14二极管和三极管
三极管和二极管

三极管和二极管一、介绍三极管和二极管二极管是一种电子元件,它有两个电极,分别为阳极和阴极。
在正向电压下,电流可以流过二极管,而在反向电压下,电流将被阻止。
因此,二极管通常用于整流器、稳压器和信号检测等应用中。
三极管是另一种电子元件,它由三个区域组成:发射区、基区和集电区。
基区控制从发射区到集电区的电流。
当正向偏置时,三极管可以工作在放大器模式下;当反向偏置时,它可以工作在开关模式下。
三极管通常用于放大器、开关和振荡器等应用中。
二、二极管的类型1. 硅二极管硅二极管是最常见的类型之一。
它有一个PN结,并且具有高的热稳定性和低的漏电流。
2. 锗二极管锗二极管比硅二极管更早被发明,并且具有较低的噪声水平和较高的灵敏度。
但是,锗材料对温度变化非常敏感。
3. 高速二极管高速二极管具有非常短的恢复时间,可以快速地从导通到截止转换。
它们通常用于高频应用中。
4. 肖特基二极管肖特基二极管是一种非常快速的二极管,它具有低的反向电流和较小的开关时间。
它们通常用于高频应用中。
三、三极管的类型1. NPN三极管NPN三极管是最常见的类型之一。
在正向偏置时,电流从发射区流向集电区。
当基区被注入电流时,它将控制从发射区到集电区的电流。
2. PNP三极管PNP三极管与NPN三极管相似,但是在正向偏置时,电流从集电区流向发射区。
当基区被注入电流时,它将控制从集电区到发射区的电流。
3. 功率三极管功率三极管可以处理大量功率并能够承受高压和高温度。
它们通常用于放大器、开关和变换器等应用中。
4. 双极性晶体管(BJT)BJT是一种双向传输器件,可以作为放大器或开关使用。
它由两个PN 结组成,其中一个是NPN结,另一个是PNP结。
四、应用1. 二极管的应用(1)整流器:二极管可以将交流电转换为直流电。
(2)稳压器:二极管可以用作稳压器的关键元件。
(3)信号检测:二极管可以检测并放大无线电频率信号。
2. 三极管的应用(1)放大器:三极管可以放大电路中的信号。
二极管和三极管原理

二极管和三极管原理二极管原理:二极管是一种有两个电极(即阴极和阳极)的半导体器件。
它基于PN结的特性,PN结是由P型半导体和N型半导体直接相接而形成的结构。
在正向偏置电压下,P型半导体为正极,N型半导体为负极,形成正向电流。
而在反向偏置电压下,P型半导体为负极,N型半导体为正极,形成反向电流。
二极管的主要原理是PN结的单向导电性。
当二极管正向偏置时,P区与N区之间的电子就会向前移动,同时空穴则向后移动,形成正向电流。
而在反向偏置时,由于PN结上有一个势垒,阻碍了电子和空穴的移动,所以几乎没有电流通过。
因此,二极管可以用来控制电流的流向。
二极管的特性使其在电子设备中有广泛的应用。
例如,它可以用作整流器,将交流电转换为直流电。
当正弦波信号通过二极管时,只有正半周期能通过,负半周期将被阻止,从而将交流电转换为直流电。
此外,二极管还可用于稳压电路、振荡器等。
三极管原理:三极管是一种三个电极(即基极、发射极和集电极)的半导体器件。
它是由两个PN结(即P型和N型)组成的。
PNP型和NPN型是两种常见的三极管。
PNP型的集电极和基极为负极,发射极为正极;NPN型的集电极和基极为正极,发射极为负极。
三极管的原理是基于PNP或NPN结的放大作用。
当三极管的基极接受到一个小信号电流时,这个电流通过PN结的放大作用,导致大量的电子或空穴流向集电极。
这样,三极管就能够将小信号放大成大信号。
具体来说,当三极管处于截止状态时,集电极和发射极之间的电流非常小。
当三极管处于饱和状态时,集电极和发射极之间的电流非常大。
通过控制基极电流的大小,可以在截止和饱和之间控制三极管的工作状态,从而实现对信号的放大。
三极管具有放大、开关、振荡等功能,因此在电子电路中有广泛的应用。
例如,三极管可以用于构建放大器,将小信号放大到足够大的程度。
此外,它还可以用于逻辑门电路、时钟发生器等。
二极管和三极管试题及答案

题目编号:13879 知识点:14二极管和三极管题型:单项选择题难度:中半导体的导电能力()。
A. 与导体相同B. 与绝缘体相同C. 介乎导体和绝缘体之间【答案】C======================================================================题目编号:13880 知识点:14二极管和三极管题型:单项选择题难度:中当温度升高时,半导体的导电能力将()。
