关于物理演示实验报告
物理演示性实验报告

一、实验目的1. 理解光的折射现象。
2. 掌握光的折射定律。
3. 通过实验验证光的折射现象。
二、实验原理光从一种介质进入另一种介质时,会发生速度的变化,从而导致光线的方向发生改变,这种现象称为光的折射。
光的折射定律表明,入射光线、折射光线和法线在同一平面内,入射光线和折射光线分居法线两侧,且入射角与折射角之间存在一定的关系。
三、实验器材1. 折射仪2. 钢尺3. 毛巾4. 纸张5. 针6. 透明塑料板7. 水盆8. 橡皮筋四、实验步骤1. 将透明塑料板放置在桌面上,用针在塑料板上扎一个小孔。
2. 将水盆装满水,将塑料板平放在水面上,使小孔位于水面下方。
3. 将毛巾平铺在桌面上,将折射仪放在毛巾上,使其稳定。
4. 将钢尺的一端插入小孔,另一端与折射仪对齐。
5. 调整折射仪的角度,使入射光线垂直于水面。
6. 观察折射光线在水中的位置,用钢尺测量入射光线和折射光线之间的距离。
7. 重复实验步骤,改变入射角,观察折射光线的变化,记录数据。
8. 将透明塑料板取出,用橡皮筋将钢尺固定在塑料板上。
9. 将塑料板放入水盆中,观察折射光线的位置,用钢尺测量入射光线和折射光线之间的距离。
10. 重复实验步骤,改变入射角,观察折射光线的变化,记录数据。
五、实验数据及分析1. 第一次实验数据:入射角:30°折射角:20°入射光线与折射光线距离:15cm2. 第二次实验数据:入射角:45°折射角:30°入射光线与折射光线距离:20cm3. 第三次实验数据:入射角:60°折射角:40°入射光线与折射光线距离:25cm通过实验数据可以看出,随着入射角的增大,折射角也相应增大,且入射光线与折射光线之间的距离也随之增大。
这符合光的折射定律。
六、实验结论通过本次实验,我们验证了光的折射现象,并掌握了光的折射定律。
实验结果表明,当光从一种介质进入另一种介质时,光线会发生折射,且折射角与入射角之间存在一定的关系。
大学物理课题演示实验报告5篇

大学物理课题演示实验报告5篇大学物理课题演示实验报告 (1)一、实验任务精确测定银川地区的重力加速度二、实验要求测量结果的相对不确定度不超过5%三、物理模型的建立及比较初步确定有以下六种模型方案:方法一、用打点计时器测量所用仪器为:打点计时器、直尺、带钱夹的铁架台、纸带、夹子、重物、学生电源等.利用自由落体原理使重物做自由落体运动.选择理想纸带,找出起始点0,数出时间为t的p点,用米尺测出op的距离为h,其中t=0.02秒×两点间隔数.由公式h=gt2/2得g=2h/t2,将所测代入即可求得g.方法二、用滴水法测重力加速度调节水龙头阀门,使水滴按相等时间滴下,用秒表测出n个(n取50—100)水滴所用时间t,则每两水滴相隔时间为t′=t/n,用米尺测出水滴下落距离h,由公式h=gt′2/2可得g=2hn2/t2.方法三、取半径为r的玻璃杯,内装适当的液体,固定在旋转台上.旋转台绕其对称轴以角速度ω匀速旋转,这时液体相对于玻璃杯的形状为旋转抛物面重力加速度的计算公式推导如下:取液面上任一液元a,它距转轴为_,质量为m,受重力mg、弹力n.由动力学知:ncosα-mg=0(1)nsinα=mω2_(2)两式相比得tgα=ω2_/g,又tgα=dy/d_,∴dy=ω2_d_/g,∴y/_=ω2_/2g.∴g=ω2_2/2y..将某点对于对称轴和垂直于对称轴最低点的直角坐标系的坐标_、y测出,将转台转速ω代入即可求得g.方法四、光电控制计时法调节水龙头阀门,使水滴按相等时间滴下,用秒表测出n个(n取50—100)水滴所用时间t,则每两水滴相隔时间为t′=t/n,用米尺测出水滴下落距离h,由公式h=gt′2/2可得g=2hn2/t2.