Ansoft_HFSS进行腔体滤波器设计
基于HFSS的微调谐腔体带通滤波器设计

基于HFSS的微调谐腔体带通滤波器设计发表时间:2016-10-12T14:41:17.417Z 来源:《电力设备》2016年第14期作者:李婷婷[导读] 针对微调谐腔体带通滤波器设计制造中存在的问题,介绍了腔体带通滤波器的总体设计。
(广州海格通信集团股份有限公司)摘要:针对微调谐腔体带通滤波器设计制造中存在的问题,介绍了腔体带通滤波器的总体设计;论述了需要解决的问题,如优化计算、提高仿真精度和简化调谐结构,并对二端口网络等效替换、整体仿真和微调谐关键技术进行了分析。
关键词:腔体带通滤波器;微调谐;免调谐;HFSS传统的微波腔体带通滤波器的设计过程中,参数计算量大,仿真存在误差,调谐过程耗时费力。
随着腔体带通滤波器在微波通信设备中的广泛应用,其设计方法有待改进。
通过设计参数求取方法的改进和对原理图的完善补充以及采用合理的仿真过程,确保了滤波器设计的精确度。
在此基础上,摒弃传统的用调谐螺钉调谐的方式,采用微调谐结构的腔体来实现滤波器的微调谐,配合线切割加工工艺,最终实现腔体带通滤波器的精确微调谐设计,一定的相对带宽条件下,可实现免调谐设计。
一、总体设计微波腔体带通滤波器的设计过程大体分为3步:一是按设计要求求取设计参数;二是进行滤波器模型的仿真;三是进行滤波器的调谐。
求取设计参数一般先根据设计要求选择合适的切比雪夫低通原型滤波器,因为较之最大平坦型滤波器,切比雪夫滤波器有更优异的带外抑制,较之椭圆函数滤波器更易于实现。
进行模型仿真前,还需要得到以下3个参数:一是单端输入最大群时延;二是谐振器间耦合系数;三是谐振腔的谐振频率。
滤波器模型的仿真分为2步:第一步要在HFSS中建立滤波器的三维微调谐模型;第二步就是进行HFSS的模型仿真。
在HFSS中建立滤波器腔体模型后,对其先后进行单谐振器本征模仿真、双谐振器本征模仿真和单端输入最大群时延仿真,分别得到单谐振器谐振频率、相邻谐振器间耦合系数和单端输入最大群时延等参数的仿真值。
基于HFSS的SIR同轴腔体窄带带阻滤波器设计

0 引言
微波滤波器广泛应用于微波通信、雷达及制 导等领域, 具有选频、 分频和隔离信号等作用, 其 性能的优劣往往影响到整个系统 。 随着现代无线
[1]
使用更加复杂的调制方案、更高的功率水平以及 重量, 更小的体积、 这就对带阻滤波器的设计指标 提出了更高的要求。 与使用微带线或带状线所设计的带阻滤波器 相比,基于同轴腔体结构的带阻滤波器因为具有 更高的功率容量和品质因数、更低的插入损耗与 更好的阻带衰减, 成为近年来研究的热点[2]。文[4] 采用衰减模式谐振器设计了两款高隔离、中心频 率可调的 W 波段窄带腔体带阻滤波器, 滤波器使 用全硅技术制造, 陷波深度达到 70 dB。文[5-6]基 于基片集成技术, 使用新的拓扑结构, 采用基片集
莆 田 学 院 学 报
中图分类号: TN713
Vol.24 No.5 Oct. 2017 文献标识码: A
of P u t i an University
文章编号: 1672-4143 (2017) 05-0053-04
基于 HFSS 的 SIR 同轴腔体窄带带阻滤波器设计
杨中婕, 陈 董*
(南京邮电大学 电子与光学工程学院,江苏 南京 210023)
摘
针对传统同轴腔体带阻滤波器的直线型设计所带来的单一维度尺寸过大的问题,根据滤波器设计指 要:
(Step impedance resonator, SIR) 标需求, 设计了一款基于空腔型阶跃阻抗谐振器 和 U 型矩形同轴线的窄带带阻 滤波器,使用电磁场仿真软件 HFSS 进行建模与优化仿真。仿真结果表明,滤波器中心频率 1 GHz,相对带宽 2.5%, 阻带抑制达到 38 dB, 具有良好的滤波特性, 同时实现了滤波器全维度优化设计, 结构布局更加紧凑合理。
腔体滤波器的精确设计

