、点(-1,1)及直线y=1对称的点分别为P1、P2、P3,则四边形P0P1P2P3的面积为定值4k2.其中,所有正确结论的序号是___ .15.(问答题,12分)已知函数f(x)= √2 sin(2x- π)+2 √2 cos2x.6(Ⅰ)求函数f(x)的单调区间;(Ⅱ)求函数f(x)的最值.16.(问答题,12分)设函数f(x)=x2+ax-lnx(a∈R).(Ⅰ)若a=1,求函数f(x)的单调区间;(Ⅱ)若函数f(x)在区间(0,1]上是减函数,求实数a的取值范围;(Ⅲ)过坐标原点O作曲线y=f(x)的切线,证明:切线有且仅有一条,且切点的横坐标恒为1.17.(问答题,12分)如图,在平面直角坐标系xOy中,椭圆C:x2a2 + y2b2=1(a>b>0)的离心率为√32,且过点(1,√32).过椭圆C的左顶点A作直线交椭圆C于另一点P,交直线l:x=m(m>a)于点M.已知点B(1,0),直线PB交l于点N.(Ⅰ)求椭圆C的方程;(Ⅱ)若MB是线段PN的垂直平分线,求实数m的值.2019-2020学年北京市人大附中高三(上)统练数学试卷(八)参考答案与试题解析试题数:17,总分:1001.(单选题,5分)设全集为R,集合A={x|x2-1>0},集合B={y|y=3x,x∈R},则A∩B=()A.(-∞,-1)B.(-∞,-1]C.(1,+∞)D.[1,+∞)【正确答案】:C【解析】:运用二次不等式的解法和指数函数的值域,化简集合A,B,再由交集的定义,即可得到所求集合.【解答】:解:全集为R,集合A={x|x2-1>0}={x|x>1或x<-1},集合B={y|y=3x,x∈R}={y|y>0},A∩B=[(-∞,-1)∪(1,+∞)]∩(0,+∞)=(1,+∞),故选:C.【点评】:本题考查集合的化简和运算,考查二次不等式和指数函数的值域,考查运算能力,属于中档题.2.(单选题,5分)直线l与圆x2+y2+2x-4y+1=0相交于A,B两点,若弦AB的中点(-2,3),则直线l的方程为()A.x+y-3=0B.x+y-1=0C.x-y+5=0D.x-y-5=0【正确答案】:C【解析】:圆x2+y2+2x-4y+1=0化为标准方程,可得圆心坐标,先求出垂直于直线l的直线的斜率,再求出直线l的斜率,利用点斜式可得直线方程.【解答】:解:圆x2+y2+2x-4y+1=0化为标准方程为(x+1)2+(y-2)2=4,圆心坐标为C (-1,2).∵弦AB的中点D(-2,3),∴k CD= 3−2−2+1=-1,∴直线l的斜率为1,∴直线l的方程为y-3=x+2,即x-y+5=0.故选:C.【点评】:本题考查直线方程,考查直线与圆的位置关系,正确求出直线的斜率是关键.3.(单选题,5分)将函数y=sin(x+ π4)的图象上各点的纵坐标不变,横坐标缩短到原来的1 2,再向右平移π4个单位,所得到的图象解析式是()A.y=sin2xB.y=sin 12xC.y=sin(2x+ π4)D.y=sin(2x- π4)【正确答案】:D【解析】:利用三角函数的伸缩变换将y=sin(x+ π4)图象上各点的横坐标缩短到原来的12(纵坐标不变),得到函数y=sin(2x+ π4)图象,再利用平移变换可得答案.【解答】:解:函数y=sin(x+ π4)图象上各点的横坐标缩短到原来的12(纵坐标不变),得到函数y=sin(2x+ π4)图象,再将函数y=sin(2x+ π4)图象向右平移π4个单位,所得图象的函数解析式为y=sin[2(x- π4)+ π4)]=sin(2x- π4),故选:D.【点评】:本题考查函数y=Asin(ωx+φ)的图象变换,掌握其平移变换与伸缩变换的规律是关键,属于中档题.4.(单选题,5分)已知方程x217−k + y2k−8=1表示焦点在x轴上的双曲线,下列结论正确的是()A.k的取值范围为8<k<17B.k的取值范围为k<8C.双曲线的焦距为10D.双曲线的实轴长为10【正确答案】:B【解析】:由题意可得17-k>0,k-8<0,解得k的范围,将双曲线的方程化为标准方程,可得a,b,c,即可判断正确结论.【解答】:解:方程x 217−k + y2k−8=1表示焦点在x轴上的双曲线,可得17-k>0,k-8<0,解得k<8,则双曲线的方程为x 217−k - y28−k=1,可得a= √17−k,b= √8−k,c= √25−2k,则A,C,D均错,B正确.故选:B.【点评】:本题考查双曲线的方程和性质,主要是实轴长和焦距,考查运算能力,属于基础题.5.(单选题,5分)在△ABC中,a=8,b=10,△ABC的面积为20√3,则△ABC中最大角的正切值是()A. 5√33B. −√3C. −√33D. 5√33或−√3【正确答案】:D【解析】:根据三角形的面积公式求出C的值,再讨论确定是否为最大角,从而求出最大角的正切值.【解答】:解:由△ABC的面积为S△ABC= 12×8×10×sinC=20 √3,解得sinC= √32;又0<C<π,所以C= π3或2π3.① 当C= 2π3时,C是最大角,其tan 2π3=- √3;② 当C= π3时,由余弦定理得c= √82+102−2×8×10×cosπ3=2 √21<10.所以边b是最大边.由余弦定理得cosB= 2√21)222×8×2√21= √2114,所以B为锐角,sinB= √1−cos2B = √1−(√2114)2= 5√714,所以tanB= sinBcosB =5√714√2114= 5√33.综上知,△ABC中最大角的正切值是- √3或5√33.故选:D.【点评】:本题考查了三角形的面积计算问题,也考查了余弦定理和正切函数的应用问题,是中档题.6.(单选题,5分)若双曲线x2a2−y2b2=1的渐近线方程为2y±x=0,则椭圆x2a2+y2b2=1的离心率为()A. √32B. 12C. √22D. 13【正确答案】:A【解析】:利用双曲线x 2a2−y2b2=1的渐近线方程为2y±x=0,得到ba= 12,由此可求出椭圆x2 a2+y2b2=1的离心率.【解答】:解:∵双曲线x 2a2−y2b2=1的渐近线方程为2y±x=0,∴ b a = 12,即b= 12a.∴在椭圆x2a2+y2b2=1中,c= √a2−(12a)2= √32a,∴e= ca = √32.故选:A.【点评】:本题考查椭圆的离心率,考查双曲线的性质,考查学生的计算能力,属于基础题.7.(单选题,5分)在平面直角坐标系中,有不共线的三点A,B,C,已知AB,AC所在直线的斜率分别为k1,k2,则“k1k2>-1”是“∠BAC为锐角”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【正确答案】:D【解析】:根据充分条件和必要条件的定义分别进行判断即可.>0,【解答】:解:由题意“∠BAC为锐角”,可得:tan∠BAC= k1−k21+k1k2即(k1-k2)(1+k1k2)>0,∵k1k2>-1,不一定大于0,∴tan∠BAC= k1−k21+k1k2>0,同理tan∠BAC= k1−k21+k1k2k1k2不一定大于-1∴是既不充分也不必要条件.故选:D.【点评】:本题主要考查充分条件和必要条件的判断,根据充分条件和必要条件的定义是解决本题的关键.8.(单选题,5分)对于曲线C:y=f(x)上任意一点A(x1,y1),在曲线C上都存在唯一的B(x2,y2),满足线段AB的中点在直线l:y-2=0上,则称直线l为曲线C的“腰线”,则下列曲线中:① y=e x;② y=x3-x;③ y=2sinx;④ y=lnx.则l为“腰线”的曲线的条数为()A.1B.2C.3D.4【正确答案】:A【解析】:由题意可得直线l为曲线C的“腰线”的前提是y1+y2=4成立,且满足任意的点A,存在唯一的点B,分别对① ② ③ ④ ,结合函数的值域和单调性,即可得到所求结论.【解答】:解:由题意可得直线l为曲线C的“腰线”,等价为y1+y2=4,对于① ,y=e x,由e x1+e x2=4,且e x>0,不满足任意的x1,存在唯一的x2,故① 错误;对于② ,y=x3-x,由y1+y2=4,即(x13-x1)+(x23-x2)=4,当x13-x1=4,x23-x2=0,可得x2=0或x2=±1,不满足任意的点A,存在唯一的点B,故② 错误;对于③ ,y=2sinx的值域为[-2,2],由2sinx1+2sinx2=4,可得sinx1=sinx2=1,不满足任意的x1,存在唯一的x2,故③ 错误;对于④ ,y=lnx的值域为R,且y=lnx在(0,+∞)递增,由lnx1+lnx2=4,满足任意的x1,存在唯一的x2,故④ 正确.故选:A.【点评】:本题考查新定义的理解和运用,以及函数的单调性和值域,考查方程思想和运算能力,属于中档题.9.(填空题,4分)直线2x+(m+1)y+4=0与直线mx+3y-6=0平行,那么m的值是___ .【正确答案】:[1]2【解析】:利用两直线平行的位置关系即可求出m的值.【解答】:解:∵直线2x+(m+1)y+4=0与直线mx+3y-6=0平行,∴ 2 m =m+13≠4−6,∴m=2,故答案为:2.【点评】:本题主要考查了两直线平行的位置关系,是基础题.10.(填空题,4分)在等比数列{a n}中,a2=2,且1a1+1a3=54,则a1+a3的值为___ .【正确答案】:[1]5【解析】:利用等比数列的通项公式即可得出.【解答】:解:设等比数列{a n}的公比为q,∵a2=2,且1a1+1a3=54,∴ q 2 + 12q= 54,解得q=2或12.当q=2时,则a 1+a 3= 22+2×2 =5; 当q= 12时,则a 1+a 3= 212+2× 12=5.故答案为:5.【点评】:本题考查了等比数列的通项公式,考查了推理能力与计算能力,属于中档题. 11.(填空题,4分)直线l :y=kx-1被圆C :(x-2)2+y 2=4截得的弦长为4,则k 的值为___ .【正确答案】:[1] 12【解析】:直接利用直线与圆的位置关系的应用求出结果.