高中数学圆锥曲线椭圆专项习题
圆锥曲线之椭圆题库 含详解 高考必备

椭圆题库1 E 、F 是椭圆2224x y +=的左、右焦点,l 是椭圆的右准线,点P l ∈,过点E 的直线交椭圆于A 、B 两点.(1) 当AE AF ⊥时,求AEF ∆的面积; (2) 当3AB =时,求AF BF +的大小; (3) 求EPF ∠的最大值.解:(1)2241282AEF m n S mn m n ∆+=⎧⇒==⎨+=⎩(2)因484AE AF AB AF BF BE BF ⎧+=⎪⇒++=⎨+=⎪⎩,则 5.AF BF +=(1)设)(0)P t t > ()tan EPF tan EPM FPM ∠=∠-∠221()(1663t t t t t t -=-÷+==≤++,当t =30tan EPF EPF ∠=⇒∠= 2 已知椭圆)0(12222>>=+b a by a x 的左、右焦点分别是F 1(-c ,0)、F 2(c ,0),Q 是椭圆外的动点,满足.2||1a Q F =点P 是线段F 1Q 与该椭圆的交点,点T 在线段F 2Q 上,并且满足.0||,022≠=⋅TF TF (1)求点T 的轨迹C 的方程;(2)试问:在点T 的轨迹C 上,是否存在点M ,使△F 1MF 2的面积S=.2b 若存在,求∠F 1MF 2的正切值;若不存在,请说明理由.(1)解 :设点T 的坐标为).,(y x当0||=时,点(a ,0)和点(-a ,0)在轨迹上.当|0||0|2≠≠TF 且时,由0||||2=⋅TF ,得2TF ⊥. 又||||2PF PQ =,所以T 为线段F 2Q 的中点. 在△QF 1F 2中,a F OT ==||21||1,所以有.222a y x =+ 综上所述,点T 的轨迹C 的方程是.222a y x =+ (2)解:C 上存在点M (00,y x )使S=2b 的充要条件是⎪⎩⎪⎨⎧=⋅=+.||221,2022020b y c a y x 由③得a y ≤||0,由④得.||20c b y ≤所以,当cb a 2≥时,存在点M ,使S=2b ; 当cb a 2<时,不存在满足条件的点M.当cb a 2≥时,),(),,(002001y x c MF y x c MF --=---=,由2222022021b c a y c x MF MF =-=+-=⋅,212121cos ||||MF F MF MF MF MF ∠⋅=⋅,22121sin ||||21b MF F MF MF S =∠⋅=,得.2tan 21=∠MF F 3 已知椭圆C 1的方程为1422=+y x ,双曲线C 2的左、右焦点分别为C 1的左、右顶点,而C 2的左、右顶点分别是C 1的左、右焦点. (Ⅰ)求双曲线C 2的方程;(Ⅱ)若直线2:+=kx y l 与椭圆C 1及双曲线C 2都恒有两个不同的交点,且l 与C 2的两个交点A 和B 满足6<⋅OB OA (其中O 为原点),求k 的取值范围.解:(Ⅰ)设双曲线C 2的方程为12222=-b y a x ,则.1,31422222==+=-=b c b a a 得再由 故C 2的方程为.1322=-y x (II )将.0428)41(1422222=+++=++=kx x k y x kx y 得代入 ③ ④由直线l 与椭圆C 1恒有两个不同的交点得,0)14(16)41(16)28(22221>-=+-=∆k k k即 .412>k ① 0926)31(1322222=---=-+=kx x k y x kx y 得代入将.由直线l 与双曲线C 2恒有两个不同的交点A ,B 得.131.0)1(36)31(36)26(,0312222222<≠⎪⎩⎪⎨⎧>-=-+-=∆≠-k k k k k k 且即)2)(2(,66319,3126),,(),,(22+++=+<+<⋅--=⋅-=+B A B A B A B A B A B A BA B A B B A A kx kx x x y y x x y y x x OB OA k x x k k x x y x B y x A 而得由则设.1373231262319)1(2)(2)1(222222-+=+-⋅+--⋅+=++++=k k kk k k k x x k x x k B A B A .0131315,613732222>--<-+k k k k 即于是解此不等式得 .31151322<>k k 或 ③ 由①、②、③得.11513314122<<<<k k 或 故k 的取值范围为)1,1513()33,21()21,33()1513,1( ----4.已知某椭圆的焦点是F 1(-4,0)、F 2(4,0),过点F 2,并垂直于x 轴的直线与椭圆的一个交点为B ,且|F 1B |+|F 2B |=10.椭圆上不同的两点A (x 1,y 1)、C (x 2,y 2)满足条件:|F 2A |、|F 2B |、|F 2C |成等差数列.(1)求该椭圆的方程;(2)求弦AC 中点的横坐标;(3)设弦AC 的垂直平分线的方程为y =kx +m ,求m 的取值范围.(12a =|F 1B |+|F 2B |=10,得a =5.又c =4, 所以b =22c a -=3.故椭圆方程为252x +92y =1.(2)解:由点B (4,y B )在椭圆上,得|F 2B |=|y B |=59. 方法一:因为椭圆右准线方程为x =425,离心率为54.根据椭圆定义,有|F 2A |=54(425-x 1),|F 2C |=54(425-x 2).由|F 2A |、|F 2B |、|F 2C |成等差数列,得 54(425-x 1)+54(425-x 2)=2³59. 由此得出x 1+x 2=8. 设弦AC 的中点为P (x 0,y 0), 则x 0=221x x +=28=4.(3)解法一:由A (x 1,y 1),C (x 2,y 2)在椭圆上,得9x 12+25y 12=9³25, ④ 9x 22+25y 22=9³25. ⑤由④-⑤得9(x 12-x 22)+25(y 12-y 22)=0,即9(221x x +)+25(221y y +)(2121x x y y --)=0(x 1≠x 2).将221x x +=x 0=4,221y y +=y 0,2121x x y y --=-k1(k ≠0)代入上式,得9³4+25y 0(-k 1)=0(k ≠0).由上式得k =3625y 0(当k =0时也成立).由点P (4,y 0)在弦AC 的垂直平分线上,得y 0=4k +m ,所以m =y 0-4k =y 0-925y 0=-916y 0.由P (4,y 0)在线段BB ′(B ′与B 关于x 轴对称)的内部,得-59<y 0<59.所以-516<m <516.5 设x 、y ∈R ,i 、j 为直角坐标平面内x 、y 轴正方向上的单位向量,若向量a =x i +(y +2)j ,b =x i +(y -2)j ,且|a |+|b |=8.(1)求点M (x ,y )的轨迹C 的方程.(2)过点(0,3)作直线l 与曲线C 交于A 、B 两点,设=+,是否存在这样的直线l ,使得四边形OAPB 是矩形?若存在,求出直线l 的方程;若不存在,试说明理由.(1)解:∵a =x i +(y +2)j ,b =x i +(y -2)j ,且|a |+|b |=8, ∴点M (x ,y )到两个定点F 1(0,-2),F 2(0,2)的距离之和为8.∴轨迹C 为以F 1、F 2为焦点的椭圆,方程为122x +162y =1.(2)∵l 过y 轴上的点(0,3),若直线l 是y 轴,则A 、B 两点是椭圆的顶点.∵OP =OA +OB =0,∴P 与O 重合,与四边形OAPB 是矩形矛盾.∴直线l 的斜率存在.设l 方程为y =kx +3,A (x 1,y 1),B (x 2,y 2),y =kx +3,122x +162y =1, (-21)>0恒成立,且x 1+x 2=-23418k k +,x 1x 2=-23421k +. ∵=+,∴四边形OAPB 是平行四边形.若存在直线l ,使得四边形OAPB 是矩形,则OA ⊥OB ,即²=0.∵=(x 1,y 1),=(x 2,y 2), ∴OA ²OB =x 1x 2+y 1y 2=0, 即(1+k 2)x 1x 2+3k (x 1+x 2)+9=0, 即(1+k 2)²(-23421k +)+3k ²(-23418k k +)+9=0,即k 2=165,得k =±45.∴存在直线l :y =±45x +3,使得四边形OAPB 是矩形. 6 设1F 、2F 分别是椭圆1422=+y x 的左、右焦点. (Ⅰ)若P 是该椭圆上的一个动点,求1PF ²2PF的最大值和最小值; (Ⅱ)设过定点)2,0(M 的直线l 与椭圆交于不同的两点A 、B ,且∠AOB 为锐角(其中O 为坐标原点),求直线l 的斜率k 的取值范围. 解:(Ⅰ):易知2,1,a b c == 所以())12,F F ,设(),P x y ,则())2212,,,3PF PF x y x y x y ⋅=--=+-()2221133844x x x =+--=-由 消y 得(4+3k 2)x 2+18kx -21=0.此时,Δ=(18k 2)-4(4+3k 2)因为[]2,2x ∈-,故当0x =,即点P 为椭圆短轴端点时,12PF PF ⋅有最小值2- 当2x =±,即点P 为椭圆长轴端点时,12PF PF ⋅有最大值1(Ⅱ)显然直线0x =不满足题设条件,可设直线()()1222:2,,,,l y kx A x y B x y =-,联立22214y kx x y =-⎧⎪⎨+=⎪⎩,消去y ,整理得:2214304k x kx ⎛⎫+++= ⎪⎝⎭∴12122243,44k x x x x k k +=-⋅=++由()2214434304k k k ⎛⎫∆=-+⨯=-> ⎪⎝⎭得:k <或k > 又00090cos 000A B A B OA OB <∠<⇔∠>⇔⋅>∴12120OA OB x x y y ⋅=+>又()()()2121212122224y y kx kx k x x k x x =++=+++22223841144k k k k -=++++22114k k -+=+∵2223101144k k k -++>++,即24k < ∴22k -<<故由①、②得2k -<<2k << 7 如图,直线y =kx +b 与椭圆2214x y +=交于A 、B 两点,记△AOB 的面积为S . (I)求在k =0,0<b <1的条件下,S 的最大值; (Ⅱ)当|AB |=2,S =1时,求直线AB 的方程.(I)解:设点A 的坐标为(1(,)x b ,点B 的坐标为2(,)x b ,由2214x y +=,解得1,2x =±所以22121||2112S b x x b b =-=≤+-=当且仅当2b =时,.S 取到最大值1. (Ⅱ)解:由2214y kx b x y =+⎧⎪⎨+=⎪⎩得222(41)8440k x kbx b +++-=2216(41)k b ∆=-+ ①|AB12|2x x -== ② 又因为O 到AB的距离21||Sd AB === 所以221b k =+ ③ ③代入②并整理,得424410k k -+=解得,2213,22k b ==,代入①式检验,△>0 故直线AB 的方程是22y x =+或22y x =-或22y x =-+或22y x =-- 8 已知椭圆C :22a x +22by =1(a >b >0)的左.右焦点为F 1、F 2,离心率为e . 直线,l :y=ex +a 与x 轴.y 轴分别交于点A 、B ,M 是直线l 与椭圆C 的一个公共点,P 是点F 1关于直线l 的对称点,设AM =λAB .(Ⅰ)证明:λ=1-e 2; (Ⅱ)若43=λ,△MF 1F 2的周长为6;写出椭圆C 的方程;(理科无此问) (Ⅲ)确定λ的值,使得△PF 1F 2是等腰三角形.(Ⅰ)证法一:因为A 、B 分别是直线l :a ex y +=与x 轴、y 轴的交点,所以A 、B的坐标分别是2222222.,,1,).,0(),0,(b a c a b y c x b y ax a ex y a e a +=⎪⎩⎪⎨⎧=-=⎪⎩⎪⎨⎧=++=-这里得由. 所以点M 的坐标是(a b c 2,-). 由).,(),(2a eaa b e a c λλ=+-=得即221e a ab e ac e a-=⎪⎪⎩⎪⎪⎨⎧==-λλλ解得.(Ⅱ)当43=λ时,21=c ,所以.2c a = 由△MF 1F 2的周长为6,得.622=+c a所以.3,1,2222=-===c a b c a 椭圆方程为.13422=+y x (Ⅲ)因为PF 1⊥l ,所以∠PF 1F 2=90°+∠BAF 1为钝角,要使△PF 1F 2为等腰三角形,必有|PF 1|=|F 1F 2|,即.||211c PF = 设点F 1到l 的距离为d ,由,1||1|0)(|||21221c eec a e a c e d PF =+-=+++-==得.1122e e e =+- 所以.321,3122=-==e e λ于是即当,32时=λ△PF 1F 2为等腰三角形. 9 如图,椭圆2222:1(0)x y Q a b a b+=>>的右焦点为(,0)F c ,过点F 的一动直线m 绕点F转动,并且交椭圆于A 、B 两点, P 为线段AB 的中点. (1) 求点P 的轨迹H 的方程;(2) 若在Q 的方程中,令221cos sin ,sin (0).2a b πθθθθ=++=≤<确定θ的值,使原点距椭圆Q 的右准线l 最远.此时设l 与x 轴交点为D ,当直线m 绕点F 转动到什么位置时,三角形ABD 的面积最大?解:如图(1)设椭圆2222:1x y Q a b+=上的点1,1()A x y 、2,2()B x y ,又设P 点坐标为(,)P x y ,则2222221122222222b x a y a b b x a y a b⎧+=⎪⎨+=⎪⎩………………① ………………②1︒ 当AB 不垂直x 轴时,12,x x ≠由①—②得22121221221222222()2()20,,0,(*)b x x x a y y y y y b x yx x a y x cb x a y b cx -+-=-∴=-=--∴+-=2︒当 AB 垂直于x 轴时,点P 即为点F ,满足方程(*). 故所求点P 的轨迹H 的方程为: 222220b x a y b cx +-=.(2)因为,椭圆Q 右准线l 方程是2a x c =,原点距椭圆Q 的右准线l 的距离为2a c,222222,1c o s s i n ,s i n (0).2s 2s i n ().24c a b a b a c πθθθθθπ=-=++=≤==+由于则<2πθ=当时,上式达到最大值,所以当2πθ=时,原点距椭圆Q 的右准线l 最远.此时222,1,1,(2,0),1a b c D DF ====.设椭圆 22:121x y Q +=上的点1,1()A x y 、2,2()B x y , △ABD 的面积1212111.222S y y y y =+=- 设直线m 的方程为1x ky =+,代入22121x y +=中,得22(2)210.k y ky ++-= 由韦达定理得12122221,,22k y y y y k k +=-=-++ ()()222212121222814()()4,2k S y y y y y y k+=-=+-=+令211t k =+≥,得28424tS t≤=,当1,0t k ==取等号. 因此,当直线m 绕点F 转动到垂直x 轴位置时, 三角形ABD 的面积最大.9. 已知椭圆的中心在坐标原点O ,焦点在坐标轴上,直线y =x +1与椭圆相交于点P 和点Q ,且OP ⊥OQ ,|PQ |=210,求椭圆方程.∴椭圆方程为22x +23y 2=1或23x 2+22y =1.10设A 、B 分别为椭圆22221x x a b+=(,0a b >)的左、右顶点,椭圆长半轴...的长等于焦距,且4x =为它的右准线。