利用HFSS 对腔体滤波器的精确设计黎涛 赵霞上海航天测控通信研究所 200086摘要 本文用一个实例介绍了一种设计思路,借助计算机利用Ansoft 公司的HFSS 软件对腔体交指型滤波器进行精确设计,实验表明用这种方法设计的滤波器有通带平坦、插损小、精确度高等特点。
一. 引言在微波带通滤波器的设计中,我们经常采用腔体交指型结构。
它具有插损小、带外抑制度高、结构紧凑、体积小等优点。
对于腔体交指型带通滤波器的设计,现在比较广泛的的思路是:只考虑相邻两耦合杆之间的耦合关系,忽略相邻杆以外的边缘电容的影响,因而采用两个沿结构传输的TEM 正交模来描述,即奇模和偶模。
而实际在这种滤波器结构中所有的谐振杆之间都存在耦合,因此这种方法只是一种简化的近似设计。
采用这种方法设计的产品性能差,表现在带内插损和波纹大,矩形系数不好等,一般无法满足现在通讯的要求,我们还要花大量的精力对滤波器进行调整,以提高其性能。
甚至需要重新加工再生产,这大大增加了产品的研制成本和周期。
因此我们必须对滤波器进行精确的设计,即在工程设计中将所有谐振杆的耦合都考虑进去,而这不是传统的手工计算可以完成的,必须借助计算机软件进行辅助设计。
自上世纪70年代以来,CAD 工具在微波工程领域得到越来越广泛的应用。
经过多年的发展,目前国内外已有多种微波CAD 软件,而以Ansoft 公司的HFSS 效果最佳。
通过该软件我们可以方便的得到各种物理模型,进而对该模型进行电磁场的仿真。
计算结束后我们就可以得到所需的场结构和相关的S 参数,也就知道了该滤波器的电性能情况。
二. 设计下面通过一个S 波段的五级滤波器的设计实例加以说明。
首先我们通过简化的近似计算得到该滤波器的几何数据的初值,由于这类滤波器的粗略设计的方法已经很成熟,因此这里不进行详细介绍,直接给出(详细情况可参看《现代微波滤波器的结构与设计》)。
但这一步也是非常重要的,初值的好坏直接关系到我们利用软件计算优化的快慢。
HFSS 与腔体滤波器设计

z强大的场后处理器
产生生动逼真的场型动画图,包括矢量图、等高线图、阴影等高线图。
先用鼠标点选镜象 中心,这里镜象中 心是腔体的地面中 心;然后选取另一 点,可以拉动鼠标 体会一下当另一点 在当前抽头方向时 另一抽头正好到位
二、用Mirror及Move命令,在树 形栏中选定抽头的两部分。
先copy、paste即在原来位置 又产生一个完全相同的抽头
点选新产生的抽头底面圆心, 再拖动鼠标,结合改变坐标来 确定抽头移动位置,使抽头出 现在与原抽头相对的位置。
HFSS9.0与腔体滤波器设计
HFSS9.0介绍
• HFSS9.0提供了更为简洁直观的用户设计界面、精确自适应的场求解器、 拥有空前电性能分析能力的功能强大后处理器,能计算任意形状三维无 源结构的s-参数和全波电磁场。
• 提高研发效率的最佳选择 强大的绘图功能 与AutoCAD完全兼容,完全集成ACIS固态建模器。 无限的undo/redo 多个物体组合、相减、相交布尔运算 动态几何旋转 点击物体选择/隐藏 二维物体沿第三维扫描得到三维物体 宏记录/宏文本 锥螺旋、圆柱和立方体的参数化宏 可选的“实表面”几何体 在线关联帮助以加快新功能的应用。
包括标准端口的网格产生选择
Defaults 默认
让你可以将当前值设置为以后求解方 法的默认值 ,或者将当前值恢复到 HFSS的标准设置
各项设置好后,可以在list中看到你所设定的模型、边界、激励源、 网格设定,求解设定,并在其中对其进行编辑。可以点击 validate来验证设置的各项是否有误。
(整理)带通滤波器的设计步骤0001

带通滤波器设计流程滤波器是具有频率选择性的双端口器件。
由于谐振器的频率选择性,所以规定的频率信号能够通过器件,而规定频率信号以外的能量被反射, 从而实现频率选择的功能。
滤波器从物理结构上,就是由一些不同的单个谐振器按相应的耦合系 数组合而成,最后达到规定频率的信号从输出端通过的目的。
1. 滤波器技术指标1.1 工作频率范围: 1060MH ± 100MHz1.2插入损耗: 0.5dB max1.3 驻波比:1.2 max1.4 带外抑制:>20dB@f ± 200MHz >35dB@f ± 300MHz >60dB@f ± 500MHz1.5 寄生通带: f > 3500MHz 以上,对衰减不作要1.6 工作温度:-55 ° Cto+85°C1.7 最大输入脉冲功率:400W最大输入平均功率:20W2. 滤波器设计原理3. 滤波器结构选择3.1物理结构选择根据以上技术指标选择 腔体交指型带通滤波器,主要的原因是因为它 有着良好的带通滤波特性,而且它结构紧凑、结实;且容易制造;谐振杆端口 2图1滤波器原理图的长度近似约为入/ 4(波长)°,故第二通带在3倍fo上,其间不会有寄生响应。
它用较粗谐振杆作自行支撑而不用介质,谐振杆做成圆杆,还可用集总电容加载的方法来减小体积和增加电场强度,而且它适用于各种带宽和各种精度的设计。
3.2电路结构的选择根据以上技术指标选择交指点接触形式,主要的原因是它的谐振杆的一端是开路,一端是短路(即和接地板接连在一起),长约入/ 4 °,载TE M (电磁波)模,杆1到杆n都用作谐振器,同时杆1和杆n也起着阻抗变换作用。
4. 电路仿真设计如图2模型选择。
采用An soft公司的Serenade设计,根据具体的技术指标、体积要求和功率容量的考虑,此滤波器采用腔体交指滤波器类型,使用切比雪夫原型来设计,用圆杆结构的物理方式来实现。
3.4GHz梳状线腔体滤波器的设计.