【解答】:解:直线l :y=kx-1被圆C :(x-2)2+y 2=4截得的弦长为4, 所以:直线y=kx-1经过圆心(2,0), 则0=2k-1,解得k= 12 . 故答案为: 12 .【点评】:本题考查的知识要点:直线与圆的位置关系,主要考查学生的运算能力和转换能力及思维能力,属于基础题.12.(填空题,4分)已知m ,4,n 是等差数列,那么 (√2)m•(√2)n=___ ;mn 的最大值为___ .【正确答案】:[1]16; [2]16【解析】:由m ,4,n 是等差数列,可得m+n=8.再利用指数幂的运算性质、基本不等式的性质即可得出.【解答】:解:∵m ,4,n 是等差数列, ∴m+n=8.则 (√2)m•(√2)n= (√2)m+n= (√2)8=24=16; mn ≤(m+n 2)2=16,当且仅当m=n 时取等号.因此mn 的最大值为16. 故答案分别为:16;16.【点评】:本题考查了等差数列的性质、指数幂的运算性质、基本不等式的性质,考查了计算能力,属于基础题.13.(填空题,4分)如图(1)是反映某条公共汽车线路收支差额(即营运所得票价收入与付出成本的差)y与乘客量x之间关系的图象.由于目前该条公交线路亏损,公司有关人员提出了两种调整的建议,如图(2)(3)所示.给出下列说法:① 图(2)的建议是:降低成本,并保持票价不变;② 图(2)的建议是:提高成本,并提高票价;③ 图(3)的建议是:提高票价,并保持成本不变;④ 图(3)的建议是:提高票价,并降低成本.其中所有说法正确的序号是___ .【正确答案】:[1] ① ③【解析】:图(1)中,点A的几何意义代表付出的成本,射线AB的倾斜程度表示票价,再对比观察图(2)和图(3)中的改变量与未变量即可得解.【解答】:解:图(1)中,点A的几何意义代表付出的成本,射线AB的倾斜程度表示票价,图(2)中射线AB的倾斜程度未变,只将点A上移,所以说法① 正确,图(3)中点A的位置未变,将射线AB的倾斜程度变大,所以说法③ 正确,故答案为:① ③ .【点评】:本题考查函数图象的变换,理解函数图象中截距和倾斜度的几何意义是解题的关键,考查学生将理论与实际生活相联系的能力和逻辑推理能力,属于基础题.14.(填空题,4分)曲线C是平面内到直线l1:x=-1和直线l2:y=1的距离之积等于常数k2(k>0)的点的轨迹.给出下列四个结论:① 曲线C过点(-1,1);② 曲线C关于点(-1,1)对称;③ 若点P在曲线C上,点A,B分别在直线l1,l2上,则|PA|+|PB|不小于2k;④ 设p0为曲线C上任意一点,则点P1关于直线x=-1、点(-1,1)及直线y=1对称的点分别为P1、P2、P3,则四边形P0P1P2P3的面积为定值4k2.其中,所有正确结论的序号是___ .【正确答案】:[1] ② ③ ④【解析】:由题意曲线C是平面内到直线l1:x=-1和直线l2:y=1的距离之积等于常数k2(k>0)的点的轨迹.利用直接法,设动点坐标为(x,y),及可得到动点的轨迹方程,然后由方程特点即可加以判断.【解答】:解:由题意设动点坐标为(x,y),则利用题意及点到直线间的距离公式的得:|x+1||y-1|=k2,对于① ,将(-1,1)代入验证,此方程不过此点,所以① 错;对于② ,把方程中的x被-2-x代换,y被2-y 代换,方程不变,故此曲线关于(-1,1)对称.② 正确;对于③ ,由题意知点P在曲线C上,点A,B分别在直线l1,l2上,则|PA|≥|x+1|,|PB|≥|y-1|∴|PA|+|PB|≥2 √|PA||PB| =2k,③ 正确;对于④ ,由题意知点P在曲线C上,根据对称性,则四边形P0P1P2P3的面积=2|x+1|×2|y-1|=4|x+1||y-1|=4k2.所以④ 正确.故答案为:② ③ ④ .【点评】:此题重点考查了利用直接法求出动点的轨迹方程,并化简,利用方程判断曲线的对称性,属于基础题.)+2 √2 cos2x.15.(问答题,12分)已知函数f(x)= √2 sin(2x- π6(Ⅰ)求函数f(x)的单调区间;(Ⅱ)求函数f(x)的最值.【正确答案】:【解析】:(Ⅰ)利用三角函数的倍角公式以及两角和差的正弦公式,进行化简,结合三角函数的单调性进行求解.(Ⅱ)根据三角函数的有界性进行求解即可.【解答】:解:(Ⅰ)f (x )= √2 sin (2x- π6 )+2 √2 cos 2x= √2 (sin2x• √32 - 12 cos2x+cos2x+1)= √2 (sin2x• √32 + 12 cos2x+1)= √2 sin (2x+ π6 )+ √2 , 由2kπ- π2 ≤2x+ π6 ≤2kπ+ π2 ,k∈Z 得kπ- π3 ≤x≤kπ+ π6 ,k∈Z ,即函数的单调递增区间为[kπ- π3 ,kπ+ π6 ],k∈Z , 由2kπ+ π2≤2x+ π6≤2kπ+ 3π2,k∈Z 得kπ+ π6 ≤x≤kπ+ 2π3 ,k∈Z ,即函数的单调递减区间为[kπ+ π6,kπ+ 2π3],k∈Z ; (Ⅱ)当sin (2x+ π6)=1时,函数f (x )取得最大值, 此时最大值为f (x )= √2+√2 =2 √2 .当sin (2x+ π6 )=-1时,函数f (x )取得最小值, 此时最大值为f (x )=- √2+√2 =0.【点评】:本题主要考查三角函数的图象和性质,利用倍角公式以及辅助角公式将三角函数进行化简是解决本题的关键.16.(问答题,12分)设函数f (x )=x 2+ax-lnx (a∈R ). (Ⅰ)若a=1,求函数f (x )的单调区间;(Ⅱ)若函数f (x )在区间(0,1]上是减函数,求实数a 的取值范围;(Ⅲ)过坐标原点O 作曲线y=f (x )的切线,证明:切线有且仅有一条,且切点的横坐标恒为1.【正确答案】:【解析】:(Ⅰ)a=1时,f (x )=x 2+ax-lnx (x >0), f′(x )=2x +1−1x =(2x−1)(x+1)x,根据函数的定义域,确定f′(x )>0和f′(x )>0的范围,进而得到函数f (x )的单调区间;(Ⅱ)若函数f(x)在区间(0,1]上是减函数,则f'(x)≤0对任意x∈(0,1]恒成立,进而a≤1x−2x对任意x∈(0,1]恒成立,进而将问题转化为函数的最值问题后,可得实数a的取值范围;(Ⅲ)设出切点坐标,利用导数法求出切线斜率(切点处的导函数值),进而利用点斜式方程结合切线过原点求出切线方程,通过证明t=1是方程t2+lnt-1=0的唯一的解,可得结论.【解答】:解:(Ⅰ)a=1时,f(x)=x2+ax-lnx(x>0),∴ f′(x)=2x+1−1x =(2x−1)(x+1)x,又∵ x∈(0 , 12) , f′(x)<0 , x∈(12 , +∞) , f′(x)>0,f(x)的单调递减区间为(0 , 12),单调递增区间为(12 , +∞).(Ⅱ)∵ f′(x)=2x+a−1x又∵f(x)在区间(0,1]上是减函数,∴f′(x)≤0对任意x∈(0,1]恒成立,即2x+a−1x≤0对任意x∈(0,1]恒成立,∴ a≤1x−2x对任意x∈(0,1]恒成立,令g(x)=1x−2x,∴a≤g(x)min,易知g(x)在(0,1]单调递减,∴g(x)min=g(1)=-1.∴a≤-1.(Ⅲ)设切点为M(t,f(t)),f′(x)=2x+a−1x,∴过M点的切线方程为:y-f(t)=f′(t)(x-t),即y−(t2+at−lnt)=(2t+a−1t)(x−t)又切线过原点,所以,0−(t2+at−lnt)=(2t+a−1t)(0−t),即t2+lnt-1=0,显然t=1是方程t2+lnt-1=0的解,设φ(t)=t2+lnt-1,则φ′(t)=2t+ 1t>0恒成立,φ(t)在(0,+∞)单调递增,且φ(1)=0,∴方程t2+lnt-1=0有唯一解1.∴过坐标原点O作曲线y=f(x)的切线,切线有且仅有一条,且切点的横坐标恒为1.【点评】:本题考查的知识点是利用导数研究函数的单调性,利用导数研究曲线上某点的切线方程,是导数的综合应用,难度中档.17.(问答题,12分)如图,在平面直角坐标系xOy中,椭圆C:x2a2 + y2b2=1(a>b>0)的离心率为√32,且过点(1,√32).过椭圆C的左顶点A作直线交椭圆C于另一点P,交直线l:x=m(m>a)于点M.已知点B(1,0),直线PB交l于点N.(Ⅰ)求椭圆C的方程;(Ⅱ)若MB是线段PN的垂直平分线,求实数m的值.【正确答案】:【解析】:(Ⅰ)因为椭圆C的离心率为√32,所以a2=4b2.又因为椭圆C过点(1,√32),所以1a2+34b2=1,解得椭圆C的方程;(Ⅱ)若MB是线段PN的垂直平分线,k PB•k MB=-1,设P(x0,y0),则P关于B的对称点N(2-x0,-y0),进而得到实数m的值.【解答】:(本小题满分16分)解:(Ⅰ)因为椭圆C的离心率为√32,所以a2=4b2.又因为椭圆C 过点(1, √32),所以 1a 2+34b 2=1 ,解得a 2=4,b 2=1.所以椭圆C 的方程为 x 24+y 2=1 . (Ⅱ)设P (x 0,y 0),-2<x 0<2,x 0≠1,则 x 024+y 02=1 .因为MB 是PN 的垂直平分线,所以P 关于B 的对称点N (2-x 0,-y 0),所以2-x 0=m . 由A (-2,0),P (x 0,y 0),可得直线AP 的方程为y= y 0x 0+2(x+2), 令x=m ,得y= y 0x0+2(m+2),即M (m , y 0x0+2(m+2)). 因为PB⊥MB ,所以k PB •k MB =-1,所以k PB •k MB = y 0x 0−1 • y0x 0+2(m+2)m−1=-1,即 y 02•(m+2)(x 0−1)(x 0+2)(m−1) =-1.因为 x 024+y 02=1 .所以 (x 0−2)(m+2)4(x 0−1)(m−1)=1. 因为x 0=2-m ,化简得3m 2-10m+4=0,解得m= 5±√133. 因为m >2,所以m= 5+√133【点评】:本题考查的知识点是椭圆的标准方程,直线与椭圆的位置关系,直线垂直的充要条件,难度较大.。