方法五、用圆锥摆测量所用仪器为:米尺、秒表、单摆.使单摆的摆锤在水平面内作匀速圆周运动,用直尺测量出h(见图1),用秒表测出摆锥n转所用的时间t,则摆锥角速度ω=2πn/t摆锥作匀速圆周运动的向心力f=mgtgθ,而tgθ=r/h所以mgtgθ=mω2r 由以上几式得:g=4π2n2h/t2.将所测的n、t、h代入即可求得g值.方法六、单摆法测量重力加速度在摆角很小时,摆动周期为:则通过对以上六种方法的比较,本想尝试利用光电控制计时法来测量,但因为实验室器材不全,故该方法无法进行;对其他几种方法反复比较,用单摆法测量重力加速度原理、方法都比较简单且最熟悉,仪器在实验室也很齐全,故利用该方法来测最为顺利,从而可以得到更为精确的值。
物理演示实验报告

物理演示实验报告——锥体自由上滚4. 锥体自由上滚一、演示目的1 通过观察与思考双锥体沿斜面轨道上滚的现象,加深了解在重力场中物体总是以降低重心,趋于稳定的规律运动。
2 说明物体具有从势能高的位置向势能低的位置运动的趋势,同时说明物体势能和动能之间的转换。
二、原理本实验的核心在于刚体在重力场中的平衡问题,而自由运动的物体在重力的作用下总是平衡在重力势能极小的位置。
如果物体不是处于重力场中势能极小值状态,重力的作用总是使它往势能减小的方向运动。
本实验演示锥体在斜双杠上自由滚动的现象,巧妙地利用锥体的形状,将支撑点在锥体轴线方向上的移动(横向)对锥体质心的影响同斜双杠的倾斜(纵向)对锥体质心的影响结合起来,当横向作用占主导时,甚至表现为出人意料的反常运动,即锥体会自动滚向斜双杠较高的一端,具体分析如下:首先看平衡(锥体质心保持水平)时锥体的位置,如图1。
AA1端较高,但AA1处两横杆向外测倾斜,较高的支撑有使锥体质心向上移的趋势,而支撑点较宽又使锥体因其中间粗两端细而使质心有向下移动的趋势,两种趋势互相抵消可使锥体在图4所示任何位置都处于平衡状态。
如果此时使AA1稍变宽或使BB1稍变窄,会使锥体在AA1端比在BB1端时质心位置更低,它将总往AA1 (高端)滚动,从B端向A端看,如图2所示。
AA1端处于高宽端,BB1端处于低窄端,若支撑点遇锥面相切位置如图2所示,则当锥体滚动时,质心在水平面内运动,锥体处于平衡状态。
设BB1端固定,AA1端宽度一定,只调节其高度,则AA1端下降,将会出现由平衡状态上滚的现象。
AA1端至多下降到BB1端所在水平面上,不过此时滚动虽明显,但“往上”不明显。
故本实验装置高低宽窄布局要适度,使AA1端比平衡位置略低,锥体能自动滚动即可。
三、装置双锥体,V字形斜面轨道四、现象演示把双圆锥体放在V字形轨道的低端(即闭口端),松手后锥体便会自动的滚上这个斜坡,到达高端(即开口端)后停止。
物理演示实验报告(共4篇)

物理演示实验报告(共4篇)1、锥体上滚实验目的:1.通过观察与思考双锥体沿斜面轨道上滚的现象,使学生加深了解在重力场中物体总是以降低重心,趋于稳定的运动规律。
2.说明物体具有从势能高的位置向势能低的位置运动的趋势,同时说明物体势能和动能的相互转换。
实验仪器:锥体上滚演示仪实验原理:能量最低原理指出:物体或系统的能量总是自然趋向最低状态。
本实验中在低端的两根导轨间距小,锥体停在此处重心被抬高了;相反,在高端两根导轨较为分开,锥体在此处下陷,重心实际上降低了。
实验现象仍然符合能量最低原理。
实验步骤:1.将双锥体置于导轨的高端,双锥体并不下滚; 2.将双锥体置于导轨的低端,松手后双锥体向高端滚去;3.重复第2步操作,仔细观察双锥体上滚的情况。
图片已关闭显示,点此查看2、声波可见实验目的:借助视觉暂留演示声波。