高中数学圆锥曲线专题复习考试椭圆(含考试习题加详解)

高中数学圆锥曲线专题复习(1)---------椭圆一.椭圆标准方程1.椭圆标准方程的求法:定义法、待定系数法①定位:确定焦点所在的坐标轴;②定量:求a, b 的值.2.,a b 为椭圆的定型条件,对,,a b c 三个值中知道任意两个(知二求三),可求第三个,其中,a b a c >>1.已知椭圆中心在原点,一个焦点为F (-23,0),且长轴长是短轴长的2倍,则该椭圆的标准方程是2.已知椭圆C 以坐标轴为对称轴,以坐标原点为对称中心,椭圆的一个焦点为()0,1,点⎪⎪⎭⎫ ⎝⎛26,23M 在椭圆上,求椭圆C 的方程;3.变式:与椭圆4x 2+y 2=16有相同焦点,且过点 的椭圆方程是 . 4.(2013山东)椭圆2222:1x y C a b +=(0)a b >>的左、右焦点分别是12,F F ,离心率为,过1F 且垂直于x 轴的直线被椭圆C 截得的线段长为1(通径=2 ).求椭圆C 的方程;5.若椭圆的焦点在轴上,过点(1,)作圆的切线,切点分别为A,B ,直线恰好经过椭圆的右焦点和上顶点,则椭圆方程是22221x y a b +=x 1222+=1x y AB二.离心率c e a ==椭圆上任一点P 到焦点的距离点P 到相应准线的距离e =一、 直接求(找)出a 、c ,求解e1. 已知椭圆2222:1x y C a b+=的两个焦点分别为F1(-1,0),F2(1,0),椭圆C 经过点 P( , ),求C 的离心率_______。
二、 根据题设条件构造a 、c 的齐次式方程,进而得到关于 e 的一元方程,解出e 。
1.若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是_____。
三、采用离心率的定义以及椭圆的定义求解1.设椭圆的两个焦点分别为1F 、2F ,过2F 作椭圆长轴的垂线交椭圆于点P ,若21PF F ∆为等腰直角三角形,则椭圆的离心率是________。
高二圆锥曲线基础练习题及答案

高二圆锥曲线基础练习题及答案一、选择题1. 下列关于椭圆的说法,正确的是:A. 所有椭圆都是对称图形。
B. 椭圆的离心率大于1。
C. 椭圆的长轴和短轴相等。
D. 椭圆的焦点个数与离心率有关。
答案:D2. 设椭圆的长轴长度为10,短轴长度为6,则该椭圆的离心率为:A. 3/5B. 1/2C. 2/3D. 5/6答案:C3. 下列关于双曲线的说法,正确的是:A. 所有双曲线都是开口向上的图形。
B. 双曲线的离心率等于1。
C. 双曲线的长轴和短轴相等。
D. 双曲线的焦点个数与离心率有关。
答案:D4. 设双曲线的长轴长度为8,短轴长度为4,则该双曲线的离心率为:A. 2B. 3/2C. 4/3D. 5/4答案:B5. 下列关于抛物线的说法,正确的是:A. 抛物线的焦点位于抛物线的顶点上。
B. 抛物线的离心率等于1。
C. 抛物线的长轴和短轴相等。
D. 抛物线的焦点个数与离心率有关。
答案:A二、填空题1. 设椭圆的长轴长度为12,短轴长度为8,则该椭圆的离心率为__________。
答案:2/32. 设直角双曲线的焦点到中心的距离为3,焦点到顶点的距离为5,则该直角双曲线的离心率为__________。
答案:4/53. 设抛物线的焦距为6,顶点到焦点的距离为4,则该抛物线的离心率为__________。
答案:3/2三、解答题1. 某椭圆的长轴长度为10,焦距为6,求离心率和短轴的长度。
解:设椭圆的离心率为e,短轴长度为b。
根据椭圆的定义,焦距的长度为ae,即6 = ae。
由此可以解得椭圆的离心率为e = 6/a。
又已知长轴长度为10,即2a = 10,解得a = 5。
将a = 5代入离心率的公式,可得e = 6/5。
由椭圆的定义可知,离心率e = √(1 - b²/a²),代入已知的离心率和a的值,可得√(1 - b²/25) = 6/5。
将等式两边平方化简,得到1 - b²/25 = 36/25,即1 - b² = 36,解得b = √(1 - 36) = √(-35)。
圆锥曲线椭圆练习

椭圆练习1. 已知椭圆011216722=-+y x 上有一点P 到右焦点的距离是5,则它到左准线的距离 为 。
2.若椭圆1522=+my x 的离心率510=e ,则m 值 。
3.(书本P 28习题3改编)已知12F ,F 为椭圆22221(0)x y a b a b+=>>的两个焦点,过2F 作椭圆的弦AB ,若△1AF B 的周长为16,椭圆的离心率为2e =,则椭圆的方程为 。
4.椭圆31222y x +=1的一个焦点为F 1,点P 在椭圆上.如果线段PF 1的中点M 在y 轴上,那么点M 的纵坐标是 。
5.在平面直角坐标系xOy 中,设椭圆x 2a 2+y 2b2=1(a >b >0)的焦距为2c .以点O 为圆心,a 为半径作圆M .若过点P ⎝⎛⎭⎫a2c ,0所作圆M 的两条切线互相垂直,则该椭圆的离心率为______.6.以椭圆22221(0)x ya b a b +=>>的左焦点(,0)F c -为圆心,c 为半径的圆与椭圆的左准线交于不同的两点,则该椭圆的离心率的取值范围是 。
7.已知椭圆的对称轴在坐标轴上,短轴的一个端点与两个焦点组成一个等边三角形,焦点到同侧顶点的距离为3,求椭圆的方程。
8. 椭圆22194x y +=的焦点为F 1,F 2,点P 为其上的动点,当∠F 1PF 2为钝角时,求P 点横坐标的取值范围。
9.(书本P 297改编)已知定点A 、B 间的距离为2,以B 为圆心作 半径为P 为圆上一点,线段AP 的垂直平分线l 与直 线PB 交于点M ,当P 在圆周上运动时点M 的轨迹记为曲线C .建立适当的坐标系,求曲线C 的方程,并说明它是什么样的曲线。
10.在平面直角坐标系xOy 中,矩形OABC 的边OA 、OC 分别在x 轴和y 轴上(如图),且OC =1,OA =a +1(a >1),点D 在边OA 上,满足OD =a . 分别以OD 、OC 为长、短半轴的椭圆在矩形及其内部的部分为椭圆弧CD . 直线l :y =-x +b 与椭圆弧相切,与OA 交于 点E .(1)求证:221b a -=;(2)设直线l 将矩形OABC 分成面积相等的两部分,求直线l 的方程;(3)在(2)的条件下,设圆M 在矩形及其内部,且与l 和线段EA 都相切,求面积最大的圆M 的方程.参考答案1. 已知椭圆011216722=-+y x 上有一点P 到右焦点的距离是5,则它到左准线的距离为4。
圆锥曲线中的椭圆问题(解析版)

专题17 圆锥曲线中的椭圆问题【知识框图】【自主热身,归纳总结】1、【2019年高考北京卷理数】已知椭圆2222 1x y a b+=(a >b >0)的离心率为12,则A .a 2=2b 2B .3a 2=4b 2C .a =2bD .3a =4b【答案】B【解析】椭圆的离心率2221,2c e c a b a ===-,化简得2234a b =, 故选B.2、【2019年高考全国Ⅲ卷理数】设12F F ,为椭圆C :22+13620x y =的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________. 【答案】(15【解析】由已知可得2222236,20,16,4a b c a b c ==∴=-=∴=,11228MF F F c ∴===,∴24MF =.设点M 的坐标为()()0000,0,0x y x y >>,则121200142MF F S F F y y =⋅⋅=△,又1201442MF F S y =⨯=∴=△0y =,22013620x ∴+=,解得03x =(03x =-舍去), M的坐标为(.3、【2018年高考浙江卷】已知点P (0,1),椭圆24x +y 2=m (m >1)上两点A ,B 满足AP =2PB ,则当m =___________时,点B 横坐标的绝对值最大. 【答案】5【解析】设11(,)A x y ,22(,)B x y ,由2AP PB =得122x x -=,1212(1)y y -=-, 所以1223y y -=-,因为A ,B 在椭圆上,所以22114x y m +=,22224x y m +=,所以22224(23)4x y m +-=,所以224x +22324()m y -=,与22224x y m +=对应相减得234m y +=,2221(109)44x m m =--+≤, 当且仅当5m =时取最大值.4、.(2020届浙江省杭州市建人高复高三4月模拟)已知方程22(1)(9)1k x k y -+-=,若该方程表示椭圆方程,则k 的取值范围是_______; 【答案】15k <<或59k << 【解析】因为方程22(1)(9)1k x k y -+-=,所以22111(1)(9)x y k k +=--,所以有10(1)10(9)11(1)(9)k k k k ⎧>⎪-⎪⎪>⎨-⎪⎪≠⎪--⎩即15k <<或59k <<故答案为:15k <<或59k <<5、(2017无锡期末)设点P 是有公共焦点F 1,F 2的椭圆C 1与双曲线C 2的一个交点,且PF 1⊥PF 2,椭圆C 1的离心率为e 1,双曲线C 2的离心率为e 2,若e 2=3e 1,则e 1=________.【答案】53【解析】不妨设F 1,F 2分别是左、右焦点,椭圆的长半轴为a 1,双曲线的实半轴为a 2,P 为椭圆与双曲线在第一象限内的交点,则根据椭圆和双曲线的定义可得⎩⎨⎧PF 1+PF 2=2a 1,PF 1-PF 2=2a 2,解得⎩⎨⎧PF 1=a 1+a 2,PF 2=a 1-a 2.因为PF 1⊥PF 2,所以PF 21+PF 22=F 1F 22,即(a 1+a 2)2+(a 1-a 2)2=(2c )2,化简得a 21+a 22=2c 2,所以⎝ ⎛⎭⎪⎫a 1c 2+⎝ ⎛⎭⎪⎫a 2c 2=2,即1e 21+1e 22=2,又因为e 2=3e 1,所以e 21=59,故e 1=53. 6、(2020届浙江省嘉兴市3月模拟)已知椭圆()222210xy a b a b+=>>的左、右焦点分别是1F ,2F ,点A 是椭圆上位于x 轴上方的一点,若直线1AF ,且112AF FF =,则椭圆的离心率为________.【答案】35. 【解析】设12AF F θ∠=,由直线1AF ,知sin tan cos θθθ==,且22sin cos 1θθ+=,即得7cos 9θ=, 由1122AF F F c ==及椭圆定义知21222AF a AF a c =-=-, 由余弦定理即可得,22221121122cos AF AF F F AF F F θ=+-,即()()()()()222722222229a c c c c c -=+-,化简得()2249a c c -=,故22222253220518909549a ac c c ac e c a e e -+=⇒-+=⇒-+=⇒=或3(舍)即35e =.故答案为:35【问题探究,变式训练】题型一、椭圆的离心率例1、【2018年高考全国Ⅱ理数】已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左、右焦点,A 是C 的左顶点,点P 在过A 3的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为 A .23 B .12 C .13D .14【答案】D【解析】因为12PF F △为等腰三角形,12120F F P ∠=︒,所以212||2||PF F F c ==, 由AP 323tan PAF ∠= 所以2sin 13PAF ∠=,212cos 13PAF ∠=, 由正弦定理得2222sin sin PF PAF AF APF ∠=∠, 所以2221313π531211sin()3221313c a c PAF ==+-∠⨯-⨯, 所以4a c =,14e =,故选D . 变式1、【江苏省南通市2019-2020学年高三上学期期初】已知1F ,2F 分别为椭圆E :()222210x y a b a b+=>>的左,右焦点,点A ,B 分别是椭圆E 的右顶点和上顶点,若直线AB 上存在点P ,使得12PF PF ⊥,则椭圆C 的离心率e 的取值范围是______.【答案】1,1)2【解析】12PF PF ⊥,即P 在以12F F 为直径的圆上,即222x y c +=.直线AB :1x ya b+=,即0bx ay ab +-=,圆心到直线的距离d c =≤,即422430a a c c -+≤,即4231001e e e -+≤<<,,所以解得112e >≥.故答案为:. 变式2、(2020届浙江省高中发展共同体高三上期末)已知椭圆()222210x y a b a b+=>>的内接ABC ∆的顶点B 为短轴的一个端点,右焦点F ,线段AB 中点为K ,且2CF FK =,则椭圆离心率的取值范围是___________.【答案】⎛ ⎝⎭【解析】由题意可设()0,B b ,(),0F c ,线段AB 中点为K ,且2CF FK =, 可得F 为ABC ∆的重心,设()11,A x y ,()22,C x y , 由重心坐标公式可得,1203x x c ++=,120y y b ++=, 即有AC 的中点(),M x y ,可得12322x x c x +==,1222y y by +==-, 由题意可得点M 在椭圆内,可得2291144c a +<,由c e a =,可得213e <,即有0e <<.故答案为:⎛ ⎝⎭. 变式3、(2020届浙江省“山水联盟”高三下学期开学)设椭圆M 的标准方程为22221(0)x y a b a b+=>>,若斜率为1的直线与椭圆M 相切同时亦与222:()C x y b b +-=(b 为椭圆的短半轴)相切,记椭圆的离心率为e ,则2e =__________.【答案】32- 【解析】设切线方程为y x m =+,代入椭圆方程可得:()2222222220b axa mx a m ab +++-=.因为相切2220,m a b ∆=∴=+,由直线y x m =+与圆C ,(1b m b =∴=,或(1b -(舍去).则有2222(1b a b +=+,因为222b a c =-,所以可得2221)2,)a c e ==∴.故答案为:32. 题型二、椭圆的方程例2、【2019年高考全国Ⅰ卷理数】已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y +=B .22132x y += C .22143x y +=D .22154x y += 【答案】B【解析】法一:如图,由已知可设2F B n =,则212,3AF n BF AB n ===, 由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在1AF B △中,由余弦定理推论得22214991cos 2233n n n F AB n n +-∠==⋅⋅.