2019-2020年高三上学期期末教学质量检测数学(文)试题 含答案

2019-2020年高三上学期期末教学质量检测数学(文)试题 含答案

2019-2020年高三上学期期末教学质量检测数学(文)试题 含答案一、填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1. 计算: . 2. 已知集合,,则 .3. 已知等差数列的首项为3,公差为4,则该数列的前项和 .4. 一个不透明袋中有10个不同颜色的同样大小的球,从中任意摸出2个,共有 种不同结果(用数值作答).5. 不等式的解集是 .6. 设8780178(1)x a a x a x a x -=++++,则0178||||||||a a a a ++++= .7. 已知圆锥底面的半径为1,侧面展开图是一个圆心角为的扇形,则该圆锥的侧面积是 .8. 已知角的顶点与直角坐标系的原点重合,始边在轴的正半轴上,终边在射线()上,则 .9. 已知两个向量,的夹角为,,为单位向量,,若,则 . 10. 已知两条直线的方程分别为:和:,则这两条直线的夹角大小为 (结果用反三角函数值表示).11. 若,是一二次方程的两根,则 .12. 直线经过点且点到直线的距离等于1,则直线的方程是 . 13. 已知实数、满足,则的取值范围是 .14. 一个无穷等比数列的首项为2,公比为负数,各项和为,则的取值范围是 .二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案.考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分. 15. 在下列幂函数中,是偶函数且在上是增函数的是( )A. B. C. D.16. 已知直线:与直线:,记3D k =A. 充分非必要条件C. 充要条件17. 则表示复数的点是( )18. A. 1个 B. 4个三、解答题(本大题满分74定区域内写出必要的步骤.19.(本题满分14分)本题共有2在锐角中,、、分别为内角、(1)求的大小;(2)若,的面积,求的值.B120.(本题满分14分)本题共有2个小题,第1小题满分4分,第2小题满分10分.上海出租车的价格规定:起步费14元,可行3公里,3公里以后按每公里2.4元计算,可再行7公里;超过10公里按每公里3.6元计算,假设不考虑堵车和红绿灯等所引起的费用,也不考虑实际收取费用去掉不足一元的零头等实际情况,即每一次乘车的车费由行车里程唯一确定.(1)小明乘出租车从学校到家,共8公里,请问他应付出租车费多少元?(本小题只需要回答最后结果)(2)求车费(元)与行车里程(公里)之间的函数关系式.21.(本题满分14分)本题共有2个小题,第1小题满分8分,第2小题满分6分.如图,正方体的棱长为2,点为面的对角线的中点.平面交与,于.(1)求异面直线与所成角的大小;(结果可用反三角函数值表示)(2)求三棱锥的体积.22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分4分,第3小题满分8分.已知函数(其中).(1)判断函数的奇偶性,并说明理由;(2)求函数的反函数;(3)若两个函数与在闭区间上恒满足,则称函数与在闭区间上是分离的.试判断函数与在闭区间上是否分离?若分离,求出实数的取值范围;若不分离,请说明理由.23.(本题满分16分)本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分7分.在数列中,已知,前项和为,且.(其中)(1)求;(2)求数列的通项公式;(3)设,问是否存在正整数、(其中),使得、、成等比数列?若存在,求出所有满足条件的数组;否则,说明理由.静安区xx第一学期期末教学质量检测高三年级数学(文科)试卷答案(试卷满分150分 考试时间120分钟) xx.12一、填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1. 计算: . 解:.2. 已知集合,,则 . 解:.3. 已知等差数列的首项为3,公差为4,则该数列的前项和 . 解:.4. 一个不透明袋中有10个不同颜色的同样大小的球,从中任意摸出2个,共有 种不同结果(用数值作答). 解:45.5. 不等式的解集是 . 解:.6. 设8780178(1)x a a x a x a x -=++++,则0178||||||||a a a a ++++= .解:256.7. 已知圆锥底面的半径为1,侧面展开图是一个圆心角为的扇形,则该圆锥的侧面积是 . 解:.8. 已知角的顶点与直角坐标系的原点重合,始边在轴的正半轴上,终边在射线()上,则 . 解:.9. 已知两个向量,的夹角为,,为单位向量,,若,则 . 解:-2.10. 已知两条直线的方程分别为:和:,则这两条直线的夹角大小为 (结果用反三角函数值表示). 解:(或或).11. 若,是一二次方程的两根,则 . 解:-3.12. 直线经过点且点到直线的距离等于1,则直线的方程是 . 解:或.13. 已知实数、满足,则的取值范围是 . 解:.14. 一个无穷等比数列的首项为2,公比为负数,各项和为,则的取值范围是 . 解:.二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案.考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分. 15. 在下列幂函数中,是偶函数且在上是增函数的是( )A. B. C. D. 解:D.B 116. 已知直线:与直线:,记3D k =A. 充分非必要条件C. 充要条件解:B.17. 则表示复数的点是( )解:D.18. A. 1个 B. 4个解:C.三、解答题(本大题满分74定区域内写出必要的步骤.19.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.在锐角中,、、分别为内角、、所对的边长,且满足. (1)求的大小;(2)若,的面积,求的值. 解:(1)由正弦定理:,得,∴ ,(4分) 又由为锐角,得.(6分)(2),又∵ ,∴ ,(8分)根据余弦定理:2222cos 7310b a c ac B =+-=+=,(12分) ∴ 222()216a c a c ac +=++=,从而.(14分)20.(本题满分14分)本题共有2个小题,第1小题满分4分,第2小题满分10分.上海出租车的价格规定:起步费14元,可行3公里,3公里以后按每公里2.4元计算,可再行7公里;超过10公里按每公里3.6元计算,假设不考虑堵车和红绿灯等所引起的费用,也不考虑实际收取费用去掉不足一元的零头等实际情况,即每一次乘车的车费由行车里程唯一确定.(1)小明乘出租车从学校到家,共8公里,请问他应付出租车费多少元?(本小题只需要回答最后结果)(2)求车费(元)与行车里程(公里)之间的函数关系式. 解:(1)他应付出出租车费26元.(4分)(2)14,03() 2.4 6.8,3103.6 5.2,10x f x x x x x <≤⎧⎪=+<≤⎨⎪->⎩ . 21.(本题满分14分)本题共有2个小题,第1小题满分8分,第2小题满分6分.如图,正方体的棱长为2,点为面的对角线的中点.平面交与,于.(1)求异面直线与所成角的大小;(结果可用反三角函数值表示)(2)求三棱锥的体积.解:(1)∵ 点为面的对角线的中点,且平面,∴ 为的中位线,得,又∵ ,∴ 22MN ND MD ===(2分) ∵ 在底面中,,,∴ ,又∵ ,为异面直线与所成角,(6分) 在中,为直角,,∴ .即异面直线与所成角的大小为.(8分) (2),(9分)1132P BMN V PM MN BN -=⋅⋅⋅⋅,(12分)22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分4分,第3小题满分8分.已知函数(其中).(1)判断函数的奇偶性,并说明理由; (2)求函数的反函数;(3)若两个函数与在闭区间上恒满足,则称函数与在闭区间上是分离的.试判断函数与在闭区间上是否分离?若分离,求出实数的取值范围;若不分离,请说明理由. 解:(1)∵ ,∴ 函数的定义域为,(1分)又∵ ()()log )log )0a a f x f x x x +-=+=,∴ 函数是奇函数.(4分) (2)由,且当时,, 当时,,得的值域为实数集. 解得,.(8分)(3)在区间上恒成立,即, 即在区间上恒成立,(11分) 令,∵ ,∴ , 在上单调递增,∴ , 解得,∴ .(16分)23.(本题满分16分)本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分7分.在数列中,已知,前项和为,且.(其中) (1)求;(2)求数列的通项公式; (3)设,问是否存在正整数、(其中),使得、、成等比数列?若存在,求出所有满足条件的数组;否则,说明理由. 解:(1)∵ ,令,得,∴ ,(3分)或者令,得,∴ .(2)当时,1111(1)()(1)22n n n n a a n a S ++++-+==,∴ 111(1)22n nn n n n a na a S S ++++=-=-,∴ , 推得,又∵ ,∴ ,∴ ,当时也成立,∴ ().(9分) (3)假设存在正整数、,使得、、成等比数列,则、、成等差数列,故(**)(11分) 由于右边大于,则,即, 考查数列的单调性,∵ ,∴ 数列为单调递减数列.(14分) 当时,,代入(**)式得,解得; 当时,(舍).综上得:满足条件的正整数组为.(16分)(说明:从不定方程以具体值代入求解也可参照上面步骤给分)温馨提示:最好仔细阅读后才下载使用,万分感谢!。

