差分放大电路四种接法

合集下载

6.2差分

6.2差分

(3) 差分电路的共模增益
Avc2 β2 ( Rc2 // Ri2 ) 0.3 rbe Rb1 (1 β2 )2( Re1 Re2 )
1 1 vic (vi1 vi2 ) (5mV 0) 2.5mV 2 2
共模输入电压
vO vO2 Av 2 ( Avd2 vid Avc2 vic ) Av 2 [50 5 ( 0.3) 2.5] ( 3.9) 972mV
1 ( Rc ∥ RL ) Ad 2 Rb rbe
Ri 2( Rb rbe ),Ro Rc
1.双端输入单端输出:共模信号作用下的分析
( Rc ∥ RL ) Ac Rb rbe 2(1 ) Re
1 ( Rc ∥ RL ) Ad 2 Rb rbe
例如
假设
Au1 = 100, Au2 = 100 Au = 10000
Rb1
Rc1 T1 Re1
Re2 T2
+ VCC + uo
若输出有1 V的漂移 + 电压 。 ui — 则等效输入有100 uV的漂移电压 等效 100 uV
- VEE
漂移 1V
3. 减小零漂的措施 用非线性元件进行温度补偿
采用差动放大电路
求: (1) I C 3、 I C2、 I E、 VCE3、 VCE2
及 Re2的 值; ( 2) Av Avd2 Av 2 ; ( 3)当 vi 5mV 时 ,vO ?
(4)当输出接一个12k负载 时的差模电压增益. 0 ( 12V ) 解: (1)静态 I C3 1mA Rc3
问题讨论: (1)UOQ产生的原因? (2)如何减小共模输出 电压? 静态时的值 测试: 差模输出

差分运放

差分运放

差分接法:差分放大电路(图3.8a.4)的输入信号是从集成运放的反相和同相输入端引入,如果反馈电阻RF等于输入端电阻R1 ,输出电压为同相输入电压减反相输入电压,这种电路也称作减法电路。

图3.8a.4 差分放大电路差分放大器如图所示,通过采用两个输入,该差分放大器产生的输出等于U1和U2之差乘以增益系数运算放大器的单电源供电方法梦兰大部分运算放大器要求双电源(正负电源)供电,只有少部分运算放大器可以在单电源供电状态下工作,如LM358(双运放)、LM324(四运放)、CA3140(单运放)等。

需要说明的是,单电源供电的运算放大器不仅可以在单电源条件下工作,也可在双电源供电状态下工作。

例如,LM324可以在、+5~+12V单电源供电状态下工作,也可以在+5~±12V双电源供电状态下工作。

在一些交流信号放大电路中,也可以采用电源偏置电路,将静态直流输出电压降为电源电压的一半,采用单电源工作,但输入和输出信号都需要加交流耦合电容,利用单电源供电的反相放大器如图1(a)所示,其运放输出波形如图1(b)所示。

该电路的增益Avf=-RF/R1。

R2=R3时,静态直流电压Vo(DC)=1/2Vcc。

耦合电容Cl和C2的值由所需的低频响应和电路的输入阻抗(对于C1)或负载(对于C2)来确定。

Cl及C2可由下式来确定:C1=1000/2πfoRl(μF);C2=1000/2πfoRL(μF),式中,fo是所要求最低输入频率。

若R1、RL单位用kΩ,fO用Hz,则求得的C1、C2单位为μF。

一般来说,R2=R3≈2RF。

图2是一种单电源加法运算放大器。

该电路输出电压Vo=一RF(V1/Rl十V2/R2十V3/R3),若R1=R2=R3=RF,则Vo=一(V1十V2十V3)。

需要说明的是,采用单电源供电是要付出一定代价的。

它是个甲类放大器,在无信号输入时,损耗较大。

思考题(1)图3是一种增益为10、输入阻抗为10kΩ、低频响应近似为30Hz、驱动负载为1kΩ的单电源反相放大器电路。

模拟电子技术基础02-19-03 差分放大电路的四种接法_88

模拟电子技术基础02-19-03 差分放大电路的四种接法_88

2 (RBrbe)
双端输入 单端输出
1 (Rc / / RL )
2 RB rbe
2 (RBrbe)
单端输入 双端输出
(R / / RL )
C
2
RB rbe
2 (RBrbe)
Ro
2 Rc
Rc
2 Rc
K★CM输R 入电 ★双端输
阻较∞单很管高放大