在12AF F △中,由余弦定理得2214422243n n n n +-⋅⋅⋅=,解得32n =. 2222423,3,312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .法二:由已知可设2F B n =,则212,3AF n BF AB n ===, 由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在12AF F △和12BF F △中,由余弦定理得2221222144222cos 4422cos 9n n AF F n n n BF F n⎧+-⋅⋅⋅∠=⎨+-⋅⋅⋅∠=⎩, 又2121,AF F BF F ∠∠互补,2121cos cos 0AF F BF F ∴∠+∠=,两式消去2121cos cos AF F BF F ∠∠,,得223611n n +=,解得32n =.22224233312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .变式1、【2020届江苏省南通市高三下学期3月开学考试】若椭圆22221x y a b+=的焦点在x 轴上,过点(1,12)作圆22+=1x y 的切线,切点分别为A,B ,直线AB 恰好经过椭圆的右焦点和上顶点,则椭圆方程是【答案】22154x y +=【解析】∵点(1,12)在圆外,过点(1,12)与圆相切的一条直线为x =1,且直线AB 恰好经过椭圆的右焦点和上顶点,∴椭圆的右焦点为(1,0),即c =1,设点P(1,12),连接OP ,则OP ⊥AB ,∵k OP =12,∴k AB =-2.又直线AB 过点(1,0),∴直线AB 的方程为2x +y -2=0,∵点(0,b)在直线AB 上,∴b =2,又c =1,∴a 2=5,故椭圆方程是25x+24y =1.变式2、(2018常州期末)在平面直角坐标系xOy 中,设椭圆x 2a 2+y 2b2=1(a >b >0)的离心率是e ,定义直线y =±be为椭圆的“类准线”.已知椭圆C 的“类准线”方程为y =±23,长轴长为4. (1) 求椭圆C 的方程;(2) 点P 在椭圆C 的“类准线”上(但不在y 轴上),过点P 作圆O :x 2+y 2=3的切线l ,过点O 且垂直于OP 的直线与l 交于点A ,问点A 是否在椭圆C 上?证明你的结论.规范解答 (1) 由题意得⎩⎪⎨⎪⎧ab c =23,a =2,又a 2=b 2+c 2,解得b =3,c =1,(4分)所以椭圆C 的方程为x 24+y 23=1.(5分)(2) 点A 在椭圆C 上.证明如下:设切点为Q (x 0,y 0),x 0≠0,则x 20+y 20=3,切线l 的方程为x 0x +y 0y -3=0,当y P =23时,x P =3-23y 0x 0,即P 3-23y 0x 0,23,则k OP =233-23y 0x 0=2x 03-2y 0,(7分)所以k OA =2y 0-32x 0,直线OA 的方程为y =2y 0-32x 0x .(9分)由⎩⎪⎨⎪⎧y =2y 0-32x 0x ,x 0x +y 0y -3=0解得⎩⎪⎨⎪⎧x =6x 06-3y 0,y =3(2y 0-3)6-3y 0,即A 6x 06-3y 0,3(2y 0-3)6-3y 0,(11分)因为6x 06-3y 024+3(2y 0-3)6-3y 023=9(3-y 20)+3(4y 20-43y 0+3)3y 20-123y 0+36 =3y 20-123y 0+363y 20-123y 0+36=1, 所以点A 的坐标满足椭圆C 的方程.(14分)当y P =-23时,同理可得点A 的坐标满足椭圆C 的方程, 所以点A 在椭圆C 上.(16分)变式3、【2020年高考全国Ⅱ卷理数】已知椭圆C 1:22221x y a b+=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且43CD AB =. (1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.【解析】(1)由已知可设2C 的方程为24y cx =,其中c =不妨设,A C 在第一象限,由题设得,A B 的纵坐标分别为2b a ,2b a -;,C D 的纵坐标分别为2c ,2c -,故22||b AB a=,||4CD c =.由4||||3CD AB =得2843b c a=,即2322()c c a a ⨯=-,解得2c a =-(舍去),12c a =.所以1C 的离心率为12.(2)由(1)知2a c =,b =,故22122:143x y C c c+=,设00(,)M x y ,则220022143x y c c +=,2004y cx =,故20024143x x c c+=.①由于2C 的准线为x c =-,所以0||MF x c =+,而||5MF =,故05x c =-,代入①得22(5)4(5)143c c c c --+=,即2230c c --=,解得1c =-(舍去),3c =. 所以1C 的标准方程为2213627x y +=,2C 的标准方程为212y x =.题型三、椭圆中的最值问题例3、【2020年高考浙江】如图,已知椭圆221:12x C y +=,抛物线22:2(0)C y px p =>,点A 是椭圆1C 与抛物线2C 的交点,过点A 的直线l 交椭圆1C 于点B ,交抛物线2C 于点M (B ,M 不同于A ). (Ⅰ)若116p =,求抛物线2C 的焦点坐标; (Ⅱ)若存在不过原点的直线l 使M 为线段AB 的中点,求p 的最大值.【解析】(Ⅰ)由116p =得2C 的焦点坐标是1(,0)32. (Ⅱ)由题意可设直线:(0,0)l x my t m t =+≠≠,点00(,)A x y .将直线l 的方程代入椭圆221:12x C y +=得222(2)220m y mty t +++-=,所以点M 的纵坐标22M mty m =-+.将直线l 的方程代入抛物线22:2C y px =得2220y pmy pt --=,所以02M y y pt =-,解得202(2)p m y m +=,因此22022(2)p m x m+=. 由220012x y +=得2421224()2()160m m p m m =+++≥,所以当2m =,105t =时,p 取到最大值1040变式1、【2020年高考江苏】在平面直角坐标系xOy 中,已知椭圆22:143x y E +=的左、右焦点分别为F 1,F 2,点A 在椭圆E 上且在第一象限内,AF 2⊥F 1F 2,直线AF 1与椭圆E 相交于另一点B .(1)求12AF F △的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP QP ⋅的最小值;(3)设点M 在椭圆E 上,记OAB △与MAB △的面积分别为S 1,S 2,若213S S =,求点M 的坐标.【解析】(1)椭圆22:143x y E +=的长轴长为2a ,短轴长为2b ,焦距为2c ,则2224,3,1a b c ===.所以12AF F △的周长为226a c +=. (2)椭圆E 的右准线为4x =. 设(,0),(4,)P x Q y ,则(,0),(4,)OP x QP x y ==--, 2(4)(2)44,OP QP x x x ⋅=-=--≥-在2x =时取等号.所以OP QP ⋅的最小值为4-.(3)因为椭圆22:143x y E +=的左、右焦点分别为12,F F ,点A 在椭圆E 上且在第一象限内,212AF F F ⊥, 则123(1,0),(1,0),(1,)2F F A -.所以直线:3430.AB x y -+=设(,)M x y ,因为213S S =,所以点M 到直线AB 距离等于点O 到直线AB 距离的3倍. 由此得|343||30403|355x y -+⨯-⨯+=⨯, 则34120x y -+=或3460x y --=.由2234120,143x y x y -+=⎧⎪⎨+=⎪⎩得2724320x x ++=,此方程无解;由223460,143x y x y --=⎧⎪⎨+=⎪⎩得271240x x --=,所以2x =或27x =-.代入直线:3460l x y --=,对应分别得0y =或127y =-. 因此点M 的坐标为(2,0)或212(,)77--.变式2、【2020年新高考全国Ⅱ卷】已知椭圆C :22221(0)x y a b a b+=>>过点M (2,3),点A 为其左顶点,且AM 的斜率为12, (1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值. 【解析】(1)由题意可知直线AM 的方程为:13(2)2y x -=-,即24-=-x y . 当y =0时,解得4x =-,所以a =4,椭圆()2222:10x y C a b a b+=>>过点M (2,3),可得249116b +=, 解得b 2=12.所以C 的方程:2211612x y +=.(2)设与直线AM 平行的直线方程为:2x y m -=,如图所示,当直线与椭圆相切时,与AM 距离比较远的直线与椭圆的切点为N ,此时△AMN 的面积取得最大值.联立直线方程2x y m -=与椭圆方程2211612x y +=,可得:()2232448m y y ++=,化简可得:2216123480y my m ++-=,所以()221444163480m m ∆=-⨯-=,即m 2=64,解得m =±8, 与AM 距离比较远的直线方程:28x y -=, 直线AM 方程为:24-=-x y ,点N 到直线AM 的距离即两平行线之间的距离,利用平行线之间的距离公式可得:d ==,由两点之间距离公式可得||AM ==.所以△AMN 的面积的最大值:1182⨯=. 变式3、【2019年高考全国Ⅱ卷理数】已知点A (−2,0),B (2,0),动点M (x ,y )满足直线AM 与BM 的斜率之积为−12.记M 的轨迹为曲线C .(1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE ⊥x 轴,垂足为E ,连结QE 并延长交C 于点G .(i )证明:PQG △是直角三角形; (ii )求PQG △面积的最大值.【答案】(1)见解析;(2)(i )见解析;(ii )169. 【解析】(1)由题设得1222y y x x ⋅=-+-,化简得221(||2)42x y x +=≠,所以C 为中心在坐标原点,焦点在x 轴上的椭圆,不含左右顶点.(2)(i )设直线PQ 的斜率为k ,则其方程为(0)y kx k =>.由22142y kxx y =⎧⎪⎨+=⎪⎩得x =.记u =,则(,),(,),(,0)P u uk Q u uk E u --.于是直线QG 的斜率为2k ,方程为()2ky x u =-. 由22(),2142k y x u x y ⎧=-⎪⎪⎨⎪+=⎪⎩得 22222(2)280k x uk x k u +-+-=.①设(,)G G G x y ,则u -和G x 是方程①的解,故22(32)2G u k x k +=+,由此得322G uky k=+. 从而直线PG 的斜率为322212(32)2uk uk k u k kuk -+=-+-+. 所以PQ PG ⊥,即PQG △是直角三角形.(ii )由(i)得||2PQ =||PG =△PQG 的面积222218()18(1)||12(12)(2)12()k k k k S PQ PG k k k k++===++++‖. 设t =k +1k,则由k >0得t ≥2,当且仅当k =1时取等号. 因为2812t S t =+在[2,+∞)单调递减,所以当t =2,即k =1时,S 取得最大值,最大值为169. 因此,△PQG 面积的最大值为169. 题型四、椭圆中的定点问题例4、【2020年高考全国Ⅰ卷理数】已知A 、B 分别为椭圆E :2221x y a+=(a >1)的左、右顶点,G 为E 的上顶点,8AG GB ⋅=,P 为直线x =6上的动点,P A 与E 的另一交点为C ,PB 与E 的另一交点为D . (1)求E 的方程;(2)证明:直线CD 过定点.【解析】(1)由题设得A (–a ,0),B (a ,0),G (0,1). 则(,1)AG a =,GB =(a ,–1).由AG GB ⋅=8得a 2–1=8,即a =3.所以E 的方程为29x +y 2=1.(2)设C (x 1,y 1),D (x 2,y 2),P (6,t ).若t ≠0,设直线CD 的方程为x =my +n ,由题意可知–3<n <3. 由于直线P A 的方程为y =9t (x +3),所以y 1=9t (x 1+3).直线PB 的方程为y =3t (x –3),所以y 2=3t(x 2–3).可得3y 1(x 2–3)=y 2(x 1+3).由于222219x y +=,故2222(3)(3)9x x y +-=-,可得121227(3)(3)y y x x =-++, 即221212(27)(3)()(3)0.m y y m n y y n ++++++=①将x my n =+代入2219xy +=得222(9)290.m y mny n +++-=所以12229mn y y m +=-+,212299n y y m -=+.代入①式得2222(27)(9)2(3)(3)(9)0.m n m n mn n m +--++++= 解得n =–3(含去),n =32.故直线CD 的方程为3=2x my +,即直线CD 过定点(32,0). 若t =0,则直线CD 的方程为y =0,过点(32,0).综上,直线CD 过定点(32,0).变式1、【2019年高考北京卷理数】已知抛物线C :x 2=−2py 经过点(2,−1).(1)求抛物线C 的方程及其准线方程;(2)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线y =−1分别交直线OM ,ON 于点A 和点B .求证:以AB 为直径的圆经过y 轴上的两个定点. 【答案】(1)抛物线C 的方程为24x y =-,准线方程为1y =;(2)见解析.【解析】(1)由抛物线2:2C x py =-经过点(2,1)-,得2p =.所以抛物线C 的方程为24x y =-,其准线方程为1y =. (2)抛物线C 的焦点为(0,1)F -. 设直线l 的方程为1(0)y kx k =-≠.由21,4y kx x y=-⎧⎨=-⎩得2440x kx +-=. 设()()1122,,,M x y N x y ,则124x x =-. 直线OM 的方程为11y y x x =. 令1y =-,得点A 的横坐标11A x x y =-. 同理得点B 的横坐标22B x x y =-. 