实验仪器:声波可见演示仪。
实验原理:不同长度,不同张力的弦振动后形成的驻波基频、协频各不相同,即合成波形各不相同。
本装置产生的是横波,可借助滚轮中黑白相间的条纹和人眼的视觉暂留作用将其显示出来。
实验步骤:1、将整个装置竖直放稳,用手转动滚轮。
2、依次拨动四根琴弦,可观察到不同长度,不同张力的弦线上出现不同基频与协频的驻波。
3、重复转动滚轮,拨动琴弦,观察弦上的波形。
注意事项:1、滚轮转速不必太高。
2、拨动琴弦切勿用力过猛。
图片已关闭显示,点此查看3、弹性碰撞演示仪实验目的:本实验用于演示正碰撞和动量守恒定律,形象地显现弹性碰撞的情形。
实验原理根据动量守恒定律可知,如果正碰撞的两球,撞前速度分别为V10和V20,碰撞后的速度分别为V1和V2,质量分别为m1和m2.则由碰撞定律可知:若e=1时,则分离速度等于接近速度解式和式可得:若m1=m2=m;e=1则v1=0,v2=v10,即球1正碰球2时,球1静止,球2继续以V10的速度正碰球3,等等以此类推,实现动量的传递。
实验器材1、实验装置如实验原理图示:1一底座—支架—钢球—拉线—调节螺丝2、技术指标钢球质量:m=7×0.2kg 直径:l=7×35mm 拉线长度:图片已关闭显示,点此查看L=55Omm实验操作与现象l、将仪器置于水平桌面放好,调节螺丝,使七个钢球的球心在同一水平线上。
大学物理演示实验报告

大学物理演示实验报告摘要:本实验通过一系列物理演示实验,以直观、生动的方式展示了一些物理原理和现象。
在实验中,我们利用了不同的装置和方法,包括倾角计、电磁铁、追踪仪器等,以及一些常见的实验器材,如放大镜、杠杆等。
通过观察和测量,我们验证了一些基础物理概念,并学习了一些实验操作技巧。
引言:大学物理实验作为物理学学习的重要组成部分,对学生的实践能力和理论知识的应用能力都有很高的要求。
物理演示实验是一种直观、生动的教学方法,可以帮助学生更好地理解物理原理和现象。
本文主要介绍了我们进行的一些物理演示实验,以及实验的目的、原理、装置和方法,以及实验结果和结论。
实验一:倾角计实验实验目的:通过倾角计测量物体倾斜角度,验证正、副切线定理。
实验原理:正切定理:在法平面上,对于任意与倾角α相对的斜面,物体所受的摩擦力与物体的重力的比值等于该斜面的正切值tα。
副切线定理:在法平面上,对于任意与倾角α相对的斜面,物体所受的摩擦力与物体的重力的比值等于该斜面的副切值coα。
实验装置和方法:1. 将倾角计放置在待测倾角的斜面上。
2. 调整倾角计,使其与斜面重合。
3. 在倾角计的直角边上放置物体,使其保持平衡。
4. 记录下物体所受的摩擦力和重力,并计算其比值。
实验结果和结论:我们通过倾角计实验,测量了不同斜面上物体所受的摩擦力和重力的比值,并计算了其正切值和副切值。
实验结果与正切定理和副切线定理的预测相吻合,进一步验证了这两个定理。
实验二:电磁铁实验实验目的:通过电磁铁实验,观察磁力的作用,并了解电磁感应现象。
实验原理:当电流通过导线时,会产生磁场。
对于一根直导线,其磁场的方向可以通过安培环法则确定。
当导线被弯曲成螺旋形时,就形成了一个电磁铁。
实验装置和方法:1. 将电磁铁通电,使其产生磁场。
2. 将一根带有铁钉的细线放置在电磁铁附近。
3. 观察铁钉受力的情况,并记录下实验结果。
实验结果和结论:在电磁铁实验中,我们观察到铁钉被吸附在电磁铁上,说明磁场对铁物体具有吸引力。
大学物理演示实验报告

大学物理演示实验报告实验名称:牛顿第二定律的演示实验实验目的:1. 理解牛顿第二定律的基本原理。
2. 掌握质量、力与加速度之间的关系。