路大;RE较高 是单r端be 输出的2倍


很高
双端输入 单端输出
1 (Rc / /RL)
2 RB rbe
单端输入 双端输出
(RC / / RL )
2
RB rbe
单端输入 单端输出
1 (Rc / / RL)
2 RB rbe
Ri★d 差模放大2倍(R数B 只rbe与) 输出方2式(R有B
2 (RBrbe)
2 (RBrbe)
关Rrbe★;o )双端输出时2,RcAd 与单管 Au 基R本c 相同;
差分放大电路的四种接法
差分放大电路的四种接法
RB + ui1 –
RC +
– RC
uo1 uo2
T1
T2
RE –VEE
+VCC 四种工作方式:
RB
+ ui2 –
双端输入双端输出(双入双出) 双端输入单端输出(双入单出) 单端输入双端输出(单入双出) 单端输入单端输出(单入单出)
差分放大电路的四种接法
(1)静态分析
+VCC
RB + ui1 –RCຫໍສະໝຸດ +RL uo
T1

RE
RC T2
–VEE

差分电路讲解

差分电路讲解
+VCC
差模输出电阻
Rod = 2RC
第 3 章 放大电路基础
已知: 例 3.3.1 已知:β = 80,r′bb = 200 Ω,UBEQ = 0.6 V,试求: ,′ ,试求:
10 kΩ Ω RC u
od
+12V Ω RC10 kΩ
20 kΩ Ω
ui1 V 1
20 kΩ REE Ω
ui2 [解] V2 (1) ICQ1 = ICQ2 ≈ (VEE – UBEQ) / 2REE )
ui2
VEE
+VCC
ICQ1
V1
uo UCQ1 UCQ2 IEQ1 IEQ2 IEE
VEE REE
RC
RC
ICQ2
V2
VEE
直流通路
第 3 章 放大电路基础
二、动态分析
uod uC1 uC2
REE VEE RC
1. 差模输入与差模特性 +VCC 差模输入 ui1 = – ui2 大小相同 极性相反 RC 差模输入电压 uid = ui1 – ui2 = 2ui1 i 使得: 使得:c1 = – ic2 uo1 = – uo2 = uo1 – ( – uo2) = 2uo1
R1
R2
R3
二极管温度补偿
多路电流源
VCC − U BE1 I REF ≈ R + R1 UBE1 ≈ UBE2
I 0 ≈ I REF
R1 R2
R1 I 02 ≈ I REF R2 R1 I 03 ≈ I REF R3
第 3 章 放大电路基础
3. 镜像和微电流源
+VCC R
V1
IREF
V2
R I0

差动放大电路(

差动放大电路(

§5、1差动放大电路(第三页)这一页我们来学习另一种差动放大电路和差动放大电路的四种接法一:恒流源差动放大电路我们知道长尾式差动电路,由于接入Re,提高了共模信号的抑制能力,且Re越大,抑制能力越强,但Re增大,使得Re上的直流压降增大,要使管子能正常工作,必须提高UEE的值,这样做是很不划算的。

因此我们用恒流源代替Re,它的电路图如右图所示:恒流源差动放大电路的指标运算,与长尾式完全一样,只需用ro3代替Re即可二:差动放大电路的四种接法差动放大电路有两个输入端和两个输出端,因此信号的输入、输出方式有四种情况。

(1)双端输入、双端输出它的电路的接法如图(1)所示:差模电压的放大倍数为:共模电压的放大倍数为:共模抑制比为:CMRR→∞(2)双端输入、单端输出它的电路接法如图(2)所示:差模电压的放大倍数为:共模电压的放大倍数为:共模抑制比为:(3)单端输入、双端输出它的电路接法如图(3)所示:这种放大电路忽略共模信号的放大作用时,它就等效为双端输入的情况。

双端输入的结论均适用单端输入、双端输出。

(4)单端输入、双端输出它的电路的接法如图(4)所示:它等效于双端输入、单端输出。

这种接法的特点是:它比单管基本放大电路的抑制零漂的能力强,还可根据不同的输出端,得到同相或反相关系。

三:总结由以上我们可以看出:差动放大电路电压放大倍数仅与输出形式有关,只要是双端输出,它的差模电压放大倍数与单管基本的放大电路相同;如为单端输出,它的差模电压放大倍数是单管基本电压放大倍数的一半,输入电阻都相同。