设点(0, )D n ,则1212,1,,1x x DA n DB n y y ⎛⎫⎛⎫=---=--- ⎪ ⎪⎝⎭⎝⎭, 21212(1)x x DA DB n y y ⋅=++ 2122212(1)44x x n x x =++⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭ 21216(1)n x x =++ 24(1)n =-++.令0DA DB ⋅=,即24(1)0n -++=,则1n =或3n =-. 综上,以AB 为直径的圆经过y 轴上的定点(0,1)和(0,3)-.变式2、(2019·山东高三月考)已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12,F F ,12||2F F ,过点1F 的直线与椭圆C 交于,A B 两点,延长2BF 交椭圆C 于点M ,2ABF ∆的周长为8.(1)求C 的离心率及方程;(2)试问:是否存在定点0(,0)P x ,使得·PM PB 为定值?若存在,求0x ;若不存在,请说明理由.【答案】(1)12,22143x y +=; (2)存在点P ,且0118x =.【解析】(1)由题意可知,12||=2c=2F F ,则1c =, 又2ABF ∆的周长为8,所以48a =,即2a =, 则12c e a ==,2223b a c =-=. 故C 的方程为22143x y +=.(2)假设存在点P ,使得·PM PB 为定值.若直线BM 的斜率不存在,直线BM 的方程为1x =,31,2B ⎛⎫⎪⎝⎭,31,2M ⎛⎫- ⎪⎝⎭, 则()209·14PM PB x =--. 若直线BM 的斜率存在,设BM 的方程为()1y k x =-,设点()11,B x y ,()22,M x y ,联立()221431x y y k x ⎧+=⎪⎨⎪=-⎩,得()22224384120k x k x k +-+-=,根据韦达定理可得:2122843k x x k +=+,212241243k x x k -=+, 由于()202,PM x x y =-,()101,PB x x y =-, 则()212120012•PM PB x x x x x x y y =-+++()()()()22200022221201202485312143x x k x k x x x k x x k x k --+-=+-++++=+因为·PM PB为定值,所以2200048531243x x x ---=, 解得0118x =,故存在点P ,且0118x =.题型五、椭圆中的定值问题例5、【2020年新高考全国Ⅰ卷】已知椭圆C :22221(0)x y a b a b +=>>的离心率为2,且过点A (2,1).(1)求C 的方程:(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得|DQ |为定值. 【解析】(1)由题设得22411a b +=,22212a b a -=,解得26a =,23b =. 所以C 的方程为22163x y +=. (2)设11(,)M x y ,22(,)N x y .若直线MN 与x 轴不垂直,设直线MN 的方程为y kx m =+,代入22163x y +=得222(12)4260k x kmx m +++-=. 于是2121222426,1212km m x x x x k k-+=-=++.① 由AM AN ⊥知0AM AN ⋅=,故1212(2)(2)(1)(1)0x x y y --+--=, 可得221212(1)(2)()(1)40k x x km k x x m ++--++-+=.将①代入上式可得22222264(1)(2)(1)401212m kmk km k m k k-+---+-+=++. 整理得(231)(21)0k m k m +++-=.因为(2,1)A 不在直线MN 上,所以210k m +-≠,故2310k m ++=,1k ≠.于是MN 的方程为21()(1)33y k x k =--≠.所以直线MN 过点21(,)33P -.若直线MN 与x 轴垂直,可得11(,)N x y -.由0AM AN ⋅=得1111(2)(2)(1)(1)0x x y y --+---=.又2211163x y +=,可得2113840x x -+=.解得12x =(舍去),123x =. 此时直线MN 过点21(,)33P -.令Q 为AP 的中点,即41(,)33Q .若D 与P 不重合,则由题设知AP 是Rt ADP △的斜边,故1||||2DQ AP ==. 若D 与P 重合,则1||||2DQ AP =. 综上,存在点41(,)33Q ,使得||DQ 为定值.变式、【2018年高考北京卷理数】已知抛物线C :2y =2px 经过点P (1,2).过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线P A 交y 轴于M ,直线PB 交y 轴于N . (1)求直线l 的斜率的取值范围;(2)设O 为原点,QM QO λ=,QN QO μ=,求证:11λμ+为定值.【答案】(1)(-∞,-3)∪(-3,0)∪(0,1);(2)见解析. 【解析】(1)因为抛物线y 2=2px 经过点P (1,2), 所以4=2p ,解得p =2,所以抛物线的方程为y 2=4x . 由题意可知直线l 的斜率存在且不为0, 设直线l 的方程为y =kx +1(k ≠0). 由241y xy kx ⎧=⎨=+⎩得22(24)10k x k x +-+=. 依题意22(24)410k k ∆=--⨯⨯>,解得k <0或0<k <1. 又P A ,PB 与y 轴相交,故直线l 不过点(1,-2).从而k ≠-3. 所以直线l 斜率的取值范围是(-∞,-3)∪(-3,0)∪(0,1). (2)设A (x 1,y 1),B (x 2,y 2).由(1)知12224k x x k -+=-,1221x x k =. 直线P A 的方程为1122(1)1y y x x --=--. 令x =0,得点M 的纵坐标为1111212211M y kx y x x -+-+=+=+--. 同理得点N 的纵坐标为22121N kx y x -+=+-. 由=QM QO λ,=QN QO μ得=1M y λ-,1N y μ=-.所以2212121212122224112()111111=2111(1)(1)11M N k x x x x x x k k y y k x k x k x x k k λμ-+---++=+=+=⋅=⋅------.所以11λμ+为定值.。
2024数学高考前冲刺题《圆锥曲线(椭圆、双曲线、抛物线)》含答案

黄金冲刺大题06 圆锥曲线(椭圆、双曲线、抛物线)(精选30题)1.(2024·山东·二模)已知椭圆的焦点分别是)()12,F F ,点M 在椭圆上,且124MF MF +=.(1)求椭圆的标准方程;(2)若直线y kx =,A B 两点,且OA OB ⊥,求实数k 的值.2.(2024·江苏南通·模拟预测)在平面直角坐标系xOy 中,设椭圆()2222:10x y C a b a b +=>>1F ,2F 分别是椭圆的左、右焦点,过2F 作两条互相垂直的直线1l ,2l ,直线1l 与C 交于A ,B 两点,直线2l与C 交于D ,E 两点,且12AF F 的周长是4+(1)求椭圆C 的方程;(2)当32AB DE =时,求ODE 的面积.3.(2024·河北邯郸·二模)已知椭圆C 的中心为坐标原点,对称轴为x 轴、y 轴,且过()2,0,1,M N ⎛ ⎝两点.(1)求C 的方程.(2),A B 是C 上两个动点,D 为C 的上顶点,是否存在以D 为顶点,AB 为底边的等腰直角三角形?若存在,求出满足条件的三角形的个数;若不存在,请说明理由.4.(2024·广东广州·模拟预测)已知椭圆222:1(08x y C b b+=<<,右顶点为E ,上、下顶点分别为12,,B B G是1EB 的中点,且121EB GB ⋅=.(1)求椭圆C 的方程;(2)设过点()4,0D -的直线l 交椭圆C 于点,M N ,点()2,1A --,直线,MA NA 分别交直线4x =-于点,P Q ,求证:线段PQ 的中点为定点.5.(2024·辽宁·二模)平面直角坐标系xOy 中,面积为9的正方形ABCD 的顶点,A B 分别在x 轴和y 轴上滑动,且23OP OA = ,记动点P 的轨迹为曲线Γ.(1)求Γ的方程;(2)过点()4,1E 的动直线l 与曲线Γ交于不同的两点,M N 时,在线段MN 上取点Q ,满足||||||||EM QN QM EN ⋅=⋅.试探究点Q 是否在某条定直线上?若是,求出定直线方程;若不是,说明理由.6.(2024·福建厦门·三模)在直角坐标系xOy 中,已知抛物线2:2(0)C y px p =>的焦点为F ,过F 的直线l 与C 交于,M N 两点,且当l 的斜率为1时,8MN =.(1)求C 的方程;(2)设l 与C 的准线交于点P ,直线PO 与C 交于点Q (异于原点),线段MN 的中点为R ,若3QR ≤,求MNQ △面积的取值范围.7.(2024·浙江丽水·二模)已知抛物线2:4E y x =,点,,A B C 在抛物线E 上,且A 在x 轴上方,B 和C 在x 轴下方(B 在C 左侧),,A C 关于x 轴对称,直线AB 交x 轴于点M ,延长线段CB 交x 轴于点Q ,连接QA .(1)证明:OM OQ为定值(O 为坐标原点);(2)若点Q 的横坐标为1-,且89MB MC ⋅= ,求AQB 的内切圆的方程.8.(2024·江苏苏州·模拟预测)已知点(1,0)A ,(0,1)B ,(1,1)C 和动点(,)P x y 满足2y 是PA PB ⋅ ,PA PC ⋅的等差中项.(1)求P 点的轨迹方程;(2)设P 点的轨迹为曲线1C 按向量31,416a ⎛⎫=- ⎪⎝⎭平移后得到曲线2C ,曲线2C 上不同的两点M ,N 的连线交y 轴于点(0,)Q b ,如果MON ∠(O 为坐标原点)为锐角,求实数b 的取值范围;(3)在(2)的条件下,如果2b =时,曲线2C 在点M 和N 处的切线的交点为R ,求证:R 在一条定直线上.9.(2024·江苏南通·二模)已知双曲线E的渐近线为y =,左顶点为()A .(1)求双曲线E 的方程;(2)直线:l x t =交x 轴于点D ,过D 点的直线交双曲线E 于B ,C ,直线AB ,AC 分别交l 于G ,H ,若O ,A ,G ,H 均在圆P 上,①求D 的横坐标;②求圆P 面积的取值范围.10.(2024·江苏南京·二模)已知抛物线2:2(0)C y px p =>与双曲线2222:1x y E a b-=(0a >,0b >)有公共的焦点F ,且4p b =.过F 的直线1与抛物线C 交于A ,B 两点,与E 的两条近线交于P ,Q 两点(均位于y 轴右侧).(1)求E 的渐近线方程;(2)若实数λ满足1111||||||||OP OQ AF BF λ⎛⎫+=- ⎪⎝⎭,求λ的取值范围.11.(2024·重庆·三模)已知()2,0F ,曲线C 上任意一点到点F 的距离是到直线12x =的距离的两倍.(1)求曲线C 的方程;(2)已知曲线C 的左顶点为A ,直线l 过点F 且与曲线C 在第一、四象限分别交于M ,N 两点,直线AM 、AN 分别与直线12x =交于P ,H 两点,Q 为PH 的中点.(i )证明:QF MN ⊥;(ii )记PMQ ,HNQ ,MNQ 的面积分别为1S ,2S ,3S ,则123S S S +是否为定值?若是,求出这个定值;若不是,请说明理由.12.(2024·河北·二模)已知椭圆()2222:10x y E a b a b +=>>的离心率e =(1)若椭圆E过点(,求椭圆E 的标准方程.(2)若直线1l ,2l 均过点()()*,00,n n P p p a n <<∈N 且互相垂直,直线1l 交椭圆E 于,A B 两点,直线2l 交椭圆E于,C D 两点,,M N 分别为弦AB 和CD 的中点,直线MN 与x 轴交于点(),0n Q t ,设13n np =.(ⅰ)求n t ;(ⅱ)记n a PQ =,求数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和n S .13.(2024·辽宁沈阳·二模)P 为大圆上一动点,大圆半径OP 与小圆相交于点,B PP x '⊥轴于,P BB PP ⊥'''于,B B ''点的轨迹为Ω.(1)求B '点轨迹Ω的方程;(2)点()2,1A ,若点M N 、在Ω上,且直线AM AN 、的斜率乘积为12,线段MN 的中点G ,当直线MN 与y 轴的截距为负数时,求AOG ∠的余弦值.14.(2024·广东佛山·二模)两条动直线1y k x =和2y k x =分别与抛物线()2:20C y px p =>相交于不同于原点的A ,B 两点,当OAB 的垂心恰是C 的焦点时,AB =(1)求p ;(2)若124k k =-,弦AB 中点为P ,点()2,0M -关于直线AB 的对称点N 在抛物线C 上,求PMN 的面积.15.(2024·广东深圳·二模)设抛物线C :22x py =(0p >),直线l :2y kx =+交C 于A ,B 两点.过原点O 作l 的垂线,交直线=2y -于点M .对任意R k ∈,直线AM ,AB ,BM 的斜率成等差数列.(1)求C 的方程;(2)若直线//l l ',且l '与C 相切于点N ,证明:AMN 的面积不小于16.(2024·湖南·一模)已知双曲线2222:1(1)x y C b a a b-=>>的渐近线方程为y =,C 的半焦距为c ,且44244a b c ++=.(1)求C 的标准方程.(2)若P 为C 上的一点,且P 为圆224x y +=外一点,过P 作圆224x y +=的两条切线12,l l (斜率都存在),1l 与C 交于另一点2,M l 与C 交于另一点N ,证明:(ⅰ)12,l l 的斜率之积为定值;(ⅱ)存在定点A ,使得,M N 关于点A 对称.17.(2024·湖南岳阳·三模)已知动圆P 过定点(0,1)F 且与直线3y =相切,记圆心P 的轨迹为曲线E .(1)已知A 、B 两点的坐标分别为(2,1)-、(2,1),直线AP 、BP 的斜率分别为1k 、2k ,证明:121k k -=;(2)若点()11,M x y 、()22,N x y 是轨迹E 上的两个动点且124x x =-,设线段MN 的中点为Q ,圆P 与动点Q 的轨迹Γ交于不同于F 的三点C 、D 、G ,求证:CDG 的重心的横坐标为定值.18.(2024·湖北·二模)已知双曲线P 的方程为()()221,,0,,04x y B a C a -=-,其中()()00002,,,0a D x y x a y >≥>是双曲线上一点,直线DB 与双曲线P 的另一个交点为E ,直线DC 与双曲线P的另一个交点为F ,双曲线P 在点,E F 处的两条切线记为121,,l l l 与2l 交于点P ,线段DP 的中点为G ,设直线,DB DC 的斜率分别为12,k k .(1)证明:12114k k <+≤(2)求GBGC的值.19.(2024·湖北·模拟预测)已知椭圆2212:1x C y a +=和()2222:10x C y a b b +=>>的离心率相同,设1C 的右顶点为1A ,2C 的左顶点为2A ,()0,1B ,(1)证明:12BA BA ⊥;(2)设直线1BA 与2C 的另一个交点为P ,直线2BA 与1C 的另一个交点为Q ,连PQ ,求PQ 的最大值.