3. 通过观察实验现象,培养观察力和分析能力。
实验器材:1. 质量可调的滑块。
2. 弹簧测力计。
3. 不同质量的物体。
4. 细线。
5. 支架。
6. 砝码。
实验步骤:1. 准备实验器材,将滑块、细线、砝码等放置在支架上。
2. 将质量可调的滑块放置在滑板上,调整滑块的质量,使其满足实验要求。
3. 用弹簧测力计测量砝码的质量,并记录数据。
4. 用细线将滑块和砝码连接起来,确保连接稳定。
5. 打开弹簧测力计,使砝码缓慢下落,滑块随之运动,观察实验现象。
6. 改变滑块的质量,重复实验步骤5,观察实验现象的变化。
7. 整理实验器材,结束实验。
实验结果:1. 当砝码下落时,滑块开始运动,且运动速度与砝码的质量成正比。
这表明物体的加速度与作用力成正比,与物体的质量成反比。
2. 当改变滑块的质量时,滑块的加速度也会随之改变,且变化趋势与理论值相符。
这表明实验结果与牛顿第二定律的理论预测一致。
3. 通过观察实验现象,可以发现一些有趣的现象,如滑块的加速度与作用力的变化趋势并不完全一致,这可能与摩擦力、空气阻力等因素有关。
此外,还可以观察到质量对运动的影响,质量越大,加速度越小。
实验总结:通过本次实验,我们更加深入地理解了牛顿第二定律的基本原理,掌握了质量、力与加速度之间的关系。
实验结果与理论预测一致,证明了牛顿第二定律的正确性。
此外,通过观察实验现象,我们还学到了许多关于物理现象的观察和分析方法,提高了我们的观察力和分析能力。
除了本次实验之外,我们还可以通过其他物理演示实验来加深对物理原理的理解。
例如,光的衍射和干涉实验可以让我们更好地理解光的波动性质;静电实验可以让我们了解静电场和电荷的性质;热力学实验可以让我们更好地理解温度、热传递和热力学第一定律等原理。
这些实验不仅可以加深我们对物理原理的理解,还可以提高我们的观察、分析和解决问题的能力。
大学物理演示实验报告完整版

大学物理演示实验报告完整版一、实验目的大学物理演示实验是物理教学的重要组成部分,通过直观的现象和实际操作,帮助我们更好地理解物理原理和规律。
本次演示实验的目的主要包括以下几个方面:1、观察和理解各种物理现象,如力学、热学、电磁学、光学等领域的典型现象。
2、培养我们的观察能力、思考能力和动手能力。
3、激发我们对物理学科的兴趣,提高学习的积极性和主动性。
二、实验仪器在本次演示实验中,我们使用了以下多种仪器和设备:1、牛顿摆:由多个质量相同的金属球通过细线悬挂组成,用于演示动量守恒和能量守恒。
2、静电发生器:能够产生高压静电,展示静电现象,如静电吸引、静电放电等。
3、光学三棱镜:用于分解白光,观察光的色散现象。
4、特斯拉线圈:产生高频高压交流电,产生绚丽的电弧。
5、傅科摆:证明地球自转的装置。
三、实验内容及现象1、牛顿摆实验将牛顿摆的一侧小球拉起一定高度,然后释放。
观察到被拉起的小球撞击另一侧的小球,另一侧只有一个小球被弹起,且弹起的高度几乎与释放时的高度相同。
这一现象表明在理想情况下,动量守恒和能量守恒。
2、静电发生器实验打开静电发生器,当金属球上积累足够的电荷时,我们发现靠近金属球的轻小物体(如纸屑)被吸引。
用手指靠近金属球时,能感受到轻微的电击,同时还能看到静电放电产生的火花。
3、光学三棱镜实验让一束白光通过三棱镜,在屏幕上可以看到白光被分解成红、橙、黄、绿、蓝、靛、紫七种颜色的光带。
这清楚地展示了光的色散现象,说明白光是由不同颜色的光混合而成的。
4、特斯拉线圈实验接通特斯拉线圈的电源,线圈顶部产生强烈的电弧,呈现出美丽的放电现象。
同时,还能听到“滋滋”的放电声。
5、傅科摆实验启动傅科摆,随着时间的推移,可以观察到摆的摆动平面在缓慢地转动,这直观地证明了地球的自转。