A. 增强B. 减弱C. 不变【答案】A======================================================================题目编号:13881 知识点:14二极管和三极管题型:单项选择题难度:中P型半导体中空穴数量远比电子多得多,因此该半导体应()。
A. 带正电B. 带负电C. 不带电【答案】C======================================================================题目编号:13882 知识点:14二极管和三极管题型:单项选择题难度:中. N 型半导体的多数载流子是电子,因此它应()。
A. 带负电B.带正电C.不带电【答案】C======================================================================题目编号:13883 知识点:14二极管和三极管题型:单项选择题难度:中将PN 结加适当的正向电压,则空间电荷区将()。
A.变宽B. 变窄C. 不变【答案】B======================================================================题目编号:13884 知识点:14二极管和三极管题型:单项选择题难度:中. 将PN结加适当的反向电压,则空间电荷区将()。
三极管检波和二极管检波

三极管检波和二极管检波三极管检波和二极管检波都是无线电通信中用于检测调制在高频信号上的低频信号(即信息)的方法。
以下是这两种检波方式的区别:
1. 工作原理:三极管检波的工作原理是利用三极管的放大作用,将高频信号通过三极管放大后,再将其输出到负载上。
而二极管检波则是利用二极管的单向导电性,将高频信号通过二极管整流后,输出低频信号。
2. 输出信号:由于三极管具有放大作用,因此三极管检波的输出信号幅度较大,可以驱动较大的负载。
而二极管检波的输出信号幅度较小,通常需要经过放大器进行放大后才能驱动较大的负载。
3. 响应速度:由于三极管内部存在电荷移动,因此三极管检波的响应速度较慢,无法适应高速信号的检波。
而二极管检波的响应速度较快,可以适应高速信号的检波。
4. 适用场景:三极管检波适用于需要放大低频信号的场景,例如音频信号的放大。
而二极管检波适用于需要高速响应的场景,例如通信、雷达等。
综上所述,三极管检波和二极管检波各有其特点,具体选择哪种检波方式需要根据实际需求来决定。
二极管及三极管的接法

1、三极管的管脚顺序要接正确,像8050的,有字的面朝自己,
分别是ebc;
2、电解电容极性要接正确,外壳有标负极;
3、led的极性也要正确,管脚长的,或是小三角的是正极;
4、滑动变阻器的顺序要正确,调节脚和固定脚要一致;
〔三极管有NPN和PNP两个类型,它们的三个管脚分别为:集电极c、基极b、发射极e,三个管脚接线:NPN型管,集电极c和基极b, 与电源正端连接,发射极e,与电源负端连接〔相当于接地,通常规定电源负端的电位为零,称为地〞〕;PNP型管,集电极c和基极b, 与电源负端连接,发射极e,与电源正端连接。
以上是三极管根本工作电路。
另外,三极管还有三种放大电路:即共发射极放大电路,共基极放大电路,共集电极放大电路。
〕
PNP
发光二极管正负极的判断〔肉眼观察灯头较小的是正极稍大的是负极〕。
常用二极管三极管参数

常用二极管三极管参数1. 正向电压降(Forward Voltage Drop):即二极管在正向导通时的电压降。
不同类型和材料的二极管正向电压降不同,一般为0.1V到1V之间。
2. 反向电压(Reverse Voltage):即二极管在反向施加电压时可以承受的最大电压,超过该电压则会发生击穿。
3. 正向电流(Forward Current):即二极管在正向导通时通过的电流。
不同类型和材料的二极管正向电流不同,一般为几十mA到几百mA。
4. 反向漏电流(Reverse Leakage Current):即二极管在反向施加电压时的漏电流。
一般来说,漏电流越小,二极管的质量越好。
5. 反向击穿电压(Reverse Breakdown Voltage):即二极管在反向施加电压时发生击穿的最小电压。
不同类型的二极管反向击穿电压不同。