参考公式:()()3322m n m n m mn n +=+-+20.(2024·山东·二模)已知椭圆2222:1(0)x y C a b a b+=>>的离心率为12,设C 的右焦点为F ,左顶点为A ,过F 的直线与C 于,D E 两点,当直线DE 垂直于x 轴时,ADE V 的面积为92.(1)求椭圆C 的标准方程;(2)连接AD 和AE 分别交圆22(1)1x y ++=于,M N 两点.(ⅰ)当直线DE 斜率存在时,设直线DE 的斜率为1k ,直线MN 的斜率为2k ,求12k k ;(ⅱ)设ADE V 的面积为1,S AMN △的面积为2S ,求12S S 的最大值.21.(2024·山东潍坊·二模)已知双曲线C :()222210,0x y a b a b -=>>的实轴长为2F 到一条渐近线的距离为1.(1)求C 的方程;(2)过C上一点(1P 作C 的切线1l ,1l 与C 的两条渐近线分别交于R ,S 两点,2P 为点1P 关于坐标原点的对称点,过2P 作C 的切线2l ,2l 与C 的两条渐近线分别交于M ,N 两点,求四边形RSMN 的面积.(3)过C 上一点Q 向C 的两条渐近线作垂线,垂足分别为1H ,2H ,是否存在点Q ,满足122QH QH +=,若存在,求出点Q 坐标;若不存在,请说明理由.22.(23-24高三下·湖北武汉·阶段练习)已知抛物线2:=E y x ,过点()1,2T 的直线与抛物线E 交于,A B 两点,设抛物线E 在点,A B 处的切线分别为1l 和2l ,已知1l 与x 轴交于点2,M l 与x 轴交于点N ,设1l 与2l 的交点为P .(1)证明:点P 在定直线上;(2)若PMN ,求点P 的坐标;(3)若,,,P M N T 四点共圆,求点P 的坐标.23.(2024·福建漳州·一模)已知过点()11,0F -的直线l 与圆2F :()22116x y -+=相交于G ,H 两点,GH 的中点为E ,过1GF 的中点F 且平行于2EF 的直线交2G F 于点P ,记点P 的轨迹为C .(1)求轨迹C 的方程.(2)若,A B 为轨迹C 上的两个动点且均不在y 轴上,点M 满足OM OA OB λμ=+(λ,μ∈R ),其中O 为坐标原点,从下面①②③中选取两个作为条件,证明另外一个成立.①点M 在轨迹C 上;②直线OA 与OB 的斜率之积为34-;③221λμ+=.注:若选择不同的组合分别解答,则按第一个解答计分.24.(2024·福建福州·模拟预测)点P 是椭圆E :22221x y a b +=(0a b >>)上(左、右端点除外)的一个动点,()1,0F c -,()2,0F c 分别是E 的左、右焦点.(1)设点P 到直线l :2a x c =的距离为d ,证明2PF d 为定值,并求出这个定值;(2)12PF F △的重心与内心(内切圆的圆心)分别为G ,I ,已知直线IG 垂直于x 轴.(ⅰ)求椭圆E 的离心率;(ⅱ)若椭圆E 的长轴长为6,求12PF F △被直线IG 分成两个部分的图形面积之比的取值范围.25.(2024·福建三明·三模)已知平面直角坐标系xOy 中,有真命题:函数(0,0)ny mx m n x =+≥>的图象是双曲线,其渐近线分别为直线y mx =和y 轴.例如双曲线4y x=的渐近线分别为x 轴和y 轴,可将其图象绕原点O 顺时针旋转π4得到双曲线228x y -=的图象.(1)求双曲线1y x=的离心率;(2)已知曲线22:2E x y -=,过E 上一点P 作切线分别交两条渐近线于,A B 两点,试探究AOB 面积是否为定值,若是,则求出该定值;若不是,则说明理由;(3)已知函数y x =Γ,直线:30l x -=,过F 的直线与Γ在第一象限交于,M N 两点,过,M N 作l 的垂线,垂足分别为,C D ,直线,MD NC 交于点H ,求MNH △面积的最小值.26.(2024·浙江绍兴·二模)已知抛物线C :()220y px p =>的焦点到准线的距离为2,过点()2,2A 作直线交C 于M ,N 两点,点()1,1B -,记直线BM ,BN 的斜率分别为1k ,2k .(1)求C 的方程;(2)求()121232k k k k -+的值;(3)设直线BM 交C 于另一点Q ,求点B 到直线QN 距离的最大值.27.(2024·浙江绍兴·模拟预测)已知抛物线C :22y px =的焦点F ,直线l 过F 且交C 于两点M N 、,已知当3MF NF =时,MN (1)求C 的标准方程.(2)令,02p F ⎛⎫'- ⎪⎝⎭,P 为C 上的一点,直线F P ',FP 分别交C 于另两点A ,B .证明:·1AF PF PF BF '='.(3)过,,A B P 分别作C 的切线123,,l l l , 3l 与1l 相交于D ,同时与2l 相交于E ,求四边形ABED 面积取值范围.28.(2024·河北保定·二模)平面几何中有一定理如下:三角形任意一个顶点到其垂心(三角形三条高所在直线的交点)的距离等于外心(外接圆圆心)到该顶点对边距离的2倍.已知ABC 的垂心为D ,外心为E ,D 和E 关于原点O 对称,()13,0A .(1)若()3,0E ,点B 在第二象限,直线BC x ⊥轴,求点B 的坐标;(2)若A ,D ,E 三点共线,椭圆T :()222210x y a b a b+=>>与ABC 内切,证明:D ,E 为椭圆T 的两个焦点.29.(2024·浙江杭州·模拟预测)设双曲线22:12x C y -=,直线:l y x m =+与C 交于,A B 两点.(1)求m 的取值范围;(2)已知C 上存在异于,A B 的,P Q 两点,使得PA PB QA QB t ⋅=⋅=.(i )当4t =时,求,P Q 到点()2,m m --的距离(用含m 的代数式表示);(ii )当2t =时,记原点到直线PQ 的距离为d ,若直线PQ 经过点(),m m -,求d 的取值范围.30.(2024·湖北·一模)已知椭圆2222:1(0)x y M a b a b+=>>的离心率为12,A ,B 分别为椭圆的左顶点和上顶点,1F 为左焦点,且1ABF(1)求椭圆M 的标准方程:(2)设椭圆M 的右顶点为C 、P 是椭圆M 上不与顶点重合的动点.(i )若点31,2P ⎛⎫⎪⎝⎭,点D 在椭圆M 上且位于x 轴下方,直线PD 交x 轴于点F ,设APF 和CDF 的面积分别为1S ,2S 若1232S S -=,求点D 的坐标:(ii )若直线AB 与直线CP 交于点Q ,直线BP 交x 轴于点N ,求证:2QN QC k k -为定值,并求出此定值(其中QN k 、QC k 分别为直线QN 和直线QC 的斜率).黄金冲刺大题06 圆锥曲线(椭圆、双曲线、抛物线)(精选30题)1.(2024·山东·二模)已知椭圆的焦点分别是)()12,F F ,点M 在椭圆上,且124MF MF +=.(1)求椭圆的标准方程;(2)若直线y kx =,A B 两点,且OA OB ⊥,求实数k 的值.【答案】(1)2214x y +=;【分析】(1)根据所给条件求出,a b ,即可得出椭圆标准方程;(2)联立直线与椭圆方程,根据根与系数的关系及OA OB ⊥,列出方程求k 即可.【详解】(1)设椭圆的标准方程为22221(0)x y a b a b+=>>.由题意可知22224c a a b c ⎧=⎪=⎨⎪=+⎩,解得2,1,a b c ⎧=⎪=⎨⎪=⎩所以椭圆的标准方程为2214x y +=.(2)设()()1122,,,A x y B x y ,如图,联立方程2214y kx x y ⎧=⎪⎨+=⎪⎩,消去y ,得()221440k x +++=,则12122414x x x x k +==+,从而(1212y y kx kx =+()212122k x x x x =+++222414kk-=+,因为,0OA OB OA OB ⊥⋅=,即12120x x y y +=,所以22222424640141414k k k k k --+==+++,解得k =或,经验证知Δ0>,所以k.2.(2024·江苏南通·模拟预测)在平面直角坐标系xOy 中,设椭圆()2222:10x y C a b a b +=>>1F ,2F 分别是椭圆的左、右焦点,过2F 作两条互相垂直的直线1l ,2l ,直线1l 与C 交于A ,B 两点,直线2l 与C 交于D ,E 两点,且12AF F的周长是4+(1)求椭圆C 的方程;(2)当32AB DE =时,求ODE 的面积.【答案】(1)2214x y +=【分析】(1)由椭圆离心率和焦点三角形的周长,列方程组求出,a b ,得椭圆C 的方程;(2)设直线1l ,2l 的方程,与椭圆联立,利用韦达定理和32AB DE =求出DE 和2l 的方程,再求出O 到直线2l 的距离,可求ODE 的面积.【详解】(1)由题意知,222224a c ca b a c ⎧+=+⎪⎪=⎨⎪=-⎪⎩,解得2,1,a b c ===所以椭圆C 的方程为2214x y +=;(2)若直线1l 的斜率不存在,则直线2l 的斜率为0,不满足32AB DE =,直线1l 的的斜率为0,则12,,A F F 三点共线,不合题意,所以直线1l 的斜率存在且不为0,设直线1l的方程为x my =由2214x my x y ⎧=⎪⎨+=⎪⎩,消去x得2211044m y y ⎛⎫++-= ⎪⎝⎭,设()()1122,,,A x y B x y,则12y y +=1221414y y m =-+,()2241.4m AB m +∴===+同理可得()222214141.1144m m DE m m ⎛⎫+ ⎪+⎝⎭==++,由32AB DE =,得()()2222414134214m m m m++=⋅++,解得22m =,则43DE =,∴直线2l的方程为y x =,∴坐标原点O 到直线2l的距离为d ==1423ODE S =⨯= 即ODE【点睛】方法点睛:解答直线与圆锥曲线的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系,涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形,强化有关直线与圆锥曲线联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.3.(2024·河北邯郸·二模)已知椭圆C 的中心为坐标原点,对称轴为x 轴、y 轴,且过()2,0,1,M N ⎛⎝两点.(1)求C 的方程.(2),A B 是C 上两个动点,D 为C 的上顶点,是否存在以D 为顶点,AB 为底边的等腰直角三角形?若存在,求出满足条件的三角形的个数;若不存在,请说明理由.【答案】(1)2214x y +=(2)存在,3个【分析】(1)设椭圆C 的方程为221(0,0,)mx ny m n m n +=>>≠,根据条件得到41314m m n =⎧⎪⎨+=⎪⎩,即可求出结果;(2)设直线DA 为1y kx =+,直线DB 为11y x k=-+,当1k =时,由椭圆的对称性知满足题意;当21k ≠时,联立直线与椭圆方程,求出,A B 的坐标,进而求出AB 中垂线方程,根据条件中垂线直经过点(0,1)D ,从而将问题转化成方程42710k k -+=解的个数,即可解决问题.【详解】(1)由题设椭圆C 的方程为221(0,0,)mx ny m n m n +=>>≠,因为椭圆过()2,0,1,M N ⎛ ⎝两点,所以41314m m n =⎧⎪⎨+=⎪⎩,得到1,14m n ==,所以椭圆C 的方程为2214x y +=.(2)由(1)知(0,1)D ,易知直线,DA DB 的斜率均存在且不为0,不妨设(0)DA k k k =>,1DB k k=-,直线DA 为1y kx =+,直线DB 为11y x k =-+,由椭圆的对称性知,当1k =时,显然有DA DB =,满足题意,当21k ≠时,由22114y kx x y =+⎧⎪⎨+=⎪⎩,消y 得到221()204k x kx ++=,所以2814A k x k =-+,222281411414A k k y k k -=-+=++,即222814(,)1414k k A k k--++,同理可得22284(,44k k B k k -++,所以()2222222222222414(4)14(4)(14)1414888(144)5414ABk k k k k k k k k k k k k k k k k k ----+-+--++===++++++,设AB 中点坐标为00(,)x y ,则2220228812(1)1442(4)(14)k kk k k k x k k -+-++==++,22222022144151442(4)(14)k k k k k y k k --+-++==++,所以AB 中垂线方程为222222215512(1)()(4)(14)1(4)(14)k k k k y x k k k k k -+=--++-++,要使ADB 为AB 为底边的等腰直角三角形,则直AB 中垂线方程过点(0,1),所以222222215512(1)1(0)(4)(14)1(4)(14)k k k k k k k k k -+=--++-++,整理得到42710k k -+=,令2t k =,则2710t t -+=,4940∆=->,所以t 有两根12,t t ,且121270,10t t t t +=>=>,即2710t t -+=有两个正根,故有2个不同的2k 值,满足42710k k -+=,所以由椭圆的对称性知,当21k ≠时,还存在2个符合题意的三角形,综上所述,存在以D 为顶点,AB 为底边的等腰直角三角形,满足条件的三角形的个数有3个.【点睛】关键点点晴:本题的关键在于第(2)问,通过设出直线DA 为1y kx =+,直线DB 为11y x k=-+,联立椭圆方程求出,A B 坐标,进而求出直线AB 的中垂线方程,将问题转化成直线AB 的中垂线经过点(0,1)D ,再转化成关于k 的方程的解的问题.4.(2024·广东广州·模拟预测)已知椭圆222:1(08x y C b b+=<<,右顶点为E ,上、下顶点分别为12,,B B G是1EB 的中点,且121EB GB ⋅=.(1)求椭圆C 的方程;(2)设过点()4,0D -的直线l 交椭圆C 于点,M N ,点()2,1A --,直线,MA NA 分别交直线4x =-于点,P Q ,求证:线段PQ 的中点为定点.【答案】(1)22182x y +=(2)证明见解析【分析】(1)通过椭圆的性质和中点的坐标,然后根据向量的数量积得到等量关系即可求出椭圆的标准方程;(2)设出直线l 的方程并与椭圆方程联立,化简写出根与系数的关系,求得点,P Q 的坐标,进而证得线段PQ 的中点为定点.【详解】(1)由题可得()28,,0a E a = ,()()120,,0,B b B b -,1EB ∴的中点为,22a b G ⎛⎫ ⎪⎝⎭,2221233(,),1,2,2222a b a bEB GB a b b ⎛⎫⋅=-⋅--=-=∴= ⎪⎝⎭ 故椭圆C 的方程为22182x y +=;(2)依题意可知直线l 的斜率存在,设直线l 的方程为()4y k x =+,由()224182y k x x y ⎧=+⎪⎨+=⎪⎩消去y 并化简得()222214326480k x k x k +++-=,由()()422Δ10244146480k k k =-+->,得2111,422k k <-<<.