四、实验原理1、牛顿摆根据动量守恒定律,当一个小球撞击另一个小球时,它们之间的总动量保持不变。
同时,由于忽略了空气阻力和摩擦等因素,能量也守恒,所以被弹起的小球能达到与释放时相近的高度。
大二物理演示实验报告物理力学演示实验报告

大二物理演示实验报告物理力学演示实验报告导读:想知道物理力学演示实验报告范文?只要看看WTT帮你整理的就可以了。
《物理力学演示实验报告一》今天上午我们很高兴的到理学院参观了大学物理演示实验室,我们参观并亲自操作了一些实验,在这次的演示实验课中,我见到了一些很新奇的仪器和实验,一个个奇妙的实验吸引了我们的注意力,通过奇妙的物理现象感受了伟大的自然科学的奥妙,给我印象深刻地有以下几个实验,在演示实验室,老师首先给我们演示的是锥体上滚实验,其实验原理是:能量最低原理指出:物体或系统的能量总是自然趋向最低状态,本今天上午我们很高兴的到理学院参观了大学物理演示实验室,尽管天气很冷,但是我们的热情很高,毕竟这对我们来说是一个全新的领域,是我们之前从未接触过的东西。
在老师的带领下,我们参观并亲自操作了一些实验。
在这次的演示实验课中,我见到了一些很新奇的仪器和实验,一个个奇妙的实验吸引了我们的注意力,通过奇妙的物理现象感受了伟大的自然科学的奥妙。
给我印象深刻地有以下几个实验。
一.锥体上滚在演示实验室,老师首先给我们演示的是锥体上滚实验。
其实验原理是:能量最低原理指出:物体或系统的能量总是自然趋向最低状态。
本实验中在低端的两根导轨间距小,锥体停在此处重心被抬高了;相反,在高端两根导轨较为分开,锥体在此处下陷,重心实际上降低了。
实验现象仍然符合能量最低原理,其核心在于刚体在重力场中的平衡问题,而自由运动的物体在重力的作用下总是平衡在重力势能极小的位置。
通过这个实验,我们知道了有时候现象和本质完全相反。
二.电磁炮接着我们又做了电磁炮的实验。
电磁炮是利用电磁力代替火药爆炸力来加速弹丸的电磁发射系统,它主要有电源、高速开关、加速装置和炮弹组成。
根据通电线圈磁场的相互作用原理,加速线圈固定在炮管中,当它通入交变电流时,产生的交变磁场就会在线圈中产生感应电流,感应电流的磁场与加速线圈电流的磁场相互作用,使弹丸加速运动并发射出去。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
物理演示实验报告
学院材料科学与工程
专业材料科学与工程
年级2014级
姓名杨林
班级信箱号80
实验时间2016年5月4日星期三晚上
2016年5月10日
实验一锥体上滚
【实验目的】:
1.通过观察与思考双锥体沿斜面轨道上滚的现象,使学生加深了解在重力场中物体总是以降低重心,趋于稳定的运动规律。
2.说明物体具有从势能高的位置向势能低的位置运动的趋势,同时说明物体势能和动能的相互转换。
【实验仪器】:锥体上滚演示仪
图1 锥体上滚演示仪
【实验原理】:
能量最低原理指出:物体或系统的能量总是自然趋向最低状态。
本实验中在低端的两根导轨间距小,锥体停在此处重心被抬高了;相反,在高端两根导轨较为分开,锥体在此处下陷,重心实际上降低了。
实验现象仍然符合能量最低原理。
【实验步骤】:
1.将双锥体置于导轨的高端,双锥体并不下滚;
2.将双锥体置于导轨的低端,松手后双锥体向高端滚去;
3.重复第2步操作,仔细观察双锥体上滚的情况。
【注意事项】:
1.移动锥体时要轻拿轻放,切勿将锥体掉落在地上。
2.锥体启动时位置要正,防止它滚动时摔下来造成变形或损坏。
实验二陀螺进动
【实验目的】:
演示旋转刚体(车轮)在外力矩作用下的进动。
【实验仪器】:陀螺进动仪
