三极管的基本结构及符号

合集下载

第4章 三极管及放大电路基础1

第4章 三极管及放大电路基础1

与 的关系
IC IC ICBO I E ICBO IC I B ICBO
(1 ) IC I B ICBO
I CBO IC IB 1 1
IE
N
P
N
I'C ICBO IC
IC I B (1 ) ICBO
共射直流电流放大倍数: IC I B 1.7 42.5 0.04 共射交流电流放大倍数: IC I B 2.5 1.7 40 0.06 0.04 说明: 例:UCE=6V时: 曲线的疏密反映了 的大小; IC(mA ) 160mA 电流放大倍数与工作点的位置有关; I 5 140mA CM 120mA 交、直流的电流放大倍数差别不大, 4 100mA 今后不再区别;
3 80mA
___
4. 集电极最大电流ICM 当值下降到正常值的三分之二时的 集电极电流即为ICM。
IC
2.5 2 1.7
1 0 2 4 6 8
IB 40mA
IB=60mA 20mA IB=0 10 UCE(V)
六、主要参数
5. 集-射极反向击穿电压U(BR)CEO 手册上给出的数值是25C、基极开路时的击穿电压U(BR)CEO。 6. 集电极最大允许功耗PCM 集电极电流IC 流过三极管, 所发出的焦耳热为: PC =ICUCE 导致结温 上升,PC 有限制, PCPCM 7. 频率参数

扩散 I C 复合 I B
IC
C
N
IB
P N
EC
或者 IC≈IB
I E IC I B (1 ) I B
EB
E
IE
二、电流放大原理

两种极性的双极型三极管及其符号

两种极性的双极型三极管及其符号

中间部分称为基区,与之相连接的电极称为基极,用B或b表示(Base);一侧称为发射区,与之相连接的电极称为发射极,用E或e表示(Emitter);另一侧称为集电区,与之相连电极称为集电极,用C或c表示(Collector)。

E-B间的PN结称为发射结(Je);C-B间的PN结称为集电结(Jc)。

图2-1-1 两种极性的双极型三极管及其符号双极型三极管的符号在图2-1-1的下方给出,发射极的箭头代表发射极电流的实际方向。

从外表上看,NPN型三极管的两个N区(或PNP型三极管的两个P 区)是对称的,发射极和集电极可以互换。

实际上在制造时,由于发射区的掺杂浓度大,集电区掺杂浓度低,且集电结面积大,基区掺杂浓度低并要制造得很薄,其厚度一般在几个微米至几十个微米,所以发射极和集电极是不能互2.1.2 双极型半导体三极管的电流分配关系双极型半导体三极管在工作时一定要加上适当的直流偏置电压。

若在放大工作状态:发射结加正向电压,集电结加反向电压。

现以NPN型三极管的放大状态为例,来说明三极管内部的电流关系,见图2-1-2。

由图2-1-2可知对于NPN型三极管,集电极电流和基极电流是流入三极管,发射极电流是流出三极管,流进的电流等于流出的电流。

由以上分析可知,发射区掺杂浓度高,基区掺杂浓度低且很薄,是保证三极管能够实现电流放大的关键。

若两个PN结对接,相当基区很厚,将没有电流放大作用,基区从厚变薄,两个PN结演变为三极管,这是量变引起质变的又一个实例。

动画02-1在工艺上要求发射区搀杂浓度高,基区掺杂浓度低且要制作得很薄,集电区掺杂浓度低。

当发射结加正偏时,从发射区将有大量的电子向基区扩散,形成电子的扩散电流I EN,而从基区向发射区扩散的空穴电流I EP却很小,见图2-1-2,图中箭头为载流子的运动方向。

于是有I E= I EN+I EP 且有I EN>>I EP图2-1-2 双极型三极管的电流传输关系因基区掺杂浓度低,所以发射区扩散过来的载流子电子被复合的很少,只形成很小的基极电流I BN。

三极管的外形、结构与符号

三极管的外形、结构与符号

小声音大声音
放大电路
三极管三极管也是基本的半导体器件!
三极管的外形、结构与符号余姚市职成教中心学校
陈雅萍
常用三极管外形
塑料封装
金属封装贴片元件
表面安装的
片状封装
三极管的内部结构
以PNP三极管为例
基区薄且杂质浓度低
发射区是高浓度掺质区
集电结面积大
3个区:基区、集电区、发射区
2个结:发射结、集电结
3个极:基极b、集电极c、发射极e
PNP型三极管的类型与符号
NPN型
PNP 、NPN 型三极管结构示意及图形和文字符号
排列,应查阅产品手册或相关资料,不可凭相像推测,否则容易出错。