设()(),,,M M N N M x y N x y ,则222232648,1414M N M N k k x x x x k k -+=-=++,依题意可知直线,MA NA 的斜率存在,直线MA 的方程为()1122M M y y x x ++=++,令4x =-,得()2442422M M M M P M M k x x y x y x x -+-----==++()()()2184212424221222M M M M M k x k k x k k k x x x ------+--+===---+++,同理可求得42212Q N k y k x +=---+,()N 4242114242422222P Q M N M k k y y k k k x x x x ⎛⎫++∴+=----=---++ ⎪++++⎝⎭()()4424224M N M N M N x x k k x x x x ++=---+⋅+++()22222232414424242(42)064832241414k k k k k k k k k k -++=---+⋅=--++=⎛⎫-+-+ ⎪++⎝⎭,∴线段PQ 的中点为定点()4,0-.【点睛】方法点睛:对于直线和圆锥曲线相交的问题,我们一般将直线和圆锥曲线联立,利用韦达定理带入计算求解.5.(2024·辽宁·二模)平面直角坐标系xOy 中,面积为9的正方形ABCD 的顶点,A B 分别在x 轴和y 轴上滑动,且23OP OA = ,记动点P 的轨迹为曲线Γ.(1)求Γ的方程;(2)过点()4,1E 的动直线l 与曲线Γ交于不同的两点,M N 时,在线段MN 上取点Q ,满足||||||||EM QN QM EN ⋅=⋅.试探究点Q 是否在某条定直线上?若是,求出定直线方程;若不是,说明理由.【答案】(1)22143x y +=(2)点Q 在定直线上,定直线方程为330x y +-=【分析】(1)设点,,P A B 的坐标,利用平面向量的坐标表示消参得0032x x y ⎧=⎪⎨⎪=⎩,结合正方形面积得Γ的方程;(2)设:14l y kx k =+-,,,Q M N 的坐标,与椭圆联立并根据韦达定理得,M N 横坐标关系,再根据线段乘积关系化为比值关系得01120244x x x x x x --=--,化简得0243kx k+=+,代入直线方程即可0y ,从而求出定直线方程.【详解】(1)设()()()00,,,0,0,P x y A x B y ,由0000222(,0))()333OP OA x y x y ==+=,得0023x x y y ⎧=⎪⎪⎨⎪=⎪⎩,所以032x x y ⎧=⎪⎨⎪=⎩,因为正方形ABCD 的面积为29AB =,即22009x y +=,所以223())92x +=,整理可得22143x y +=,因此C 的轨迹方程为22143x y +=.(2)依题意,直线l 存在斜率,设l :1(4)y k x -=-,即14y kx k =+-,设点()00,Q x y ,()11,M x y ,()22,N x y ()102x x x <<,由22143412y kx kx y =+-⎧⎨+=⎩,消y 得2234(14)12x kx k ++-=,即222(34)8(14)4(14)120k x k k x k ++-+--=,由()()()2222Δ64141634143k k k k ⎡⎤=--+--⎣⎦()()()()()22222216144344834483414k k k k k k ⎡⎤⎡⎤=--+++=+--⎣⎦⎣⎦()()22481282966410k k k k =-++=-++>,k <<所以3k ≠-,可得1228(14)34k k x x k -+=-+,21224(14)1234k x x k --=+,由||||||||EM QN QM EN ⋅=⋅ ,得||||||||QM EM QN EN =,所以01120244x x x x x x --=--,可得222121201228(14)4(14)124234344()28(14)8()834k k k k k x x x x x k k x x k ⎡⎤---⎡⎤--⎢⎥⎢⎥+++-⎣⎦⎣⎦==--+⎡⎤--⎢⎥+⎣⎦()()2222232148142432128128648242432824248k k k k k k k k k k k----+-+-+-+==++-+1632242483k kk k++==++,所以()()200143243914333k k k k ky kx k k k k-++-=+-=+=+++,因为00612393333k kx y k k+-+=+=++,所以点Q 在定直线上,定直线方程为330x y +-=.6.(2024·福建厦门·三模)在直角坐标系xOy 中,已知抛物线2:2(0)C y px p =>的焦点为F ,过F 的直线l 与C 交于,M N 两点,且当l 的斜率为1时,8MN =.(1)求C 的方程;(2)设l 与C 的准线交于点P ,直线PO 与C 交于点Q (异于原点),线段MN 的中点为R ,若3QR ≤,求MNQ △面积的取值范围.【答案】(1)24y x =;(2)(.【分析】(1)先设l 的方程为2px my =+,()11,M x y ,()22,N x y ,联立直线与抛物线方程,结合韦达定理及抛物线定义即可求解;(2)先设出()221,2R m m +,进而可求,P Q 的坐标,可得直线//QR x 轴,求出QR 的范围,再由三角形面积公式即可求解.【详解】(1)不妨先设l 的方程为2px my =+,()11,M x y ,()22,N x y ,代入22y px =,可得2220y mpy p --=,所以122y y mp +=,212y y p =-,则()21212222MN x x p m y y p m p p =++=++=+,由题意可知当斜率为1时,1m =,又8MN =,即228p p +=,解得2p =,所以C 的方程为24y x =;(2)由(1)知2p =,直线l 的方程为1x my =+,抛物线方程24y x =,124y y m +=,124y y =-所以R 的纵坐标1222R y y y m +==,将R 的纵坐标2m 代入1x my =+,得221x m =+,所以R 的坐标()221,2m m +,易知抛物线的准线为=1x -,又因为l 与C 的准线交于点P ,所以P 的坐标21,m ⎛⎫-- ⎪⎝⎭,则直线OP 的方程为2m x y =,把2mx y =代入24y x =,得22y my =,即2y m =或0y =,因为点Q 异于原点,从而Q 的纵坐标为2m ,把2y m =代入2m x y =,得22mx y m ==,所以()2,2Q m m ,因为R 的坐标()221,2m m +,所以R ,Q 的纵坐标相同,所以直线//QR x 轴,且222211QR m m m =+-=+,所以MNQ △面积1212MNQ MRQ NRQ S S S QR y y =+=- ,因为()22212121241616y y y y y y m -=+-=+,所以12y y -==,所以()332222112122MNQS m m QR =+⨯=+= ,因为点Q 异于原点,所以0m ≠,所以210m +>,因为3QR ≤,所以13QR <≤,所以3222QR <≤MNQ △面积的取值范围为(.7.(2024·浙江丽水·二模)已知抛物线2:4E y x =,点,,A B C 在抛物线E 上,且A 在x 轴上方,B 和C 在x 轴下方(B 在C 左侧),,A C 关于x 轴对称,直线AB 交x 轴于点M ,延长线段CB 交x 轴于点Q ,连接QA .(1)证明:OM OQ为定值(O 为坐标原点);(2)若点Q 的横坐标为1-,且89MB MC ⋅= ,求AQB 的内切圆的方程.【答案】(1)1(2)221499x y ⎛⎫-+=⎪⎝⎭【分析】(1)根据已知条件作出图形,设出直线AB 的方程,与抛物线联立,利用韦达定理及直线的点斜式方程即可求解;(2)根据(1)的结论及向量的数量积的坐标表示,进而得出直线AB 的方程,利用直线的斜率公式及直线的点斜式方程,结合角平分线的性质及圆的标准方程即可求解.【详解】(1)设直线AB 的方程为()()()11220,,,,x my t m A x y B x y =+>,则()()11,,,0C x y M t -,由24x my ty x =+⎧⎨=⎩,消去x ,得2440y my t --=,()22Δ1600m t m t =+>⇒+>,所以12124,4y y m y y t +==-,直线BC 的方程为()211121y y y y x x x x ++=--,化简得1221214y y xy y y y y =---,令0y =,得124Q y y x t ==-,所以(),0Q t -因此1OM t OQt==-.(2)因为点Q 的横坐标为1-,由(1)可知,()()1,0,1,0Q M -,设QA 交抛物线于D ,()()()()11221144,,,,,,,A x y B x y C x y D x y -,如图所示又由(1)知,124y y =-,同理可得144y y =,得42y y =-,又()212121211242x x my my m y y m +=+++=++=+,()22212121214416y y y y x x =⋅==,又()()22111,,1,MB x y MC x y =-=-- ,则()()()221121212111444MB MC x x y y x x x x m ⋅=---=-+++=- ,故2844,9m -=结合0m >,得m =所以直线AB的方程为330,x -=又12163y y -===,则141414221214141412443444AD y y y y y y k y y x x x x y y y y ---======--+--,所以直线AD 的方程为3430x y -+=,设圆心(,0)(11)T s s -<<,因为QM 为AQB ∠的平分线,故点T 到直线AB 和直线AD 的距离相等,所以333354s s +-=,因为11s -<<,解得19s =,故圆T 的半径33253s r +==,因此圆T 的方程为221499x y ⎛⎫-+= ⎪⎝⎭.8.(2024·江苏苏州·模拟预测)已知点(1,0)A ,(0,1)B ,(1,1)C 和动点(,)P x y 满足2y 是PA PB ⋅ ,PA PC ⋅的等差中项.(1)求P 点的轨迹方程;(2)设P 点的轨迹为曲线1C 按向量31,416a ⎛⎫=- ⎪⎝⎭平移后得到曲线2C ,曲线2C 上不同的两点M ,N 的连线交y 轴于点(0,)Q b ,如果MON ∠(O 为坐标原点)为锐角,求实数b 的取值范围;(3)在(2)的条件下,如果2b =时,曲线2C 在点M 和N 处的切线的交点为R ,求证:R 在一条定直线上.【答案】(1)23122y x x =-+;(2)0b <或1b >;(3)证明见解析.【分析】(1)根据题意,由平面向量的坐标运算,结合等差中项的定义代入计算,即可得到结果;(2)根据题意,由平移公式可得曲线2C 的方程,然后与直线MN 的方程联立,由平面向量的夹角公式,代入计算,即可得到结果;(3)根据题意,求导可得在点,M N 处的切线方程,联立两条切线方程,代入计算,即可得到结果.【详解】(1)由题意可得(1,)PA x y =-- ,(,1)PB x y =-- ,(1,1)PC x y =--,则22(1)()()(1)PA PB x x y y x y x y ⋅=-⋅-+-⋅-=+--,22(1)(1)()(1)21PA PC x x y y x y x y ⋅=-⋅-+-⋅-=+--+,又2y 是PA PB ⋅ ,PA PC ⋅的等差中项,()()22222212x y x y x y x y y ∴+--++--+=,整理得点(,)P x y 的轨迹方程为23122y x x =-+.(2)由(1)知2131:22C y x x =-+,又31,416a ⎛⎫=- ⎪⎝⎭ ,∴平移公式为34116x x y y ⎧=-⎪⎪⎨⎪=+'⎩'⎪即34116x x y y ⎧=+⎪⎪⎨⎪=-'⎩'⎪,代入曲线1C 的方程得到曲线2C 的方程为:213331164242y x x ''⎛⎫⎛⎫-=+-++ ⎪ ⎪⎝⎭⎝⎭',即2y x ¢¢=.曲线2C 的方程为2y x =.如图由题意可设M ,N 所在的直线方程为y kx b =+,由2y x y kx b⎧=⎨=+⎩消去y 得20x kx b --=,令()11,M x y ,()()2212,N x y x x ≠,则1212x x kx x b +=⎧⎨=-⎩,()()21111,,OM x y x x ∴== ,()()22222,,ON x y x x == ,又MON ∠ 为锐角,cos 0||||OM ONMON OM ON ⋅∴∠=>⋅,即2212120||||x x x x OM ON +>⋅ ,2212120x x x x ∴+>,又12x x b =-,2()0b b ∴-+->,得0b <或1b >.(3)当2b =时,由(2)可得12122x x kx x b +=⎧⎨=-=-⎩,对2y x =求导可得2y x '=,∴抛物线2C 在点,()211,M x x ∴=,()222,N x x 处的切线的斜率分别为12M k x =,22N k x =,∴在点M ,N 处的切线方程分别为()2111:2M l y x x x x -=-,()2222:2N l y x x x x -=-,由()()()211112222222y x x x x x x y x x x x ⎧-=-⎪≠⎨-=-⎪⎩,解得交点R 的坐标(,)x y .满足12122x x x y x x +⎧=⎪⎨⎪=⋅⎩即22k x y ⎧=⎪⎨⎪=-⎩,R ∴点在定直线=2y -上.【点睛】关键点点睛:本题主要考查了曲线的轨迹方程问题以及切线问题,难度较大,解答本题的关键在于联立方程结合韦达定理计算以及转化为坐标运算.9.(2024·江苏南通·二模)已知双曲线E 的渐近线为y =,左顶点为()A .(1)求双曲线E 的方程;(2)直线:l x t =交x 轴于点D ,过D 点的直线交双曲线E 于B ,C ,直线AB ,AC 分别交l 于G ,H ,若O ,A ,G ,H 均在圆P 上,①求D 的横坐标;②求圆P 面积的取值范围.【答案】(1)2213x y -=(2)①⎫⎪⎪⎭;②27π16S >且7π4S ≠【分析】(1)根据渐近线方程及顶点求出,a b 得双曲线方程;(2)①设(),0D t ,由四点共圆可得1AG OH k k ⋅=,根据斜率公式转化为,B C 点坐标表示形式,由直线与双曲线联立得出根与系数的关系,据此化简即可求出t ;②求出G 点坐标得出OG ,利用正弦定理求出外接圆的半径,根据均值不等式求出半径的最值,即可得出圆面积的最值.