常用三极管参数:1. 最大正向电流增益(Max Forward Current Gain):即三极管在正向工作状态下电流放大的倍数。
这个数值越大,三极管的放大效果越好。
2. 最大反向漏电流(Max Reverse Leakage Current):即三极管在反向工作状态下的漏电流。
这个数值越小,三极管的质量越好。
3. 最大集电结(Collector Junction)饱和电压(VCEsat):即三极管在饱和状态下集电极和发射极之间的电压降。
通常情况下,饱和电压应尽可能低,以确保三极管能够有效地导通。
4. 最大集电极电流(Max Collector Current):即三极管所能承受的最大集电电流。
超过这个数值将导致三极管的击穿和损坏。
5. 最大功耗(Max Power Dissipation):即三极管所能承受的最大功率。
超过这个数值将导致三极管过热并可能损坏。
以上介绍了二极管和三极管的常见参数,这些参数的理解和掌握对于选择合适的二极管和三极管,以及正确设计和应用电路非常重要。
二极管与三极管的简单测试一、实验目的-中山火炬职业技术学院

一、实验目的: 1、常用二极管的类型及简单测试方法, 2、常用三极管的类型及简单测试方法, 3、指针万用表和数字万用表测试二极管及三极管的方法。
二、实验器材:二极管、三极管[实验箱提供]若干,指针万用表,数字万用表
三、预习要求: 1.PN 结的伏安特性曲线,外电压对耗尽层的宽窄的影响,耗尽层宽窄对电阻大小的影响 2.二极管的伏安特性曲线,网络搜索二极管资料 3.三极管的输入输出特性曲线,网络搜索三极管资料
四、实验内容及步骤 1、指针万用表测量二极管三极管的要点。 将刻度旋钮置于电阻×100 欧姆档,此时万用表等效为电压源与电阻串联,黑表笔为高电位,红表笔为
低电位,电流从黑表笔流出,流入红表笔,表头指针偏转的角度代表流过表笔电流的大小。 电阻量程值小,则内阻小,提供电流较大,量程值大,则内阻大,提供的电流较小。 指针万用表处于电阻档时会消耗电源,不用时旋钮处于 OFF 档或 AC 最高电压档。 2、数字万用表测试二极管及三极管的要点。 将刻度旋钮置于二极管档位,此时红表笔为高电位,黑表笔为低电位,连接正确情况下,屏幕显示值
为什么?
五、思考题 从外加电场对 PN 结耗尽层宽窄影响的角度分析实验现象? 如何用简单的方法判断常见半导体二极管、三极管的好坏?
-3-
向导通,角度小或者几乎观察不到,表明流过 PN 结的电流微弱。(注意:稳压管的测试现象)
万用表(电阻档等效为实际电压源)和二极管构成回路,根据表笔电流的流向及 PN 结电流的流向,判
别出二极管或三极管的 P 极和 N 极。
中山火炬职业技术学院电子工程系
测试小结:
模拟电子线路实践教程
(2)发光二极管的测试(指针万用表、发光二极管) A、测试依据:发光亮度与流过 PN 结的电流成正比。 B、指针万用表刻度指向×10 或 1 欧姆档,红黑表笔交换测试发光二极管,观察发光亮度与指针偏转角
三极管二极管的工作原理

三极管二极管的工作原理
三极管和二极管都是半导体器件,其工作原理可简要描述如下:
二极管(Diode)工作原理:
二极管是由P型和N型半导体材料结合而成的,其结构仅有
两个电极:正向极(P型)和反向极(N型)。
当外加电压为
正向时,即正向偏置,使得正向极较高,反向极较低,会形成电场,导致电子从N区域向P区域流动。
这称为正向导通,
二极管呈低阻状态,电流能够通过。
当外加电压为反向时,即反向偏置,使得反向极较高,正向极较低,电场会阻止电子的流动。
这称为反向截止,二极管呈高阻状态,电流不能通过。
二极管的主要功能是将电流限制为单向流动。
三极管(Transistor)工作原理:
三极管由两个P型层夹着一个N型层或者两个N型层夹着一
个P型层构成。
其结构中分为三个区域:发射区(Emitter)、基区(Base)和集电区(Collector)。
发射和集电区域都是高
掺杂的,基区是轻掺杂的。
在正常工作时,基区是非常薄的,在发射极加正向电压,即正向偏置时,NPN三极管中的正向
电流流动进入基极,使得基极接收到较高的电流,这会导致内部电子向发射极流动。
此时,基极-发射极间出现少量的电子流,称为小电流放大作用,由于集电端的电压较高,使得收集到的电子在集电极产生高电流增益。
如果把基区与发射区之间的PN结反向偏置,NPN三极管就处于截止状态,不会有电流通过。