北京市西城区2019~2020学年度第一学期期末考试高三数学试题(含答案解析)

北京市西城区2019~2020学年度第一学期期末考试高三数学试题(含答案解析)

北京市西城区2019 — 2020学年度第一学期期末试卷高三数学本试卷共5页.共150分。

考试时长120分钟。

考生务必将答案答在答题卡上•在试 卷上作答无效。

第I 卷(选择题共40分)-S 选择题:本大题共8小题■每小题5分.共40分•在每小题列出的四个选项中,选出 符合题目要求的一项.1. 设集合Λ = {x ∖r<a}. B = {—3,0∙l ∙5}・若集合A∩B 有且仅有2个元索.则实数α 的取值范围为(A) (-3,+∞)(B) (0> 1](C) [l ∙+α□)2. 若复数Z = 注.则在复平面内N 对应的点位于I-TI(A)第一象限 (B)第二象限(C)第三象限3. 在厶ABC 中.若 α=6, A=60o, 3 = 75°,则 C =(A) 4(B) 2√2(C) 2√3(D) 2^4. 设且兀y≠0,则下列不等式中一定成立的是(A)丄>丄(B)InlJrl >ln∣y 丨(C) 2-工<2-,CD) j ∙2>^25. 已知直线T Jry Jr2=0与圆τ ÷j∕2+2jc~2y jra = 0有公共点,则实数"的取值范围为(A) ( — 8. θ](B) [θ∙+oo)(C) [0, 2)(D) (—8, 2)2020. I(D) Eb 5)(D)第四象限6・设三个向b. c互不共线•则∙+b+c=(Γ是^以Iah ∖b∖, ICl为边长的三角形存在"的(A)充分而不必要条件(B)必要而不充分条件(C)充要条件(D)既不充分也不必要条件7.紫砂壶是中国特冇的手工制造陶土工艺品,其制作始于明朝正徳年间.紫砂壶的壶型众多•经典的有西施壶.掇球壶、石瓢壶.潘壶等•其中.石瓢壶的壶体可以近似看成一个圆台(即圆锥用平行于底面的平面截去一个锥体得到的)・下图给出了一个石瓢壶的相关数据(单位cm),那么该壶的容量约为(A)IOO cm5(B)200 cm3(C)300 cm3(D)400 cn√&已知函数∕Q)=√TTΓ+4 若存在区间O M].使得函数/Q)在区间DZ 上的值域为[α + l,6 + l],则实数〃的取值范围为(A) (-l,+oo) (B) (一 1. 0] (C) (一 +,+8) (D)( —斗,0]4 4第JI 卷(非选择题共110分)二、填空题:本大题共6小题■每小题5分,共3。

北京市朝阳区2019-2020学年度第一学期期末质量检测高一年级数学试卷(解析版)

北京市朝阳区2019-2020学年度第一学期期末质量检测高一年级数学试卷(解析版)