下一节返回§5、2集成运算放大器集成运放是一种高放大倍数、高输入电阻、低输出电阻的直接耦合放大电路一:集成运放的组成它有四部分组成:1、偏置电路;2、输入级:为了抑制零漂,采用差动放大电路3、中间级:为了提高放大倍数,一般采用有源负载的共射放大电路。

4、输出级:为了提高电路驱动负载的能力,一般采用互补对称输出级电路二:集成运放的性能指标(扼要介绍)1、开环差模电压放大倍数 Aod它是指集成运放在无外加反馈回路的情况下的差模电压的放大倍数。

差分放大电路详解

差分放大电路详解

VCC
ICQ (Rc
∥ RL )
UCQ2 VCC ICQ Rc
1、 双端输入单端输出:差模信号作用下的分析
Ad
1 2
(Rc ∥ RL ) Rb rbe
Ri 2(Rb rbe ),Ro Rc
1、 双端输入单端输出:共模信号作用下的分析
Ad
1 2
(Rc ∥ RL ) Rb rbe
Ac
Rb
2、单端输入双端输出
在输入信号作用下发射极 的电位变化吗?说明什么?
共模输入电压 差模输入电压
输入差模信号的同时总是伴随着共模信号输入:
uId uI,uIc uI / 2
2、单端输入双端输出
问题讨论:
1、UOQ产生的的原因? 2、如何减小共模输出 电压?
静态时的值
uO
Ad
uI
Ac
uI 2
改进后的差分放大电路,在差模信号作用下,流经Re 的电流变化为0,Re对差模信号没有反馈作用,相当 于短路,可以提高对差模信号的放大能力
对电路进一步简化,并实现信号源和电源的共 地得到经典的长尾式放大电路
电路参数理想对称
在理想对称的情况下: 1、克服零点漂移; 2、零输入零输出。
三、长尾式差分放大电路的分析
2(Rb rbe )
Ac
Rb
(Rc ∥ RL ) rbe 2(1 )Re
KCMR Ro 2Rc
K CMR
Rb
rbe 2(1 )Re
2(Rb rbe )
Ro Rc
五、具有恒流源的差分放大电路
为什么要采用电流源?
Re 越大,共模负反馈越强,单端输出时的Ac 越小,KCMR越大,差分放大电路的性能越好。
BQ

差分放大电路四种接法

差分放大电路四种接法

交流耦合式差分放大电路
总结词
交流耦合式差分放大电路通过电容元件 将输入和输出端隔离,以消除直流失调 电压的影响。
VS
详细描述
交流耦合式差分放大电路在直接耦合式差 分放大电路的基础上,增加了一个隔直电 容来隔离直流失调电压。这样,它能够消 除直流失调电压对输出信号的影响,提高 信号的保真度。然而,由于电容的存在, 它可能会影响信号的带宽和响应速度。
04 差分放大电路四种接法的 优缺点分析
直接耦合式差分放大电路的优缺点
• 总结词:直接耦合式差分放大电路具有结 构简单、易于实现等优点,但存在零点漂 移等缺点。
直接耦合式差分放大电路的优缺点
结构简单
直接耦合式差分放大电路结构相对简 单,易于实现,成本较低。
增益高
由于采用直接耦合方式,电路的增益 较高。
斩波稳零式差分放大电路
总结词
斩波稳零式差分放大电路通过斩波技术来消除直流失调电压的影响,具有较高的直流精 度和稳定性。
详细描述
斩波稳零式差分放大电路采用斩波技术,通过周期性地调节输入和输出信号的直流分量, 来消除直流失调电压的影响。这种电路具有较高的直流精度和稳定性,能够有效地提高 输出信号的质量。然而,由于斩波技术的引入,它可能会对信号的带宽和响应速度产生
03 差分放大电路四种接法的 比较
直接耦合式差分放大电路
总结词
直接耦合式差分放大电路是差分放大电路中最基础的一种,通过直接连接输入和 输出端来实现信号的放大。
详细描述
直接耦合式差分放大电路利用直接连接的电阻和晶体管来实现信号的放大,具有 结构简单、易于实现等优点。然而,由于没有隔直电容,它容易受到直流失调电 压的影响,导致输出信号失真。
02

高教版《模拟电子技术基础(第五版)课程讲义复习要点第4章教案3(4.3.3-4.3.4)