三极管的基区控制了发射区和集电区之间的电流,因此起到了放大信号的作用。
总的来说,二极管主要用于单向电流的导通和截止,而三极管则可以通过控制基极电流来实现电流放大的功能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
半导体的导电特性
半导体semiconductor:导电能力介于导体和绝缘体 之间的材料。 常见的半导体材料有硅、锗、硒及许多金属的氧化 物和硫化物等。半导体材料多以晶体的形式存在。 半导体材料的特性:
1. 纯净半导体的导电能力很差; 2. 温度升高——导电能力增强; 3. 光照增强——导电能力增强; 4. 掺入少量杂质——导电能力增强。
自由电子和空穴都称为载流子。 自由电子和空穴成对地产生的同时,又不断复
合。在一定温度下,载流子的产生和复合达到动态 平衡,半导体中载流子便维持一定的数目。
注意: (1) 本征半导体中载流子数目极少, 其导电性能很差; (2) 温度愈高, 载流子的数目愈多,半导体的导电性能
也就愈好。所以,温度对半导体器件性能影响很大。
P IF
内电场 N
外电场
+–
内电场被
削弱,多子 的扩散加强, 形成较大的 扩散电流。
PN 结加正向电压时,PN结变窄,正向电流较 大,正向电阻较小,PN结处于导通状态。
2. PN 结加反向电压(反向偏置) P接负、N接正
PN 结变宽
--- - -- --- - -- ---- - -
+++ +++ +++
(a. 电子电流、b.空穴电流)
§PN结(PN junction)
不论是P型半导体还是N型半导体,都只能看做是一 般的导电材料,不具有半导体器件的任何特点。
半导体器件的核心是PN结,是采取一定的工艺措施 在一块半导体晶片的两侧分别制成P型半导体和N型 半导体,在两种半导体的交界面上形成PN结。
各种各样的半导体器件都是以PN结为核心而制成 的,正确认识PN结是了解和运用各种半导体器件 的关键所在。
本征半导体
完全纯净的、具有晶体结构的半导体,称为本征 半导体。
价电子
Si
Si
共价健
Si
Si
晶体中原子的排列方式
硅单晶中的共价健结构
共价键中的两个电子,称为价电子。
自由电子 本征半导体的导电机理
价电子在获得一定能量
(温度升高或受光照)后,
Si
Si
即可挣脱原子核的束缚,成 为自由电子(带负电),同
时共价键中留下一个空位,
半导体二极管图片
伏安特性
特点:非线性
I
反向击穿 电压U(BR)
反向电流 在一定电压 范围内保持 常数。
P– + N 反向特性
外加电压大于反向击 穿电压二极管被击穿, 失去单向导电性。
正向特性
P+ – N
导通压降
硅0.6~0.8V 锗0.2~0.3V
U
死区电压
硅管0.5V, 锗管0.1V。
外加电压大于死区 电压二极管才能导通。
根据二极管的功能 分为检波、整流、开关、 变容、发光、光敏、触发及隧道二极管等; 根据二极管的功率特性 分为小功率、大功率 二极管等;
…… ……
半导体二极管的型号
国家标准对半导体器件型号的命名举例如下:
2AP9
用数字代表同类器件的不同规格。 代表器件的类型,P为普通管,Z为整流管,K为开关管。 代表器件的材料,A为N型Ge,B为P型Ge, C为N 型Si, D为P型Si。 2代表二极管,3代表三极管。
(2) 电压温度系数u
环境温度每变化1C引起稳压值变化的百分数。
(3) 动态电阻 rZ
UZ IZ
rZ愈小,曲线愈陡,稳压性能愈好。
(4) 稳定电流 IZ 、最大稳定电流 IZM
(5) 最大允许耗散功率 PZM = UZ IZM
光电二极管
反向电流随光照强度的增加而上升。
I U
符号
照度增加
发光二极管
若 V阳 >V阴或 UD为正( 正向偏置 ),二极管导通
若 V阳 <V阴或 UD为负( 反向偏置 ),二极管截止
如图由RC构成微分电路, ui
当输入电压ui为矩形波时,试 U
画出输出电压uo的波形。(设uc0
=U0)
o
t
uR
C
D
o
t
ui
R uR RL uo
uo
o
t
C
例1: D
A +
3k
6V
UAB
N型半导体和 P 型半导体
在本征半导体中掺入微量的杂质(某种元素), 形成杂质半导体。 在常温下即可
变为自由电子 掺入五价元素
Si
Si
pS+i
Si
多
掺杂后自由电子数目
余 大量增加,自由电子导电
电 成为这种半导体的主要导