三极管的引脚排列依其品种、型号及功能等不同而不同,在使用时若不知其引脚常用三极管的引脚排列
对于90系列三极管:e b c e b c
也可用万用
表进行检测
三极管的外形、结构与符号
1.三极管的基本结构
2个PN结、3个区、3个极
3.三极管的引脚排列
2.三极管的图形符号
90系列。

三极管

三极管

Q点的影响因素有很多,如电源波动、偏
置电阻的变化、管子的更换、元件的老化等等,
不过最主要的影响则是环境温度的变化。三极
管是一个对温度非常敏感的器件,随温度的变 化,三极管参数会受到影响,具体表现在以下 几个方面。
• 1.温度升高,三极管的反向电流增大
• 2.温度升高,三极管的电流放大系数β增大
• 3.温度升高,相同基极电流IB下,UBE减小,
2.2 共射放大电路
一、 放大的概念
电子学中放大的目的是将微弱的变化信号放大成
较大的信号。这里所讲的主要是电压放大电路。
电压放大电路可以用有输入口和输出口的四端网
络表示,如图。
ui
Au
uo
1、放大体现了信号对能量的控制作用,放大的信
号是变化量。
2、放大电路的负载所获得的随信号变化的能量要
比信号本身所给出的能量大得多,这个多出的
②电感视为短路
共射电路的直流通路
用图解法分析放大器的静态工作点
直流负载线 UCE=UCC–ICRC
U CC RC
ICQ
IC Q
IB UCE
与IB所决 定的那一 条输出特 性曲线的 交点就是 Q点
UCEQ UCC
2、动态分析
计算动态参数Au、Ri、Ro时必须依据交流通路。 交流通路:是指ui单独作用(UCC=0)时,电路 中交流分量流过的通路。 画交流通路时有两个要点:
有以下两种。
IC
IB A RB
V
mA C
B E
UBE
RC USC V
UC(1)输入特性曲线
它是指一定集电极和发射极电压UCE下,三极管 的基极电流IB与发射结电压UBE之间的关系曲线。实 验测得三极管的输入特性曲线如下图所示。

三极管种类、符号、参数、结构、原理知识要点汇总

三极管种类、符号、参数、结构、原理知识要点汇总

三极管种类、符号、参数、结构、原理知识要点汇总
三极管的种类
1)低频小功率三极管
特征频率在3MHz以下,功率小于1W,一般作为小信号放大用;
2)高频小功率三极管
特征频率大于3MHz,功率小于1W,主要用于高频振荡、放大电路;
3)低频大功率三极管
特征频率小于3MHz,功率大于1W,低频大功率三极管品种较多,主要用于电子音响设备的低频功率放大电路,在各种大电流输出稳压电源中作为调整管。

4)高频大功率三极管
特征频率大于3MHz,功率大于1W,主要用于通信等设备中进行功率驱动、放大;
5)开关三极管
利用控制饱和区、截止区相互转换而工作的。

开关三极管的开关需要一定的响应时间,开关响应时间的长短表示了三极管开关特性的好坏。

6)差分对管
把两只性能一致的三极管封装在一起,能以最简单的方式构成性能优良的差分放大器;7)复合三级管
复合三级管是分别选用各种极性的三极管进行连接,在组成复合三极管时,不管选用什么样的三极管,这些三极管都按照一定的方式连接,可以看成是一个拥有更高放大倍数的三极管。

组合复合三级管时,应注意第一只管子的发射极电流方向必须与第二只管子的基极电流方向一致。

复合三级管的极性取决以第一只管子。

复合三级管的最大特点是电流放大倍数很高,多用于较大功率输出电路。

晶体三极管的结构、符号、类型

晶体三极管的结构、符号、类型

晶体三极管的结构、符号、类型(一)结构和符号在一块极薄的硅或锗基片上制作两个PN结就构成三层半导体,从三层半导体上各自接出一根导线,就是三极管的三个电极,再封装在管壳里就制成了晶体三极管。

三个电极分别叫做放射极e、基极b、集电极c,对应的每层半导体分别称为放射区、基区、集电区。

放射区与基区交界处的PN结叫放射结,集电区与基区交界处的PN结叫集电结。

依据基区材料是P型还是N型半导体,三极管有NPN型和PNP型两种组合型式。

它们的基本结构如图(a)所示。

三极管的文字符号为"V",图形符号如图(b)和(c)所示。

两种符号的区分在于放射极箭头的方向不同,箭头方向表示放射结加正向电压时的电流方向。

图2是常见的几种国产三极管封装和形状。

功率大小不同的三极管有着不同的体积和封装形式,在晶体管手册中有详细说明。

图1 体管晶体三极管的结构和符号a) 结构b) 符号c) 大功率管外壳集电极早期生产的三极管有的采纳玻璃封装;有些超小型三极管采纳陶瓷环氧封装;绝大多数大、中、小型三极管采纳金属外壳封装;大功率晶体三极管管壳是集电极,通常作成扁平外形并有安装螺钉孔,有的大功率三极管的集电极制成螺栓外形,这样能使三极管和散热器连接一体便于散热。