北京市朝阳区2019-2020学年高一(上)期末数学试卷选择题:本大题共10小题,每小题5分,共50分.1.已知集合A={﹣1,0,1},集合B={x∈Z|x2﹣2x≤0},那么A∪B等于()A.{﹣1}B.{0,1}C.{0,1,2}D.{﹣1,0,1,2} 2.已知命题p:∀x<﹣1,x2>1,则¬p是()A.∃x<﹣1,x2≤1B.∀x≥﹣1,x2>1C.∀x<﹣1,x2>1D.∃x≤﹣1,x2≤1 3.下列命题是真命题的是()A.若a>b>0,则ac2>bc2B.若a>b,则a2>b2C.若a<b<0,则a2<ab<b2D.若a<b<0,则4.函数f(x)=cos2x﹣sin2x的最小正周期是()A.B.πC.2πD.4π5.已知函数f(x)在区间(0,+∞)上的函数值不恒为正,则在下列函数中,f(x)只可能是()A.f(x)=xB.f(x)=sin x+2C.f(x)=ln(x2﹣x+1)D.f(x)=6.已知a,b,c∈R,则“a=b=c”是“a2+b2+c2>ab+ac+bc”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7.通过科学研究发现:地震时释放的能量E(单位:焦耳)与地震里氏震级M之间的关系为lgE=4.8+1.5M.已知2011年甲地发生里氏9级地震,2019年乙地发生里氏7级地震,若甲、乙两地地震释放能量分别为E1,E2,则E1和E2的关系为()A.E1=32E2B.E1=64E2C.E1=1000E2D.E1=1024E2 8.已知函数f(x)=x+﹣a(a∈R),g(x)=﹣x2+4x+3,在同一平面直角坐标系里,函数f(x)与g(x)的图象在y轴右侧有两个交点,则实数a的取值范围是()A.{a|a<﹣3}B.{a|a>﹣3}C.{a|a=﹣3}D.{a|﹣3<a<4} 9.已知大于1的三个实数a,b,c满足(lga)2﹣2lgalgb+lgblgc=0,则a,b,c的大小关系不可能是()A.a=b=c B.a>b>c C.b>c>a D.b>a>c10.已知正整数x1,x2,…,x10满足当i<j(i,j∈N*)时,x i<x j,且x12+x22+…+x102≤2020,则x9﹣(x1+x2+x3+x4)的最大值为()A.19B.20C.21D.22二.填空题:本大题共6小题,每空5分,共30分.11.(5分)计算sin330°=.12.(5分)若集合A={x|x2﹣ax+2<0}=∅,则实数a的取值范围是.13.(5分)已知函数f(x)=log2x,在x轴上取两点A(x1,0),B(x2,0)(0<x1<x2),设线段AB的中点为C,过A,B,C作x轴的垂线,与函数f(x)的图象分别交于A1,B1,C1,则点C1在线段A1B1中点M的.(横线上填“上方”或者“下方”)14.(5分)给出下列命题:①函数是偶函数;②函数f(x)=tan2x在上单调递增;③直线x=是函数图象的一条对称轴;④将函数的图象向左平移单位,得到函数y=cos2x的图象.其中所有正确的命题的序号是.15.(5分)已知在平面直角坐标系xOy中,点A(1,1)关于y轴的对称点A'的坐标是.若A和A'中至多有一个点的横纵坐标满足不等式组,则实数a的取值范围是.16.(5分)在物理学中,把物体受到的力(总是指向平衡位置)正比于它离开平衡位置的距离的运动称为“简谐运动”.可以证明,在适当的直角坐标系下,简谐运动可以用函数y=A sin(ωx+φ),x∈[0,+∞)表示,其中A>0,ω>0.如图,平面直角坐标系xOy中,以原点O为圆心,r为半径作圆,A为圆周上的一点,以Ox为始边,OA为终边的角为α,则点A的坐标是,从A点出发,以恒定的角速度ω转动,经过t秒转动到点B (x,y),动点B在y轴上的投影C作简谐运动,则点C的纵坐标y与时间t的函数关系式为.三.解答题:本大题共4小题,共70分.解答应写出文字说明,演算步骤或证明过程. 17.(14分)已知集合A={x|x2﹣5x﹣6≤0},B={x|m+1≤x≤2m﹣1,m∈R}.(Ⅰ)求集合∁R A;(Ⅱ)若A∪B=A,求实数m的取值范围;18.(18分)已知函数f(x)=sin2x﹣2.(Ⅰ)若点在角α的终边上,求tan2α和f(α)的值;(Ⅱ)求函数f(x)的最小正周期;(Ⅲ)若,求函数f(x)的最小值.19.(18分)已知函数f(x)=(x≠a).(Ⅰ)若2f(1)=﹣f(﹣1),求a的值;(Ⅱ)若a=2,用函数单调性定义证明f(x)在(2,+∞)上单调递减;(Ⅲ)设g(x)=xf(x)﹣3,若函数g(x)在(0,1)上有唯一零点,求实数a的取值范围.20.(20分)已知函数f(x)=log2(x+a)(a>0).当点M(x,y)在函数y=g(x)图象上运动时,对应的点M'(3x,2y)在函数y=f(x)图象上运动,则称函数y=g(x)是函数y=f(x)的相关函数.(Ⅰ)解关于x的不等式f(x)<1;(Ⅱ)对任意的x∈(0,1),f(x)的图象总在其相关函数图象的下方,求a的取值范围;(Ⅲ)设函数F(x)=f(x)﹣g(x),x∈(0,1).当a=1时,求|F(x)|的最大值2019-2020学年北京市朝阳区高一(上)期末数学试卷参考答案与试题解析选择题:本大题共10小题,每小题5分,共50分.1.(5分)已知集合A={﹣1,0,1},集合B={x∈Z|x2﹣2x≤0},那么A∪B等于()A.{﹣1}B.{0,1}C.{0,1,2}D.{﹣1,0,1,2}【分析】先分别求出集合A,B,再由并集定义能求出A∪B.【解答】解:∵集合A={﹣1,0,1},集合B={x∈Z|x2﹣2x≤0}={x∈Z|0≤x≤2}={0,1,2},∴A∪B={﹣1,0,1,2}.故选:D.【点评】本题考查并集的求法,考查并集定义等基础知识,考查运算求解能力,是基础题.2.(5分)已知命题p:∀x<﹣1,x2>1,则¬p是()A.∃x<﹣1,x2≤1B.∀x≥﹣1,x2>1C.∀x<﹣1,x2>1D.∃x≤﹣1,x2≤1【分析】根据全称命题的否定是特称命题进行判断.【解答】解:命题是全称命题,则命题的否定为:∃x<﹣1,x2≤1,故选:A.【点评】本题主要考查含有量词的命题的否定,根据全称命题的否定是特称命题,特称命题的否定是全称命题是解决本题的关键.3.(5分)下列命题是真命题的是()A.若a>b>0,则ac2>bc2B.若a>b,则a2>b2C.若a<b<0,则a2<ab<b2D.若a<b<0,则【分析】利用不等式的基本性质,判断选项的正误即可.【解答】解:对于A,若a>b>0,则ac2>bc2,c=0时,A不成立;对于B,若a>b,则a2>b2,反例a=0,b=﹣2,所以B不成立;对于C,若a<b<0,则a2<ab<b2,反例a=﹣4,b=﹣1,所以C不成立;对于D,若a<b<0,则,成立;故选:D.【点评】本题考查命题的真假的判断与应用,不等式的基本性质的应用,是基本知识的考查.4.(5分)函数f(x)=cos2x﹣sin2x的最小正周期是()A.B.πC.2πD.4π【分析】利用二倍角的余弦公式求得y=cos2x,再根据y=A cos(ωx+φ)的周期等于T =,可得结论.【解答】解:∵函数y=cos2x﹣sin2x=cos2x,∴函数的周期为T==π,故选:B.【点评】本题主要考查三角函数的周期性及其求法,二倍角的余弦公式,利用了y=A sin (ωx+φ)的周期等于T=,属于基础题.5.(5分)已知函数f(x)在区间(0,+∞)上的函数值不恒为正,则在下列函数中,f(x)只可能是()A.f(x)=xB.f(x)=sin x+2C.f(x)=ln(x2﹣x+1)D.f(x)=【分析】结合基本初等函数的性质分别求解选项中函数的值域即可判断.【解答】解:∵x>0,根据幂函数的性质可知,y=>0,不符合题意,∵﹣1≤sin x≤1,∴2+sin x>0恒成立,故选项B不符合题意,C:∵x2﹣x+1=,而f(x)=ln(x2﹣x+1),故值域中不恒为正数,符合题意,D:当x>0时,f(x)=2x﹣1>0恒成立,不符合题意,故选:C.【点评】本题主要考查了基本初等函数的值域的求解,属于基础试题.6.(5分)已知a,b,c∈R,则“a=b=c”是“a2+b2+c2>ab+ac+bc”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】先化简命题,再讨论充要性.【解答】解:由a,b,c∈R,知:∵a2+b2+c2﹣ab﹣ac﹣bc=(2a2+2b2+2c2﹣2ab﹣2ac﹣2bc)=[(a﹣b)2+(b﹣c)2+(a﹣c)2],∴“a=b=c”⇒“a2+b2+c2=ab+ac+bc”,“a2+b2+c2>ab+ac+bc”⇒“a,b,c不全相等”.“a=b=c”是“a2+b2+c2>ab+ac+bc”的既不充分也不必要条件.故选:D.【点评】本题考查充分条件、必要条件、充要条件的判断,考查不等式的性质等基础知识,考查运算求解能力,是基础题.7.(5分)通过科学研究发现:地震时释放的能量E(单位:焦耳)与地震里氏震级M之间的关系为lgE=4.8+1.5M.已知2011年甲地发生里氏9级地震,2019年乙地发生里氏7级地震,若甲、乙两地地震释放能量分别为E1,E2,则E1和E2的关系为()A.E1=32E2B.E1=64E2C.E1=1000E2D.E1=1024E2【分析】先把数据代入已知解析式,再利用对数的运算性质即可得出.【解答】解:根据题意得:lgE1=4.8+1.5×9 ①,lgE2=4.8+1.5×7 ②,①﹣②得lgE1﹣lgE2=3,lg()=3,所以,即E1=1000E2,故选:C.【点评】本题考查了对数的运用以及运算,熟练掌握对数的运算性质是解题的关键.8.(5分)已知函数f(x)=x+﹣a(a∈R),g(x)=﹣x2+4x+3,在同一平面直角坐标系里,函数f(x)与g(x)的图象在y轴右侧有两个交点,则实数a的取值范围是()A.{a|a<﹣3}B.{a|a>﹣3}C.{a|a=﹣3}D.{a|﹣3<a<4}【分析】作出函数f(x)与函数g(x)的图象,数形结合即可判断出a的取值范围【解答】解:在同一坐标系中作出函数f(x)与g(x)的示意图如图:因为f(x)=x+﹣a≥2﹣a=4﹣a(x>0),当且仅当x=2时取等号,而g(x)的对称轴为x=2,最大值为7,根据条件可知0<4﹣a<7,解得﹣3<a<4,故选:D.【点评】本题考查函数图象交点问题,涉及对勾函数图象在第一象限的画法,二次函数最值等知识点,属于中档题.9.(5分)已知大于1的三个实数a,b,c满足(lga)2﹣2lgalgb+lgblgc=0,则a,b,c 的大小关系不可能是()A.a=b=c B.a>b>c C.b>c>a D.b>a>c【分析】因为三个实数a,b,c都大于1,所以lga>0,lgb>0,lgc>0,原等式可化为lgalg+lgblg=0,分别分析选项的a,b,c的大小关系即可判断出结果.