子 电方式,称为电子半导体
或N型半导体。
失去一个 电子变为 正离子
磷原子
在N 型半导体中自由电子 是多数载流子,空穴是少数
载流子。
N型半导体和 P 型半导体
Si
Si
BS–i
Si
硼原子 接受一个 电子变为 负离子
掺入三价元素 空穴 掺杂后空穴数目大量
增加,空穴导电成为这 种半导体的主要导电方 式,称为空穴半导体或 P型半导体。 在 P 型半导体中空穴是多 数载流子,自由电子是少数载 流子。
无论N型或P型半导体都是中性的,对外不显电性。
光电二极管 发光二极管
有正向电流流过时,发出一定波长范围的光,目
二极管的单向导电性
1. 二极管加正向电压(正向偏置,阳极接正、阴 极接负 )时, 二极管处于正向导通状态,二极管正 向电阻较小,正向电流较大。
2. 二极管加反向电压(反向偏置,阳极接负、阴 极接正 )时, 二极管处于反向截止状态,二极管反 向电阻较大,反向电流很小。
3. 外加电压大于反向击穿电压二极管被击穿,失 去单向导电性。
结电容小、正 向电流小。用 于检波和变频 等高频电路。
(b)面接触型 结面积大、
正向电流大、 结电容大,用 于工频大电流 整流电路。
(c) 平面型 用于集成电路制作工艺中。PN结结面积可大可
小,用于高频整流和开关电路中。
半导体二极管
二极管的结构示意图
金属触丝 N型锗片
阳极引线 二氧化硅保护层
阳极引线
稳压二极管
1. 符号
2. 伏安特性
I
_+
稳压管正常工作
时加反向电压ຫໍສະໝຸດ UZOU稳压管反向击穿后,
电流变化很大,但其
两端电压变化很小, 利用此特性,稳压管
UZ
IZ
IZ IZM
在电路中可起稳压作 用。
使用时要加限流电阻
稳压管的使用:
稳压管工作于反向击穿区, 常见电路如下。
R
Ui
Uo RL
I (mA)
12V
–
B
电路如图,求:UAB
取 B 点作参考点, 断开二极管,分析二 极管阳极和阴极的电 位。
V阳 =-6 V V阴 =-12 V V阳>V阴 二极管导通 若忽略管压降,二极管可看作短路,UAB =- 6V 否则, UAB低于-6V一个管压降,为-6.3V或-6.7V
在这里,二极管起钳位作用。
例2: D2
学会用工程观点分析问题,就是根据实际情况, 对器件的数学模型和电路的工作条件进行合理的近 似,以便用简便的分析方法获得具有实际意义的结 果。
对电路进行分析计算时,只要能满足技术指标, 就不要过分追究精确的数值。
器件是非线性的、特性有分散性、RC 的值有误 差、工程上允许一定的误差、采用合理估算的方法。
D1
3k 6V
12V
求:UAB
两个二极管的阴极接在一起
A +
取 B 点作参考点,断开二极
UAB 管,分析二极管阳极和阴极 – B 的电位。
V1阳 =-6 V,V2阳=0 V,V1阴 = V2阴= -12 V UD1 = 6V,UD2 =12V ∵ UD2 >UD1 ∴ D2 优先导通, D1截止。 若忽略管压降,二极管可看作短路,UAB = 0 V
形成空间电荷区
扩散的结果使
空间电荷区变宽。
扩散和漂移
这一对相反的 运动最终达到 动态平衡,空 间电荷区的厚 度固定不变。
PN结的单向导电性
1. PN 结加正向电压(正向偏置) P接正、N接负
PN 结变窄
---- - - ---- - - ---- - -
+ + ++ + + + + ++ + + + + ++ + +
半导体的导电特性
半导体的导电特性: 热敏性:当环境温度升高时,导电能力显著增强
(可做成温度敏感元件,如热敏电阻)。
光敏性:当受到光照时,导电能力明显变化 (可做 成各种光敏元件,如光敏电阻、光敏二极 管、光敏三极管等)。
掺杂性:往纯净的半导体中掺入某些杂质,导电 能力明显改变(可做成各种不同用途的半导 体器件,如二极管、三极管和晶闸管等)。
一般是二极管反向击穿电压UBR的一半或三分之二。 二极管击穿后单向导电性被破坏,甚至过热而烧坏。
3. 反向峰值电流IRM 指二极管加最高反向工作电压时的反向电流。反
向电流大,说明管子的单向导电性差,IRM受温度的 影响,温度越高反向电流越大。硅管的反向电流较小, 锗管的反向电流较大,为硅管的几十到几百倍。
阴极引线
( a) 点接触型 外壳
铝合金小球 N型硅
阳极引线
PN结 金锑合金
底座
N型硅 阴极引线
(c ) 平面型
P 型硅
阳极 D 阴极
阴极引线
( d) 符号
( b) 面接触型