近年来越来越多的中、小功率三极管采纳硅酮塑料封装。

三极管的制造工艺较多,图2-3和图2-4分别是用合金工艺和平面工艺制作的三极管结构示意图。

不论哪种结构,都必需具有以下共同特点:1. 放射区的掺杂浓度远大于基区掺杂浓度。

2. 基区都做得很薄(约几到几十微米),集电结面积制作得比放射结面积大。

由于在结构上有这些特点,三极管并不等于两个二极管的简洁组合,也不能将放射极和集电极颠倒使用。

图2 几种晶体三极管的形状和封装图3 合金法工艺制作的晶体三极管管芯图4 平面工艺制作的晶体三极管管芯(二)类型型号各种三极管都有自己的型号,根据国家标准GB249-74的规定,国产三极管的型号也是由五个部分组成。

三极管

三极管

N
E EB
PNP VB<VE VC<VB
EC
第一章 半导体二极管、三极管
晶体管放大的条件
发射区掺杂浓度高 1.内部条件 基区薄且掺杂浓度低 I B
集电结面积大 2.外部条件 发射结正偏 集电结反偏
RB
mA A
IC
mA
C B
3DG6
E
IE
EC
晶体管的电流分配和 放大作用
电路条件: EC>EB 发射结正偏 集电结反偏
基极开路
第一章 半导体二极管、三极管
三、极限参数
1. 集电极最大允许电流 ICM
集电极电流 IC上升会导致三极管的值的下降,当值下降到正常值 的三分之二时的集电极电流即为 ICM。 2.反向击穿电压
(1) 集-射极反向击穿电压U(BR)CEO 当集—射极之间的电压UCE 超过一定的数值时,三极管就会被击穿。 手册上给出的数值是25C、基极开路时的击穿电压U(BR) CEO。基极开 路时 C、E极间反向击穿电压。 (2)集电极-基极反向击穿电压U(BR)CBO — 发射极开路时 C、B极间 反向击穿电压。 (3)发射极-基极反向击穿电压U(BR)EBO — 集电极开路时 E、B极间反 向击穿电压。
第一章 半导体二极管、三极管
一、输入特性
iC
iB f (uBE ) u
uCE 0
iB
RB + + uBE

CE常数
与二极管特性相似
RB +

B + RC + 输出 RB E uCE 输入 回路 + uBE + EC 回路 EB IE

iB
C

三极管知识

三极管知识

结构与操作原理三极管的基本结构是两个反向连结的pn接面,如图1所示,可有pnp和npn两种组合。

三个接出来的端点依序称为射极(emitter, E)、基极(base, B)和集极(collector, C),名称来源和它们在三极管操作时的功能有关。

图中也显示出npn与pnp三极管的电路符号,射极特别被标出,箭号所指的极为n型半导体,和二极体的符号一致。

在没接外加偏压时,两个pn接面都会形成耗尽区,将中性的p型区和n型区隔开。

图1 pnp(a)与npn(b)三极管的结构示意图与电路符号。

三极管的电特性和两个pn接面的偏压有关,工作区间也依偏压方式来分类,这里我们先讨论最常用的所谓”正向活性区”(forward active),在此区EB极间的pn接面维持在正向偏压,而BC极间的pn接面则在反向偏压,通常用作放大器的三极管都以此方式偏压。

图2(a)为一pnp三极管在此偏压区的示意图。

EB接面的空乏区由于在正向偏压会变窄,载体看到的位障变小,射极的电洞会注入到基极,基极的电子也会注入到射极;而BC接面的耗尽区则会变宽,载体看到的位障变大,故本身是不导通的。

图2(b)画的是没外加偏压,和偏压在正向活性区两种情形下,电洞和电子的电位能的分布图。

三极管和两个反向相接的pn二极管有什么差别呢?其间最大的不同部分就在于三极管的两个接面相当接近。

以上述之偏压在正向活性区之pnp三极管为例,射极的电洞注入基极的n型中性区,马上被多数载体电子包围遮蔽,然后朝集电极方向扩散,同时也被电子复合。

当没有被复合的电洞到达BC接面的耗尽区时,会被此区内的电场加速扫入集电极,电洞在集电极中为多数载体,很快藉由漂移电流到达连结外部的欧姆接点,形成集电极电流IC。

IC的大小和BC间反向偏压的大小关系不大。

基极外部仅需提供与注入电洞复合部分的电子流IBrec,与由基极注入射极的电子流InB? E(这部分是三极管作用不需要的部分)。

InB? E在射极与与电洞复合,即InB? E=I Erec。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档