【解答】解:∵三个实数a,b,c都大于1,∴lga>0,lgb>0,lgc>0,∵(lga)2﹣2lgalgb+lgblgc=0,∴(lga)2﹣lgalgb+lgblgc﹣lgalgb=0,∴lga(lga﹣lgb)+lgb(lgc﹣lga)=0,∴lgalg+lgblg=0,对于A选项:若a=b=c,则lg=0,lg=0,满足题意;对于B选项:若a>b>c,则,0<<1,∴lg>0,lg<0,满足题意;对于C选项:若b>c>a,则0<<1,>1,∴lg<0,lg>0,满足题意;对于D选项:若b>a>c,则0<<1,0<<1,∴lg<0,lg<0,∴lgalg+lgblg <0,不满足题意;故选:D.【点评】本题主要考查了对数的运算性质,是中档题.10.(5分)已知正整数x1,x2,…,x10满足当i<j(i,j∈N*)时,x i<x j,且x12+x22+…+x102≤2020,则x9﹣(x1+x2+x3+x4)的最大值为()A.19B.20C.21D.22【分析】要使x9﹣(x1+x2+x3+x4)取得最大值,结合题意,则需前8项最小,第9项最大,则第10项为第9项加1,由此建立不等式,求出第9项的最大值,进而得解.【解答】解:依题意,要使x9﹣(x1+x2+x3+x4)取得最大值,则x i=i(i=1,2,3,4,5,6,7,8),且x10=x9+1,故,即,又2×292+2×29﹣1815=﹣75<0,2×302+2×30﹣1815=45>0,故x9的最大值为29,∴x9﹣(x1+x2+x3+x4)的最大值为29﹣(1+2+3+4)=19.故选:A.【点评】本题考查代数式最大值的求法,考查逻辑推理能力及创新意识,属于中档题.二.填空题:本大题共6小题,每空5分,共30分.11.(5分)计算sin330°=﹣.【分析】所求式子中的角变形后,利用诱导公式化简即可得到结果.【解答】解:sin330°=sin(360°﹣30°)=﹣sin30°=﹣.故答案为:﹣【点评】此题考查了诱导公式的作用,熟练掌握诱导公式是解本题的关键.12.(5分)若集合A={x|x2﹣ax+2<0}=∅,则实数a的取值范围是[﹣2,2].【分析】根据集合A的意义,利用△≤0求出实数a的取值范围.【解答】解:集合A={x|x2﹣ax+2<0}=∅,则不等式x2﹣ax+2<0无解,所以△=(﹣a)2﹣4×1×2≤0,解得﹣2≤a≤2,所以实数a的取值范围是[﹣2,2].故答案为:[﹣2,2].【点评】本题考查了一元二次不等式的解法与应用问题,是基础题.13.(5分)已知函数f(x)=log2x,在x轴上取两点A(x1,0),B(x2,0)(0<x1<x2),设线段AB的中点为C,过A,B,C作x轴的垂线,与函数f(x)的图象分别交于A1,B1,C1,则点C1在线段A1B1中点M的上方.(横线上填“上方”或者“下方”)【分析】求出点C1,M的纵坐标,作差后利用基本不等式即可比较大小,进而得出结论.【解答】解:依题意,A1(x1,log2x1),B1(x2,log2x2),则,则=,故点C1在线段A1B1中点M的上方.故答案为:上方.【点评】本题考查对数运算及基本不等式的运用,考查逻辑推理能力,属于基础题.14.(5分)给出下列命题:①函数是偶函数;②函数f(x)=tan2x在上单调递增;③直线x=是函数图象的一条对称轴;④将函数的图象向左平移单位,得到函数y=cos2x的图象.其中所有正确的命题的序号是①②③.【分析】利用三函数的奇偶性、单调性、对称轴、图象的平移等性质直接求解.【解答】解:在①中,函数=cos2x是偶函数,故①正确;在②中,∵y=tan x在(﹣,)上单调递增,∴函数f(x)=tan2x在上单调递增,故②正确;在③中,函数图象的对称轴方程为:2x+=kπ+,k∈Z,即x=,k=0时,x=,∴直线x=是函数图象的一条对称轴,故③正确;在④中,将函数的图象向左平移单位,得到函数y=cos(2x+)的图象,故④错误.故答案为:①②③.【点评】本题考查命题真假的判断,考查三函数的奇偶性、单调性、对称轴、图象的平移等基础知识,考查运算求解能力,是中档题.15.(5分)已知在平面直角坐标系xOy中,点A(1,1)关于y轴的对称点A'的坐标是(﹣1,1).若A和A'中至多有一个点的横纵坐标满足不等式组,则实数a 的取值范围是{a|a≥0或a≤﹣1}.【分析】先求出对称点的坐标,再求出第二问的对立面,即可求解.【解答】解:因为点A(1,1)关于y轴的对称点A'的坐标是(﹣1,1);A和A'中至多有一个点的横纵坐标满足不等式组,其对立面是A和A'中两个点的横纵坐标都满足不等式组,可得:且⇒a<0且﹣1<a<2⇒﹣1<a<0故满足条件的a的取值范围是{a|a≥0或a≤﹣1}.故答案为:(﹣1,1),{a|a≥0或a≤﹣1}.【点评】本题主要考查对称点的求法以及二元一次不等式组和平面区域之间的关系,属于基础题.16.(5分)在物理学中,把物体受到的力(总是指向平衡位置)正比于它离开平衡位置的距离的运动称为“简谐运动”.可以证明,在适当的直角坐标系下,简谐运动可以用函数y=A sin(ωx+φ),x∈[0,+∞)表示,其中A>0,ω>0.如图,平面直角坐标系xOy中,以原点O为圆心,r为半径作圆,A为圆周上的一点,以Ox为始边,OA为终边的角为α,则点A的坐标是A(r cosα,r sinα),从A点出发,以恒定的角速度ω转动,经过t 秒转动到点B(x,y),动点B在y轴上的投影C作简谐运动,则点C的纵坐标y与时间t的函数关系式为y=r sin(ωt+α).【分析】由任意角三角函数的定义,A(r cosα,r sinα),根据题意∠BOx=ωt+α,进而可得点C的纵坐标y与时间t的函数关系式.【解答】解:由任意角三角函数的定义,A(r cosα,r sinα),若从A点出发,以恒定的角速度ω转动,经过t秒转动到点B(x,y),则∠BOx=ωt+α,点C的纵坐标y与时间t的函数关系式为y=r sin(ωt+α).故答案为:A(r cosα,r sinα),y=r sin(ωt+α).【点评】本题考查任意角三角函数的定义,三角函数解析式,属于中档题.三.解答题:本大题共4小题,共70分.解答应写出文字说明,演算步骤或证明过程. 17.(14分)已知集合A={x|x2﹣5x﹣6≤0},B={x|m+1≤x≤2m﹣1,m∈R}.(Ⅰ)求集合∁R A;(Ⅱ)若A∪B=A,求实数m的取值范围;【分析】(Ⅰ)容易求出A={x|﹣1≤x≤6},然后进行补集的运算即可;(Ⅱ)根据A∪B=A可得出B⊆A,从而可讨论B是否为空集:B=∅时,m+1>2m﹣1;B≠∅时,,解出m的范围即可.【解答】解:(Ⅰ)A={x|﹣1≤x≤6},∴∁R A={x|x<﹣1或x>6},(Ⅱ)∵A∪B=A,∴B⊆A,∴①B=∅时,m+1>2m﹣1,解得m<2;②B≠∅时,,解得,∴实数m的取值范围为.【点评】本题考查了描述法的定义,一元二次不等式的解法,并集、补集的定义及运算,子集的定义,考查了计算能力,属于基础题.18.(18分)已知函数f(x)=sin2x﹣2.(Ⅰ)若点在角α的终边上,求tan2α和f(α)的值;(Ⅱ)求函数f(x)的最小正周期;(Ⅲ)若,求函数f(x)的最小值.【分析】(Ⅰ)直接利用三角函数的定义的应用和函数的关系式的应用求出结果.(Ⅱ)利用三角函数关系式的恒等变换,把函数的关系式变形成正弦型函数,进一步求出函数的最小正周期.(Ⅲ)利用函数的定义域的应用求出函数的值域和最小值.【解答】解:(Ⅰ)若点在角α的终边上,所以,,故,所以tan2α===.f(α)==2.(Ⅱ)由于函数f(x)=sin2x﹣2=.所以函数的最小正周期为.(Ⅲ)由于,所以,所以当x=时,函数的最小值为.【点评】本题考查的知识要点:三角函数的定义的应用,三角函数关系式的变换,正弦型函数的性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.19.(18分)已知函数f(x)=(x≠a).(Ⅰ)若2f(1)=﹣f(﹣1),求a的值;(Ⅱ)若a=2,用函数单调性定义证明f(x)在(2,+∞)上单调递减;(Ⅲ)设g(x)=xf(x)﹣3,若函数g(x)在(0,1)上有唯一零点,求实数a的取值范围.【分析】(Ⅰ)由已知,建立关于a的方程,解出即可;(Ⅱ)将a=2代入,利用取值,作差,变形,判号,作结论的步骤证明即可;(Ⅲ)问题转化为h(x)=2x2﹣3x+3a在(0,1)上有唯一零点,由二次函数的零点分布问题解决.【解答】解:(Ⅰ)由2f(1)=﹣f(﹣1)得,,解得a=﹣3;(Ⅱ)当a=2时,,设x1,x2∈(2,+∞),且x1<x2,则,∵x1,x2∈(2,+∞),且x1<x2,∴x2﹣x1>0,(x1﹣2)(x2﹣2)>0,∴f(x1)>f(x2),∴f(x)在(2,+∞)上单调递减;(Ⅲ),若函数g(x)在(0,1)上有唯一零点,即h(x)=2x2﹣3x+3a在(0,1)上有唯一零点(x=a不是函数h(x)的零点),且二次函数h(x)=2x2﹣3x+3a的对称轴为,若函数h(x)在(0,1)上有唯一零点,依题意,①当h(0)h(1)<0时,3a(3a﹣1)<0,解得;②当△=0时,9﹣24a=0,解得,则方程h(x)=0的根为,符合题意;③当h(1)=0时,解得,则此时h(x)=2x2﹣3x+1的两个零点为,符合题意.综上所述,实数a的取值范围为.【点评】本题考查函数单调性的证明及二次函数的零点分布问题,考查推理论证及运算求解能力,属于中档题.20.(20分)已知函数f(x)=log2(x+a)(a>0).当点M(x,y)在函数y=g(x)图象上运动时,对应的点M'(3x,2y)在函数y=f(x)图象上运动,则称函数y=g(x)是函数y=f(x)的相关函数.(Ⅰ)解关于x的不等式f(x)<1;(Ⅱ)对任意的x∈(0,1),f(x)的图象总在其相关函数图象的下方,求a的取值范围;(Ⅲ)设函数F(x)=f(x)﹣g(x),x∈(0,1).当a=1时,求|F(x)|的最大值【分析】(Ⅰ)利用对数函数的性质可得,解出即可;(Ⅱ)根据题意,求得,依题意,在(0,1)上恒成立,由此得解;(Ⅲ)结合(Ⅱ)可知,,则只需求出的最大值即可.【解答】解:(Ⅰ)依题意,,则,解得﹣a<x<2﹣a,∴所求不等式的解集为(﹣a,2﹣a);(Ⅱ)由题意,2y=log2(3x+a),即f(x)的相关函数为,∵对任意的x∈(0,1),f(x)的图象总在其相关函数图象的下方,∴当x∈(0,1)时,恒成立,由x+a>0,3x+a>0,a>0得,∴在此条件下,即x∈(0,1)时,恒成立,即(x+a)2<3x+a,即x2+(2a﹣3)x+a2﹣a<0在(0,1)上恒成立,∴,解得0<a≤1,故实数a的取值范围为(0,1].(Ⅲ)当a=1时,由(Ⅱ)知在区间(0,1)上,f(x)<g(x),∴,令,则,令μ=3x+1(1<μ<4),则,∴,当且仅当“”时取等号,∴|F(x)|的最大值为.【点评】本题考查对数函数的图象及性质,考查换元思想的运用,考查逻辑推理能力及运算求解能力,属于中档题.。