高教版《模拟电子技术基础(第五版)课程讲义复习要点第4章教案3(4.3.3-4.3.4)

iE1 I
iE2
VT3
E I
RE
RB2
-VEE
思考:恒流源的恒定电流I如何求取?对差模输入信号, E点电位=?分析电路时,调零电位器RP如何处理?
讨论一
若uI1=10mV,uI2=5mV,则uId=? uIc=?
uId uI1 uI2
uIc
uI1
2
uI2
uId=5mV , uIc=7.5mV
⑤共模抑制比
注意:只要是单出电 路,不管输入方式如 何,如果有共模输入 信号,Ac的分析方法
KCMR
Ad Ac
Rb rbe 2(1 )Re
2 Rb rbe
完全相同。 总结四种
Re
Ac
KCMR
性能越好 电路特点
4.3.4 改进型差分放大电路
一、 问题的提出
如何提高共模抑
若电路参数理想对称,则对于双出电路
2 Rb rbe
②输入电阻
Ri=2(Rb+rbe)
③输出电阻
Ro=Rc
④共模放大倍数
因为双入电路无共模输入信号, 所以一般不必求Ac。
双端输入单端输出问题讨论:
Ad
1 2
(Rc∥RL ) Rb rbe
Ri 2(Rb rbe ),Ro Rc
(1)T2的Rc可以短路吗? (2)什么情况下Ad为“+”? (3)双端输出时的Ad是单端输出时的2倍吗?
制比?
Ac=0,KCMR=∞
对于单出电路
Ac
uOc uIc
Rb
(Rc // RL ) rbe 2(1 )Re
若Re=∞,则 Ac=0, KCMR=∞
调零电位器 实现0入0出
二、 恒流源差分放大电路的实现
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三、差分放大电路的四种接法
1.双端输入单端输出电路
电路如右图所示,为双端输
入、单端输出差分放大电路。

由于
电路参数不对称,影响了静态工作
点和动态参数。

直流分析:
画出其直流通路如右下图所
示,图中和是利用戴维宁
定理进行变换得出的等效电源和
电阻,其表达式分别为:
虽然由于输入回路参数对称,
使静态电流I BQ1=I BQ2,从而
I CQ1=I CQ2;但是,由于输出回路的
不对称性,使T1管和T2管的集电
极电位各不相同,即U CQ1≠U CQ2,
U CEQ1≠U CEQ2。

可得
交流分析:
在差模信号作用时,负载电阻仅取得T1管集电极电位的变化量,
所以与双端输出电路相比,其差模放大倍数的数值减小。

如右下图所示为差模信号的等效电路。

在差模信号作用时,由于T1管与T2管中电流大小相等方向相反,所以发射极相当于接地。

输出电压
输入电压
差模放大倍数
电路的输入电阻
电路的输出电阻
是双端输出电路输出电阻的
一半。

如果输入差模信号极性不变,而输出信号取自T2管的集电极,则输出与输入同相。

当输入共模信号时,由于两边电路的输入信号大小相等极性相同。

与输出电压相关的T1管一边电路对共模信号的等效电路如下图所示。

发射极电阻R e上的电流变化量,发射极电位的变化量;对于每只管子而言,可认为是流过阻值为2R e 的射极电阻。

输入电压
输出电压
共模放大倍数为
共模抑制比
结论:R e愈大,A c的值愈小,K CMR愈大,电路的性能愈好。

2.单端输入、双端输出电路
如下图(a)所示为单端输入、双端输出电路。

电路对于差模信号是通过发射极相连的方式将T1管的发射极电流传递到T2管的发射极的,故称这种电路为射极耦合电路。

如图(b)所示将输入信号进行等效变换,可看出,两输入端分别输入了差模信号和共模信号。

可见,单端输入电路与双端输入电路的区别在于:差模信号输入的同时,伴随着共模信号输入。

输出电压
若电路参数对称,则A c=0,K CMR为无穷大。

静态工作点以及动态参数的分析完全与双端输入、双端输出相同。

3.单端输入、单端输出电路
如右图所示为单端输入、单端
输出电路,该电路对静态工作点、
差模增益、共模增益、输入与输出
电阻的分析与单端输出电路相同。

对输入信号的作用分析与单端输
入电路相同。

copyright@2003 广州民航职业技术学院通讯工程系。

相关文档
最新文档