图2陀螺进动仪
【实验原理】:
陀螺转动起来具有角动量L,当其倾斜时受到一个垂直纸面向里的重力矩(r×mg)作用,根据角动量原理, 其方向也垂直纸面向里。
下一时刻的角动量L+△L向斜后方,陀螺将不会倒下,而是作进动。
【实验步骤】:
用力使陀螺快速转动,将其倾斜放在支架上,放手后陀螺不仅绕其自转轴转动,而且自转轴还会绕支架旋转。
这就是进动现象。
【注意事项】:
注意保护陀螺,快要停止转动时用手接住,以免掉到地上摔坏。
实验三声波可见
【实验目的】:
借助视觉暂留演示声波;
【实验仪器】:声波可见演示仪
图3 声波可见演示仪
【实验原理】:
不同长度,不同张力的弦振动后形成的驻波基频、协频各不相同,即合成波形各不相同。
本装置产生的是横波,可借助滚轮中黑白相间的条纹和人眼的视觉暂留作用将其显示出来。
【实验步骤】:
1.将整个装置竖直放稳,用手转动滚轮;
2.依次拨动四根琴弦,可观察到不同长度,不同张力的弦线上出现不同基频与协频的驻波;
3.重复转动滚轮,拨动琴弦,观察弦上的波形。
【注意事项】:
1.滚轮转速不必太高。
2.拨动琴弦切勿用力过猛。
实验四普氏摆演示实验
【实验目的】:
了解普氏摆,演示人眼的视觉特点
【实验仪器】:普氏摆演示仪
图4 普氏摆演示仪
【实验原理】:
人之所以能够看到立体的景物,是因为双眼可以各自独立看景物。
两眼有间距,造成左眼与右眼图像的差异称为视差,人类的大脑很巧妙地将两眼的图像合成,在大脑中产生有空间感的视觉效果。
在这个实验中,所用的光衰减镜引起光强的减弱,使分别进入两只眼睛的物光产生距离感,从而感觉出物体的立体感。
将光衰减镜反转180度时,摆球的运动轨迹又发生了改变。
【实验步骤】:
1.拉开摆球,使其在两排金属杆之间的一个平面内摆动;
2. 普氏摆正前方位置观察球摆动的轨迹;
3. 光衰减镜再观察摆球的轨迹,发现摆球按椭圆轨迹转动;
4. 衰减镜反转180度,再观察,发现摆球改变了转动方向。
【注意事项】:
1. 摆球的摆动平面尽量在两排金属杆的中间,避免与金属杆相碰;
2. 观察时双眼均要睁开。
实验五雅格布天梯演示实验
【实验目的】:
通过演示来了解气体弧光放电的原理。
【实验仪器】:雅格布天梯演示仪
图5 雅格布天梯演示仪
【实验原理】:
无论是在稀薄气体、金属蒸汽或大气中,当回路中电流的功率较大时,能够提供足够大的电流,使气体击穿,伴随有强烈的光辉,这时所形成的自持放电的形式是弧光放电。
雅格布天梯是演示高压放电现象的一种装置。
给存在一定距离的两电极之间加上高压,若两电极间的电场达到空气的击穿电场时,两电极间的空气将被击穿,并产生大规模的放电,形成气体的弧光放电。
雅格布天梯中的两电极构成为一梯形,下端间距小,因而场强大。
其下端的空气最先被击穿,产生大量的正负离子,同时产生光和热,即电弧放电。
由于电弧加热(空气
的温度升高,空气就越易被电离, 击穿场强就下降),使其上部的空气也被击穿,形成
不断放电。
结果弧光区逐渐上移,犹如爬梯子一般的壮观。
当升至一定的高度时,由于两电极间距过大,使极间场强太小不足以击穿空气,电极提供的能量不足以补充声、光、热等能量损耗时弧光因而熄灭。
此时高压再次将电极底部的空气击穿,发生第二轮电弧
放电,如此周而复始,形成实验中的现象。
【实验步骤】:
打开电源开关,可看到高压弧光放电沿着“天梯”向上“爬”,同时听到放电声,直到上移的弧光消失,天梯底部将再次产生弧光放电。
【注意事项】:
1.千万做好安全防护,将仪器封闭,不能让人触及仪器,尤其是在工作时;
2.仪器工作时间不能过长,一般不超过3分钟,将自动断电进入保护状态, 稍等一段时间,仪器恢复后方可继续演示。