2022-2023学年北京市西城区人教版三年级上册期末考试数学试卷及答案

2022-2023学年北京市西城区人教版三年级上册期末考试数学试卷及答案

2022-2023学年北京市西城区人教版三年级上册期末考试数学试卷及答案一、下面每题都有四个选项,其中只有一个是正确的,请将正确选项的字母填在括号里。

(共16分)1.10张A4纸摞在一起的厚度大约是1()。

A.毫米B.厘米C.分米D.米【答案】A【解析】【分析】根据生活实际,结合题中数据可知,10张A4纸摞在一起的厚度应该用毫米作单位。

【详解】根据分析可知,10张A4纸摞在一起的厚度大约是1毫米。

故答案为:A【点睛】根据情景选择计量单位,本题主要考查学生对生活常识的掌握。

2.在钟面上秒针从“11”走到“2”,经过了()秒。

A.3B.9C.15D.45【答案】C【解析】【分析】钟面上有12大格,时针走1大格是1小时,分针走1大格是5分钟,秒针走1大格是5秒;现在秒针从“11”走到“2”,走了3大格,所以经过了5×3=15(秒),据此即可解答。

【详解】5×3=15(秒)秒针从“11”走到“2”,经过了15秒。

故答案为:C【点睛】本题主要考查学生对钟面知识的掌握和灵活运用。

3.下面图中,图()的涂色部分表示是整体的1 4。

A. B. C. D.【答案】C 【解析】【分析】14表示把一个整体平均分成4份,取其中的1份,据此选择。

【详解】A.把一个五边形看作整体“1”,平均分成5份,每份是15,不符合题意;B.把一个正方形分成3份,不是平均分,不符合题意;C.把4个小正方形看作整体“1”,每个小正方形是1份,可以表示14,符合题意;D.把6个○看作整体“1”,平均分成3份,每份2个,每份是13,不符合题意。