【详解】(1)因为双曲线的渐近线关于坐标轴及原点对称,又顶点在x 轴上,可设双曲线的方程为22221x y a b-=(0a >,0b >),从而渐近线方程为:b y x a =±,由题条件知:b a =因为双曲线的左顶点为()A ,所以a =1b =,所以双曲线的方程为:2213x y -=.(2)如图,①(),0D t ,设直线BC 的方程为:my x t =-,将x my t =+代入方程:22330x y --=,得()2223230m y mty t -++-=,当230m -≠且()22Δ1230t m =+->时,设()11,B x y ,()22,C x y ,则12223mt y y m +=--,212233t y y m -=-.设直线AG 的倾斜角为α,不妨设π02α<<,则π2AGH α∠=-,由于O ,A ,G ,H 四点共圆知:HOD AGH ∠=∠,所以直线OH 的倾斜角为π2α-,πsin πsin 2tan tan 1π2cos cos 2AG OH k k αααααα⎛⎫- ⎪⎛⎫⎝⎭⋅=⋅-=⨯= ⎪⎛⎫⎝⎭- ⎪⎝⎭.直线AC的方程为:y x =,令x t =,则y =H t ⎛ ⎝,所以OH k=AGABk k==1=((1212t y y t x x ⇒=,又11x my t =+,22xmy t =+代入上式得:((1212t y yt my t my t =++,((()(22121212t y y t m y y m t y y t ⎡⎤⇒=+++⎢⎥⎣⎦,(((2222222332333t t mtt t m m t t m m m ⎛⎤---⇒⋅=⋅+⋅++ ⎥---⎝⎦,化简得:2430t +-=,解得:t =(舍)或t =故点D 的坐标为⎫⎪⎪⎭.②直线AG 的方程为(tan y x α=⋅,由①知:t =所以G α⎫⎪⎪⎭.直线OH 方程;1tan y x α=,所以H ,若G ,H 在x 轴上方时,G 在H 的上方,即tan 0α>α>若G ,H 在x 轴下方时,即t an 0α<α<所以tan α>tan α<又直线AG 与渐近线不平行,所以tan α≠所以0πα<<,tan α>tan α<tan α≠因为OG ==设圆P 的半径为R ,面积为S ,则2sin OG R α==所以()()()2222222125tan 125tan sin cos 3164sin 64sin R αααααα+⋅++=⨯=⨯()()22222125tan 1tan 33125tan 2664tan 64tan ααααα++⎛⎫=⨯=++ ⎪⎝⎭327266416⎛⎫≥= ⎪ ⎪⎝⎭,当且仅当22125tan tan αα=即tan α=tan α>tan α<tan α≠所以22716R >且274R ≠,从而27π16S >且7π4S ≠.【点睛】关键点点睛:本题的关键点在于利用直线的倾斜角与圆的内接四边形的角的关系,得出πsin πsin 2tan tan 1π2cos cos 2AG OHk k αααααα⎛⎫- ⎪⎛⎫⎝⎭⋅=⋅-=⨯= ⎪⎛⎫⎝⎭- ⎪⎝⎭这一关键数量关系,再转化为直线与双曲线相交,利用根与系数的关系化简求参数的常规问题.10.(2024·江苏南京·二模)已知抛物线2:2(0)C y px p =>与双曲线2222:1x y E a b-=(0a >,0b >)有公共的焦点F ,且4p b =.过F 的直线1与抛物线C 交于A ,B 两点,与E 的两条近线交于P ,Q 两点(均位于y 轴右侧).(1)求E 的渐近线方程;(2)若实数λ满足1111||||||||OP OQ AF BF λ⎛⎫+=- ⎪⎝⎭,求λ的取值范围.【答案】(1)y x =(2)10,2⎡⎫⎪⎢⎣⎭【分析】(1)由两曲线有公共的焦点F ,且4p b =,得2c b =,a ,可求渐近线方程;(2)通过设直线方程,联立方程组,借助韦达定理,表示出11||||OP OQ +和11||||AF BF -,由1111OP OQ AF BF λ⎛⎫+=- ⎪⎪⎝⎭求λ的取值范围.【详解】(1)抛物线2:2(0)C y px p =>与双曲线2222:1x y E a b-=(0a >,0b >)有公共的焦点F ,设双曲线E 的焦距为2c ,则有2pc =,又4p b =,则2c b =.由222+=a b c,得a ,所以E的渐近线的方程为y =(2)设:l x my c =+,()()1122,,,P x y Q x y ,1与E 的两条近线交于P ,Q 两点均位于y 轴右侧,有23m <,由x my cy x =+⎧⎪⎨=⎪⎩,解得1y =2y =,11112OP OQ y +=+设()()3344,,,A x y B x y , 由22x my cy px=+⎧⎨=⎩,消去x 得2220y pmx p --=,则有234342,y y pm y y p +==-,1AF2p =由1111OP OQ AF BF λ⎛⎫+=- ⎪⎪⎝⎭,2pc =,有2p λ==由23m <⎡∈⎢⎣,所以10,2λ⎡⎫∈⎪⎢⎣⎭.【点睛】方法点睛:解答直线与圆锥曲线的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系,涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形,强化有关直线与圆锥曲线联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.11.(2024·重庆·三模)已知()2,0F ,曲线C 上任意一点到点F 的距离是到直线12x =的距离的两倍.(1)求曲线C 的方程;(2)已知曲线C 的左顶点为A ,直线l 过点F 且与曲线C 在第一、四象限分别交于M ,N 两点,直线AM 、AN 分别与直线12x =交于P ,H 两点,Q 为PH 的中点.(i )证明:QF MN ⊥;(ii )记PMQ ,HNQ ,MNQ 的面积分别为1S ,2S ,3S ,则123S S S +是否为定值?若是,求出这个定值;若不是,请说明理由.【答案】(1)2213y x -=(2)(i )证明见解析;(ii )是,12【分析】(1)设曲线C 上任意一点坐标为(),x y ,利用坐标可得曲线C 的方程;(2)(i)设直线MN :2x my =+,()11,M x y ,()22,N x y ,联立方程组可得1221231my y m +=--,122931y y m =-,求得直线AM :()1111y y x x =++,求得P ,H ,进而可得Q 的坐标,求得FQ 的坐标,直线MN 的方向向量的坐标,利用向量法可证结论.(ii) 法一:利用(i )可求得()226113mMN m +=-;QF=()()322329112213m S MN QF m+=⋅=-,进而求得()1212114S S PH x x +=⋅+-,代入运算可求得()()32212291413m S S m++=-,可求结论.法二:(利用双曲线的第二定义)由(1)知,1122MF x ⎛⎫=- ⎪⎝⎭,同理2122NF x ⎛⎫=- ⎪⎝⎭,计算可得1218S S PH MN +=⋅,又312S MN QF =⋅,12314PH S S S QF +=,进而计算可得结论成立.【详解】(1)设曲线C 上任意一点坐标为(),x y ,则由题意可知:()2222222212444441123y x y x x x y x x x ⎛⎫-+=-⇒-++=-+⇒-= ⎪⎝⎭,故曲线C 的方程为2213y x -=.(2)(i)设直线MN :2x my =+,()11,M x y ,()22,N x y ,其中m <<且11x >,21x >()22222311290330x my m y my x y =+⎧⇒-++=⎨--=⎩,故1221231my y m +=--,122931y y m =-;直线AM :()1111y y x x =++,当12x =时,()11321y y x =+,故()1131,221y P x ⎛⎫⎪ ⎪+⎝⎭,同理()2231,221y H x ⎛⎫⎪ ⎪+⎝⎭,Q 为PH 中点,故()()()()1221121212111332211411Q y x y x y y y x x x x +++⎛⎫=⋅+=⋅ ⎪++++⎝⎭;()()()()()()222212121212293693111333931m m m x x my my m y y m y y m -+-++=++=+++=-2931m =--;(*)()()()()()122112211212221836181133233131m m my x y x y my y my my y y y m m -+++=+++=++==---;故3183492Q m m y =⋅=,即13,22m Q ⎛⎫⎪⎝⎭,则33,22m FQ ⎛⎫=- ⎪⎝⎭ ,直线MN 的方向向量(),1a m =,33022m m a FQ ⋅=-+= ,故QF MN ⊥.(ii)法一:12y y -===(**)故()2226113m MN y m +=-=-;QF==又QF MN ⊥,故()()322329112213mSMN QF m+=⋅=-.()12121211111122224S S PQ x HQ x PH x x ⎛⎫⎛⎫+=⋅-+⋅-=⋅+- ⎪ ⎪⎝⎭⎝⎭;()()222121222311293133113m m m x x m y y m m +-+-+-=++==--;()()()()()()1221121212113332121211y x y x y y PH x x x x +-+=-=++++,()()()()()()12211212123339211211y my y my y y x x x x +-+-==++++,由(*)知()()12291113x x m ++=-,由(**)知12y y -=,故291329m PH -==故()()()3222122231911413413m mS S m m+++=⋅=--,则12312S S S +=.法二:(利用双曲线的第二定义)由(1)知,1122MF x ⎛⎫=- ⎪⎝⎭,同理2122NF x ⎛⎫=- ⎪⎝⎭,故()()12121111488S S PH x x PH MF NF PH MN +=+-=⋅+=⋅,又312S MN QF =⋅,故12314PH S S S QF +=,又()()12129411P H y y y y x x =++,且由(*)知229993194431P Hm y y m -==--,记直线PH 与x 轴相交于点K ,由94P Hy y =可得2PK HK FK ⋅=,即PK FK FK HK =,即PKF PFH ∽△△,故PF HF ⊥;又Q 为PH 的中点,故12QF PH =,即1231142PH S S S QF +==.【点睛】方法点睛:直线与双曲线联立问题第一步:设直线方程:有的题设条件已知点,而斜率未知;有的题设条件已知斜率,点不定,都可设出直线方程.。
第十一章 圆锥曲线专练6—椭圆大题(面积最值问题1)-2022届高三数学一轮复习

第十一章圆锥曲线专练6—椭圆大题(面积最值问题1)轴不垂直的直线l 交椭圆于A 、B 两点. (1)求实数m 的值;(2)求(ABO O ∆为原点)面积的最大值. 解:(1)由题意可得,21b =,2a m =,因为离心率c e a ==, 所以c =因为222a b c =+, 所以12mm =+,解得2m =. (2)由(1)知,椭圆22:12y E x +=,上焦点2(0,1)F ,设1(A x ,1)y ,2(B x ,2)y ,直线l 的方程为:1y kx =+, 联立22112y kx y x =+⎧⎪⎨+=⎪⎩,得22(2)210k x kx ++-=,所以12222k x x k -+=+,12212x x k -=+, 所以2221212122224||()4()22k x x x x x x k k --=+-=+++ 222222244(2)88(2)(2)k k k k k +++==++, 所以12||x x-=所以12211||||122ABOS x x OF∆=⋅-⨯==22==,=,即0k =时等号成立,所以(ABO O ∆.2.某城市决定在夹角为30︒的两条道路EB 、EF 之间建造一个半椭圆形状的主题公园,如图所示,2AB =千米,O 为AB 的中点,OD 为椭圆的长半轴,在半椭圆形区域内再建造一个三角形游乐区域OMN ,其中M ,N 在椭圆上,且MN 的倾斜角为45︒,交OD 于G . (1)若3OE =千米,为了不破坏道路EF ,求椭圆长半轴长的最大值; (2)若椭圆的离心率为32,当线段OG 长为何值时,游乐区域OMN ∆的面积最大?解:(1)以O 为坐标原点,以OD 所在的坐标为x 轴,以OA 所在的直线为y 轴建立平面直角坐标系,由题意(0,1)A ,(3,0)E ,由30OEF ∠=︒,所以||||tan 303OF OE =⋅︒= 所以(3F 0),3EF k =-所以直线EF 的方程为:33y x =-+ 设OD a =,则(,0)D a ,所以椭圆2221x y a+=,当a 最大时直线EF 与椭圆相切,222133x y ay x ⎧+=⎪⎨⎪=⎩整理可得:2222(13)6380a x a x a +-+=, △222(63)4(13)80a a a =-+⋅=,解得2626a =舍) 26; (2)因为3c e a ==1b =,222a b c =+, 所以24a =,所以椭圆的方程为:2214x y +=;设0OG t =>,则(,0)G t ,直线MN 的方程为:y x t =-, 联立2214y x t x y =-⎧⎪⎨+=⎪⎩,整理可得:2258440x tx t -+-=, 设1(M x ,2)y ,2(N x ,2)y 则1285tx x +=,212445t x x -=,12124||||5y y x x -=-=,12114||||225OMN S OG y y t ∆=⋅-=⋅⋅ 要保证MN 与半椭圆有交点,当N 位于B 时1t =, 所以12t <<,当2552(1)2t =-=-,即t =, OMN S ∆有最大值为1,综上所述,当OG 时,三角形OMN 的面积最大.标原点,椭圆C 的一个焦点为(1,0)F ,AB 中点为(2,1)P . (1)求椭圆C 的方程;(2)若M ,Q 为椭圆C 上任意两点,满足0OQ OM ⋅=,求OMQ ∆面积的取值范围. 解:(1)由题意可得1c =,设1(A x ,1)y ,2(B x ,2)y , 因为AB 中点为(2,1)P ,所以12122212x x y y +⎧=⎪⎪⎨+⎪=⎪⎩,所以121242x x y y +=⎧⎨+=⎩,因为1(A x ,1)y ,2(B x ,2)y 在椭圆2222:1(0)x y C a b a b+=>>上,所以2222221x y a b +=,2211221x y a b+=,两式相减得22222121220x x y y a b --+=,2121224()2()0x x y y a b --+=,所以2212212y y b x x a -=--,所以22232b a -=-,所以2234b a =,因为221a b -=,所以24a =,23b =,所以椭圆方程为22143x y +=.