故答案为:C【点睛】本题主要考查了分数的意义,需明确平均分的份数和需要表示的份数。

4.要使289×□的积是三位数,□里最大能填()。

A.2B.3C.4D.5【答案】B【解析】【分析】根据题意,把289看作与它接近的整十数290,因为290×4=1160,积是四位数,290×3=870,积是三位数,要使289×□的积是三位数,那么这个一位数要比4小,所以□里最大填3;据此解答即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第Ⅰ卷(选择题 共40分)一㊁选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合A ={x |x <a },B ={-3,0,1,5},若集合A ɘB 有且仅有2个元素,则实数a 的取值范围为(A )(-3,+¥)(B )(0,1](C )[1,+¥)(D )[1,5)2.若复数z =3-i1+i,则在复平面内z 对应的点位于(A )第一象限(B )第二象限(C )第三象限(D )第四象限3.在әA B C 中,若a =6,A =60ʎ,B =75ʎ,则c =(A )4(B )22(C )23(D )264.设x >y ,且x y ʂ0,则下列不等式中一定成立的是(A )1x >1y (B )l n |x |>l n |y|(C )2-x <2-y(D )x 2>y25.已知直线x +y +2=0与圆x 2+y 2+2x -2y +a =0有公共点,则实数a 的取值范围为(A )(-¥,0](B )[0,+¥)(C )[0,2)(D )(-¥,2)6.设三个向量a,b,c互不共线,则 a+b+c=0 是 以|a|,|b|,|c|为边长的三角形存在 的(A)充分而不必要条件(B)必要而不充分条件(C)充要条件(D)既不充分也不必要条件7.紫砂壶是中国特有的手工制造陶土工艺品,其制作始于明朝正德年间.紫砂壶的壶型众多,经典的有西施壶㊁掇球壶㊁石瓢壶㊁潘壶等.其中,石瓢壶的壶体可以近似看成一个圆台(即圆锥用平行于底面的平面截去一个锥体得到的).下图给出了一个石瓢壶的相关数据(单位:c m),那么该壶的容量约为(A)100c m3(B)200c m3(C)300c m3(D)400c m38.已知函数f(x)=x+1+k,若存在区间[a,b],使得函数f(x)在区间[a,b]上的值域为[a+1,b+1],则实数k的取值范围为(A)(-1,+¥)(B)(-1,0](C)(-14,+¥)(D)(-14,0]第Ⅱ卷(非选择题共110分)二㊁填空题:本大题共6小题,每小题5分,共30分.9.在(1-x)5的展开式中,x2的系数为.10.已知向量a=(-4,6),b=(2,x)满足aʊb,其中xɪR,那么|b|=.11.在公差为d(dʂ0)的等差数列{a n}中,a1=-1,且a2,a4,a12成等比数列,则d=.12.某四棱锥的三视图如图所示,则该四棱锥的四个侧面中,直角三角形有个.13.对于双曲线,给出下列三个条件:①离心率为2;②一条渐近线的倾斜角为30ʎ;③实轴长为8,且焦点在x轴上.写出符合其中两个条件的一个双曲线的标准方程.14.某商贸公司售卖某种水果.经市场调研可知:在未来20天内,这种水果每箱的销售利润r(单位:元)与时间t(1ɤtɤ20,tɪN,单位:天)之间的函数关系式为r=14t+10,且日销售量y(单位:箱)与时间t之间的函数关系式为y=120-2t.①第4天的销售利润为元;②在未来的这20天中,公司决定每销售1箱该水果就捐赠m(mɪN*)元给 精准扶贫 对象.为保证销售积极性,要求捐赠之后每天的利润随时间t的增大而增大,则m 的最小值是.三㊁解答题:本大题共6小题,共80分.解答应写出必要的文字说明㊁证明过程或演算步骤.15.(本小题满分13分)已知函数f(x)=2c o s x㊃s i n(x-π6).(Ⅰ)求函数f(x)的最小正周期;(Ⅱ)求函数f(x)在区间[-π2,0]上的最小值和最大值.16.(本小题满分13分)高铁和航空的飞速发展不仅方便了人们的出行,更带动了我国经济的巨大发展.据统计,在2018年这一年内从A市到B市乘坐高铁或飞机出行的成年人约为50万人次.为了解乘客出行的满意度,现从中随机抽取100人次作为样本,得到下表(单位:人次):满意度老年人中年人青年人乘坐高铁乘坐飞机乘坐高铁乘坐飞机乘坐高铁乘坐飞机10分(满意)1212022015分(一般)2362490分(不满意)106344 (Ⅰ)在样本中任取1个,求这个出行人恰好不是青年人的概率;(Ⅱ)在2018年从A市到B市乘坐高铁的所有成年人中,随机选取2人次,记其中老年人出行的人次为X.以频率作为概率,求X的分布列和数学期望;(Ⅲ)如果甲将要从A市出发到B市,那么根据表格中的数据,你建议甲是乘坐高铁还是飞机?并说明理由.17.(本小题满分14分)如图,在三棱柱A B C-A1B1C1中,B B1ʅ平面A B C,әA B C为正三角形,侧面A B B1A1是边长为2的正方形,D为B C的中点.(Ⅰ)求证:A1Bʊ平面A C1D;(Ⅱ)求二面角C-A C1-D的余弦值;(Ⅲ)试判断直线A1B1与平面A C1D的位置关系,并加以证明18.(本小题满分13分)已知椭圆W:x24+y2=1的右焦点为F,过点F且斜率为k(kʂ0)的直线l与椭圆W 交于A,B两点,线段A B的中点为M.O为坐标原点.(Ⅰ)证明:点M在y轴的右侧;(Ⅱ)设线段A B的垂直平分线与x轴㊁y轴分别相交于点C,D.若әO D C与әC M F的面积相等,求直线l的斜率k.19.(本小题满分14分)已知函数f(x)=e x-a x+12x2,其中a>-1.(Ⅰ)当a=0时,求曲线y=f(x)在点(0,f(0))处的切线方程;(Ⅱ)当a=1时,求函数f(x)的单调区间;(Ⅲ)若f(x)ȡ12x2+x+b对于xɪR恒成立,求b-a的最大值.20.(本小题满分13分)设整数集合A={a1,a2, ,a100},其中1ɤa1<a2< <a100ɤ205,且对于任意i,j(1ɤiɤjɤ100),若i+jɪA,则a i+a jɪA.(Ⅰ)请写出一个满足条件的集合A;(Ⅱ)证明:任意xɪ{101,102, ,200},x∉A;(Ⅲ)若a100=205,求满足条件的集合A的个数.数学试题参考答案1-8BDDCA ABD 9.101011.312.313.答案不唯一,如2211648x y -=14.1232;515.解:(Ⅰ)因为1()2cos (cos )22f x x x x =⋅-2cos cos x x x -112cos2222x x =--π1sin(2)62x =--,所以函数()f x 的最小正周期为2ππ2T ==.(Ⅱ)因为π02x -≤≤,所以7πππ2666x ---≤≤.所以当ππ262x -=-,即π6x =-时,()f x 取得最小值32-.当π7π266x -=-,即π2x =-时,()f x 取得最大值0.16.解:(Ⅰ)设事件:“在样本中任取1个,这个出行人恰好不是青年人”为M ,由表可得:样本中出行的老年人、中年人、青年人人次分别为19,39,42,所以在样本中任取1个,这个出行人恰好不是青年人的概率193929()10050P M +==.(Ⅱ)由题意,X 的所有可能取值为:0,1,2.因为在2018年从A 市到B 市乘坐高铁的所有成年人中,随机选取1人次,此人为老年人概率是151755=,所以022116(0)C (1)525P X ==⨯-=,12118(1)C (15525P X ==⨯⨯-=,22211(2)C ()525P X ==⨯=.所以随机变量X 的分布列为:P1625825125………………9分故16812()0122525255E X =⨯+⨯+⨯=.………………10分(Ⅲ)答案不唯一,言之有理即可.如可以从满意度的均值来分析问题,参考答案如下:由表可知,乘坐高铁的人满意度均值为:521012511011652121115⨯+⨯+⨯=++,乘坐飞机的人满意度均值为:410145702241475⨯+⨯+⨯=++,因为11622155>,所以建议甲乘坐高铁从A 市到B 市.17.解:(Ⅰ)由题意,三棱柱111ABC A B C -为正三棱柱.连接1A C .设11A C AC E = ,则E 是1A C 的中点.连接DE .由D ,E 分别为BC 和1A C 的中点,得1//DE A B .又因为DE ⊂平面1AC D ,1A B ⊄平面1AC D ,所以1//A B 平面1AC D .(Ⅱ)取11B C 的中点F ,连接DF .因为△ABC 为正三角形,且D 为BC 中点,所以AD BC ⊥.由D ,F 分别为BC 和11B C 的中点,得1//DF BB ,又因为1BB ⊥平面ABC ,所以DF ⊥平面ABC ,所以DF AD ⊥,DF BC ⊥.分别以DC ,DF ,DA 为x 轴,y 轴,z则A ,1(1,2,0)C ,(1,0,0)C ,(0,0,0)D ,(1,0,0)B -,所以1(1,2,0)DC = ,DA = ,(CA =- ,1(0,2,0)CC =,设平面1AC D 的法向量1111(,,)x y z =n ,由10DA ⋅= n ,110DC ⋅= n,得1110,20,x y =+=⎪⎩令11y =,得1(2,1,0)=-n .设平面1AC C 的法向量2222(,,)x y z =n ,由20CA ⋅= n ,120CC ⋅= n,得2220,20,x y ⎧-+=⎪⎨=⎪⎩令21z =,得2=n .设二面角1C AC D --的平面角为θ,则121215|cos |||||||5θ⋅==⋅n n n n ,由图可得二面角1C AC D --为锐二面角,所以二面角1C AC D --的余弦值为5.(Ⅲ)结论:直线11A B 与平面1AC D 相交.证明:因为(1,0,AB =-,11//A B AB ,且11=A B AB ,所以11(1,0,A B =-.又因为平面1AC D 的法向量1(2,1,0)=-n ,且11120A B ⋅=≠n ,所以11A B与1n 不垂直,所以11A B ⊄平面1AC D ,且11A B 与平面1AC D 不平行,故直线11A B 与平面1AC D 相交.18.解:(Ⅰ)由题意,得F,直线(l y k x =:(0k ≠),设11(,)A x y ,22(,)B x y ,联立22(1,4y k x x y ⎧=-⎪⎨+=⎪⎩消去y,得2222(41)(12k xx k +-+-显然0∆>,12x x +=,则点M 的横坐标2122241M x x k x k +==+,因为0M x =>,所以点M 在y 轴的右侧.(Ⅱ)由(Ⅰ)得点M 的纵坐标2(41M M y k x k ==+.即222(,)4141M k k -++.所以线段AB 的垂直平分线方程为:y +令0x =,得D ;令0y =所以△ODC 的面积12ODCS ∆=⋅△CMF 的面积221|241CMFS k ∆=⋅-+因为△ODC 与△CMF 的面积相等,所以22222227||3(1)||2(41)2(41)k k k k k k ⋅+⋅=++,解得所以当△ODC 与△CMF 19.解:(Ⅰ)由21()e 2x f x x =+,得()e x f x '=+所以(0)1f =,(0)1f '=.所以曲线()y f x =在点(0,(0))f (Ⅱ)由21()e 2x f x x x =-+,得()e 1x f x '=-则(0)0f '=.当0x >时,由e 10,0x x ->>,得(f '所以函数()f x 在(0,)+∞上单调递增;当0x <时,由e 10,0x x -<<,得()e 10x f x x '=-+<所以函数()f x 在(,0)-∞上单调递减.综上,函数()f x 的单调递增区间为(0,)+∞(Ⅲ)由21()2f x x x b ++≥,得e (1)0x a x b -+-≥在x ∈R 设()e (1)xg x a x b =-+-,则()e (1)x g x a '=-+.由()e (1)0x g x a '=-+=,得ln(1)x a =+,(1a >-).随着x 变化,()g x '与()g x 的变化情况如下表所示:x(,ln(1))a -∞+ln(1)a +(ln(1),)a ++∞()g x '-0+()g x ↘极小值↗所以()g x 在(,ln(1))a -∞+上单调递减,在(ln(1),)a ++∞上单调递增.所以函数()g x 的最小值为(ln(1))(1)(1)ln(1)g a a a a b +=+-++-.由题意,得(ln(1))0g a +≥,即1(1)ln(1)b a a a --++≤.设()1ln (0)h x x x x =->,则()ln 1h x x '=--.因为当10e x <<时,ln 10x -->;当1ex >时,ln 10x --<,所以()h x 在1(0,e 上单调递增,在1(,)e +∞上单调递减.所以当1e x =时,max 11()(1e eh x h ==+.所以当11e a +=,1(1)ln(1)b a a a =+-++,即11e a =-,2eb =时,b a -有最大值为11e+.20.解:(Ⅰ)答案不唯一.如{1,2,3,,100}A = ;(Ⅱ)假设存在一个0{101,102,,200}x ∈ 使得0x A ∈,令0100x s =+,其中s ∈N 且100s ≤≤1,由题意,得100s a a A +∈,由s a 为正整数,得100100s a a a +>,这与100a 为集合A 中的最大元素矛盾,所以任意{101,102,,200}x ∈ ,x A ∉.(Ⅲ)设集合{201,202,,205}A 中有(15)m m ≤≤个元素,100m a b -=,由题意,得12100200m a a a -<<< ≤,10011002100200m m a a a -+-+<<<< ,由(Ⅱ),得100100m a b -=≤.假设100b m >-,则1000b m -+>.因为10010010055100b m m -+-+=<-≤,由题设条件,得100100m b m a a A --++∈,因为100100100100200m b m a a --+++=≤,所以由(Ⅱ)可得100100100m b m a a --++≤,这与100m a -为A 中不超过100的最大元素矛盾,所以100100m a m --≤,又因为121001m a a a -<<< ≤,i a ∈N ,所以(1100)i a i i m =-≤≤.任给集合{201,202,203,204}的1m -元子集B ,令0{1,2,,100}{205}A m B =- ,以下证明集合0A 符合题意:对于任意,i j 00)(1i j ≤≤≤1,则200i j +≤.若0i j A +∈,则有m i j +≤100-,所以i a i =,j a j =,从而0i j a a i j A +=+∈.故集合0A 符合题意,所以满足条件的集合A 的个数与集合{201,202,203,204}的子集个数相同,。

相关文档
最新文档