(2)设直线MQ 为y kx m =+,设3(M x ,3)y ,4(Q x ,4)y , 联立直线方程与椭圆方程,得222(34)84120k x kmx m +++-=, 则△22222(8)4(43)(412)48(43)0km k m k m =-+-=-+>,23434228412,3434km m x x x x k k-+=-=++, 因为0OQ OM ⋅=,所以34340x x y y +=,所以2234343434()()(1)()0x x kx m kx m k x x km x x m +++=++++=,所以222224128(1)03434m km k km m k k -+⋅-⋅+=++,所以222712(1)034m k k -+=+,得2212(1)7m k =+,所以点O 到直线MQ的距离为d ==,因为34|||MQ x x -=====因为22149119481624242k k ++=+++,当且仅当22916k k=时取等号,43774<⨯=||7MQ <,所以111||7222MQ d <⨯⨯,即1237OMQ S ∆<,所以OMQ ∆面积的取值范围为12(,3]7.4.已知椭圆2222:1(0)x y C a b a b+=>>的左右焦点分别为1(3F -,0),2(3F ,0),且椭圆C 上的点M 满足1122||,1507MF MF F =∠=︒.(1)求椭圆C 的标准方程;(2)点P 是椭圆C 的上顶点,点Q ,R 在椭圆C 上,若直线PQ ,PR 的斜率分别为1k ,2k ,满足1234k k ⋅=,求PRQ ∆面积的最大值.解:(1)依题意得:3c =,12||223F F c == 由椭圆定义知12||||2MF MF a +=, 又12||7MF =,则22||27MF a =-, 在△12MF F 中,12150MF F ∠=︒,由余弦定理得:22221121121||||||2||||cos MF MF F F MF F F MF F =+-⋅∠,即222222(2)()(23)223cos150777a -=+-⨯⨯︒,解得2a =,又2221b a c =-=,故所求椭圆方程为2214x y +=.(2)设1(Q x ,1)y ,2(R x ,2)y ,直线:QR y kx m =+,联立方程组直线方程与椭圆方程,得222(14)8440k x kmx m +++-=, △222222644(44)(14)16(14)0k m m k k m =--+=+->,得2214k m +>,122814kmx x k -+=+,21224414m x x k -=+, 22121212121212121211(1)(1)(1)()(1)34y y kx m kx m k x x k m x x m k k x x x x x x --+-+-+-++-⋅=⋅===,由题意知1m ≠,由122814kmx x k-+=+,21224414m x x k -=+,代入化简得: 2224(1)8(1)(41)3(1)0k m k m m k m +-+-+-+=, 故2m =-,故直线QR 过定点(0,2)-, 由△0>,解得234k >, 221222134436433||221414PQRk k S x x k k ∆--=⨯-=⋅=++, 令2430t k =->,则2663442PQR t S t t t∆==++, 当且仅当2t =,即72k =±时等号成立, 所以PRQ ∆面积的最大值为32. 5.已知椭圆3222:1(0)x y C a b a b+=>>的离心率为33,且椭圆C 上的点到焦点距离的最大值为31+.(1)求椭圆C 的方程;(2)设椭圆3222:9x y E a b+=,P 为椭圆C 上任意一点,过点P 的直线l 交椭圆E 于A ,B 两点,射线OP 交椭圆E 于点Q . (ⅰ)证明:AQP AOPS S ∆∆为定值;(ⅱ)求ABQ ∆面积的最大值.解:(1)由题意可知2221c a a c a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得:1a b c ⎧=⎪⎪=⎨⎪=⎪⎩∴椭圆C 的方程为:22132x y +=.(2)()i 证明:设0(P x ,0)y ,令(0)OQ OP λλ=>, 则0(Q x λ,0)y λ,由2200222200132932x y x y λλ⎧+=⎪⎪⎨⎪+=⎪⎩,得3λ=, ∴00||2||AQP AOPS x x QP S OP x λ∆∆-===为定值. ()ii 由()i 知2AQP AOP S S ∆∆=,同理2BQP BOP S S ∆∆=,2AQB AOB S S ∆∆∴=,设1(A x ,1)y ,2(B x ,2)y ,①当直线l 斜率存在时,设直线l 方程为y kx m =+, 代入椭圆E 的方程得:222(23)63540k x mkx m +++-=,122623kmx x k ∴+=-+,212235423m x x k -=+,1211|||||22AQBS m x x m ∆∴=-=AQBS ∆∴=将直线:l y kx m =+代入椭圆C 的方程得:222(23)6360k x mkx m +++-=, 直线l 与椭圆C 有公共点,∴由△0得:2223k m +,令2223m t k =+,则(0t ∈,1], 243AQB S ∆∴,②当直线l 的斜率不存在时,设直线l的方程为[x n =∈,代入椭圆E 方程得:222183y n =-,4121||||432AQB S n y y ∆∴=-,综合①②得,ABQ ∆面积的最大值为所以ABQ ∆面积的最大值为直线1l 斜率为(0)k k ≠,直线2l 的斜率为k '.(1)若直线1l ,2l 关于直线y x =对称,证明:kk '为定值; (2)已知点(2,0)A ,当01k <<时,求APM ∆面积的最大值. 证明:(1)设1l 与y 轴的交点为(0,)m , 因为0k ≠,所以1m ≠,因为1l ,2l 关于直线y x =对称,所以2l 与x 轴的交点为(,0)m , 于是11m k -=-,1111111m k kk m m ---''=⇒=⨯=---, 所以kk '为定值1.解:(2)设直钱1l 的方程为:1(01)y kx k k =+-<<,联立方程组221230y kx kx y =+-⎧⎨+-=⎩,消去y 得:222(21)4(1)2410k x k k x k k ++-+--=, ∴△2222216(1)4(21)(241)4(21)0k k k k k k =--+--=+>,∴||PM == 点(2,0)A 到直线1l 的距离d =,∴22221(21)(1)231333||11112212121222APMk k k k k S PM d k k k k k∆++++====+=++++++,因为01k <<,所以当且仅当12k k=,即k =时,上式取等号,所以k 时,APM ∆.。
高中数学圆锥曲线(椭圆、双曲线、抛物线)经典习题

高中数学圆锥曲线(椭圆、双曲线、抛物线)经典习题1.已知圆$x^2+y^2-6x-7=0$与抛物线$y^2=2px(p>0)$的准线相切,则抛物线方程为$y^2=8x$。
2.与双曲线$2x^2-2y^2=1$有公共焦点,离心率互为倒数的椭圆方程为$\dfrac{x^2}{9}+\dfrac{y^2}{16}=1$。
3.方程$k-\dfrac{35}{k}+\dfrac{x^2}{y^2}=1$表示双曲线,则$m$的取值范围是$(-\infty,-7)\cup(0,7)$。
4.经过点$M(3,-2),N(-2,3)$的椭圆的标准方程是$\dfrac{x^2}{16}+\dfrac{y^2}{9}=1$。
5.与双曲线$x^2-y^2=53$有公共渐近线且焦距为8的双曲线方程为$\dfrac{x^2}{16}-\dfrac{y^2}{9}=1$。
6.过点$P(-2,4)$的抛物线的标准方程为$y=\dfrac{1}{8}(x+2)^2$。
7.以$\dfrac{x^2}{4}-\dfrac{y^2}{12}=-1$的上焦点为顶点,下顶点为焦点的椭圆方程为$\dfrac{x^2}{16}+\dfrac{y^2}{48}=1$。
重点二:1.椭圆$16x+25y=400$的焦点为$F_1,F_2$,直线$AB$过$F_1$,则$\triangle ABF_2$的周长为$10$。
2.动圆的圆心在抛物线$y^2=8x$上,且动圆恒与直线$x+2=0$相切,则动圆必过定点$(-1,2)$。
3.椭圆$\dfrac{x^2}{25}+\dfrac{y^2}{9}=1$上的一点$M$到左焦点$F_1$的距离为$2$,$N$是$MF_1$的中点,则$ON=\dfrac{4}{3}$。
4.设椭圆$\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1$和双曲线$\dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}=1$有公共焦点$F_1,F_2$,点$P$是两曲线的一个公共点,则$\cos\angleF_1PF_2=\dfrac{3}{5}$。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
椭圆
1、已知椭圆1m
5x 2
2=+y 的离心率为510,则m 的值为( ) A 、3 B 、153155或 C 、5 D 、33
25或 2、若椭圆)0(1x 22
22>>=+b a b
y a 的离心率为0.5,右焦点为F (c ,0),方程022=++c bx ax 的两个实数根分别为21x x 和,则点P (21x x ,)到原点的距离为( )
A 、2
B 、27
C 、2
D 、4
7 3、已知椭圆的长轴长是短轴长的3倍,则椭圆的离心率等于( )
A 、31
B 、3
2 C 、322 D 、310 4、若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是( )
A 、54
B 、53
C 、52
D 、5
1 5、椭圆19
25x 2
2=+y 的左焦点为1F ,点P 在椭圆上,若线段1PF 的中点M 在y 轴上,则1PF = A 、5
41 B 、59 C 、6 D 、7 6、已知椭圆)019x 222>=+a y a (与双曲线13
4x 2
2=-y 有相同的焦点,则a 的值为( ) A 、2 B 、10 C 、4 D 、10
7、直线x-2y+2=0经过椭圆)0(1x 22
22>>=+b a b
y a 的一个焦点和一个顶点,则该椭圆的离心率为( )
A 、552
B 、21
C 、55
D 、3
2 8、椭圆)0(1x 22
22>>=+b a b
y a 的右焦点为F ,其右准线与x 轴的焦点为A 。
在椭圆上存在点P 满足线段AP 的垂直平分线过点F ,则椭圆离心率的取值范围是( )
A 、⎥⎥⎦⎤ ⎝⎛
22,0, B 、⎥⎦⎤ ⎝⎛210, C 、[)
1,12- D 、⎪⎭⎫⎢⎣⎡121, 9、已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于点D ,且2=,则C 的离心率为___________
10、已知有公共焦点的椭圆与双曲线中心都在原点,焦点在x 轴上,左、右焦点分别为21F F 、,且它们在第一象限的交点为P ,△P 21F F 是以P 1F 为底边的等腰三角形,若1PF =10,双曲线的离心率的值为2,则该椭圆的离心率的值为___________
11、已知21F F 、是椭圆)0(1x 22
22>>=+b a b
y a 的两个焦点,P 为椭圆C 上一点,且1PF 2PF ⊥,若ΔP 21F F 的面积为9,则b=___________
12、在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点21F F 、在x 轴上,离心率为22。
过1F 的直线l 交C 于A 、B 两点,且ΔAB 2F 的周长为16,那么C 的方程为__________
13、已知椭圆G 的中心在坐标原点,长轴在x 轴上,离心率为2
3,且G 上一点到G 的两个焦点的距离之和为12,则椭圆G 的方程为____________________
14、已知椭圆C 的离心率为2
3,且它的焦点与双曲线4222=-y x 的焦点重合,则椭圆C 的方程为____________________
15、已知椭圆C :)0(1x 22
22>>=+b a b
y a 的离心率为23。
双曲线122=-y x 的渐近线与椭圆C 有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C 的方程为_________
16、已知椭圆)01(122
2
>>=+b b y x 的左焦点为F ,左右顶点分别为A 、C ,上顶点为B ,过F ,B ,C 三点作⊙P ,其中圆心P 的坐标为(m ,n )。
(1) 若FC 是⊙P 的直径,求椭圆的离心率;
(2) 若⊙P 的圆心在直线x+y=0上,求椭圆的方程。
17、如图所示,椭圆)0(1x 22
22>>=+b a b
y a 的离心率为55,且A (0,2)是椭圆C 的顶点。
(1) 求椭圆C 的方程;
(2) 过点A 作斜率为1的直线L ,设以椭圆C 的右焦点F 为抛物线E :
px y 22=
(p ﹥0)的焦点,若点M 为抛物线E 上任意一点,求点M 到直线L 距离的最小值。
18、已知椭圆C :)0(1x 22
22>>=+b a b
y a 的长轴长是短轴长的3倍,21F F 、是它的左、右焦点。
(1)若P 的坐标;、求,且2121,40*F F PF PF C ==∈
(2)在(1)的条件下,过动点Q 作以2F 为圆心、以1为半径的圆的切线QM (M 是切点),且使QM QF 21=,求动点Q 的轨迹方程。
19、已知椭圆C :)0(1x 22
22>>=+b a b
y a 的离心率为36,椭圆短轴的一个端点与两个焦点构成的三角形面积为3
25。
(1)求椭圆C 的方程;
(2)已知动直线y=k (x+1)与椭圆C 相交于A 、B 两点。
① 若线段AB 中点的横坐标为-0.5,求斜率k 的值;
②已知点M (3
7-,0),求证:MB MA *为定值。
20、已知椭圆14
2
2=+y x 的左、右两个顶点分别为A 、B 。
曲线C 是以A 、B 两点为顶点,离心率为5的双曲线。
设点P 在第一象限且在曲线C 上,直线AP 与椭圆相交于另一点T 。
(1)求曲线C 的方程;
(2)设P 、T 两点的横坐标分别为1x 、2x ,证明:1x *2x =1;
(3)设△TAB 与△POB (其中O 为坐标原点)的面积分别为1S 与2S ,且
22
21,15*S S -≤求的取值范围。
21、已知椭圆C :)0(1x 22
22>>=+b a b
y a 的离心率为33,以原点为圆心,椭圆短半轴长为半径的圆与直线x-y+2=0相切,A 、B 分别是椭圆的左、右两个顶点,P 为椭圆C 上的动点。
(1)求椭圆的标准方程;
(2)若P 与A ,B 均不重合,设直线PA 与PB 的斜率分别为21k k ,,证明:21*k k 为定值;
(3)M 为过P 且垂直于x 轴的直线上的点,若
λ=OM OP ,求点M 的轨迹方程,并说明轨
迹是什么曲线。