本科生毕业论文设计题目: 3.4GHz 梳状线腔体滤波器的设计系 部 学科门类 工 学 专 业 电子信息工程 学 号姓 名指导教师年 月 日装 订 线3.4GHz梳状线腔体滤波器的设计摘要在当今通信领域中,微波滤波器在通信设备中占有重要的地位,在微波毫米波通信、卫星通信、雷达、导航、制导、电子对抗、测试仪表等系统中,有着广泛的应用。
梳状线滤波器具有小体积、高Q值、高功率容量等优点,是微波滤波器中常见的腔体形式,工程实用性较强,广泛应用于通信及其它领域。
本文从滤波器的工作原理出发,分析了梳状线带通滤波器的结构特征,并利用软件Ansoft HFSS进行仿真,最后基于仿真结果制作出实物并进行了调试,使其最终达到预期的指标。
关键词:梳状线滤波器仿真调试ABSTRACTIn the field of current communication, Comb-line filters occupies an important position in communication equipment. Microwave filters has a wide range of applications in microwave communication, millimeter wave communication, satellite communication, radar, navigation, guidance, electronic against, testing instruments system. Comb-line filters have small size, high Q value, high power capacity etc, and is common in microwave filters of the recessed forms, therefore it widely used in communications and other fields . Based on the theory of filters, the structure characters of comb-line band-pass filter have been analyzed and the typical parameters have been calculated. Then the filter is simulated with software Ansoft HFSS. At last, I have manufactured a practicality based on the results of simulation and debugged it for the purpose of achieving anticipative targets.Key words:Comb-line Filter Simulation Debug目录一绪论 (1)1.1 课题来源与意义 (1)1.2 国内外发展状况 (1)1.3 课题的研究内容、方法及手段 (1)二梳状线滤波器的综合介绍 (3)2.1 梳状线滤波器的特点 (3)2.2 梳状线滤波器的结构 (3)2.3 梳状线滤波器的工作原理 (3)三梳状线滤波器的设计 (4)3.1 梳状线滤波器设计思路 (4)3.2 梳状线滤波器的技术指标 (4)3.3 梳状线滤波器的归一化原型 (4)3.4 频率变换 (5)3.5 相关的理论计算过程 (5)四运用Ansoft HFSS进行仿真设计 (7)4.1 单腔模型及仿真结果 (7)4.2 双腔模型及仿真结果 (8)五梳状线滤波器的实物制作与测试 (11)六总结与结论 (12)参考文献 (13)一绪论1.1 课题来源与意义本课题来源于科研生产。
hfss腔体滤波器设计实例

hfss腔体滤波器设计实例HFSS(High Frequency Structure Simulator)是一种用于电磁场仿真和分析的软件工具。
它广泛应用于高频电磁场的建模和分析,可用于设计各种射频(RF)和微波器件,如天线、滤波器、耦合器等。
本文将以HFSS腔体滤波器设计实例为题,介绍如何利用HFSS软件进行腔体滤波器的设计。
我们需要明确腔体滤波器的基本原理。
腔体滤波器利用腔体的谐振模式和谐振频率来实现信号的滤波。
通过调整腔体的几何参数和材料特性,可以实现对特定频率范围内的信号进行滤波。
因此,腔体滤波器的设计关键在于确定合适的腔体结构和参数。
接下来,我们将以一个实际的设计例子来具体介绍HFSS腔体滤波器的设计流程。
假设我们要设计一个工作在2.4GHz频段的微波腔体滤波器。
首先,我们需要选择合适的腔体结构。
常见的腔体结构有矩形腔体、圆柱腔体等,根据设计要求选择合适的结构。
在HFSS中,我们可以通过绘制几何模型来定义腔体结构。
绘制完成后,我们需要定义腔体的材料属性,包括介电常数、磁导率等。
这些参数将直接影响腔体的谐振频率和模式。
接下来,我们可以利用HFSS的求解器进行电磁场仿真。
在仿真前,我们需要设置仿真的频率范围和精度。
根据设计要求,选择合适的频率范围,并设置适当的网格精度。
仿真完成后,我们可以通过HFSS的结果分析工具来分析仿真结果。
主要包括频率响应、S参数、电场分布等。
根据设计要求,对仿真结果进行评估和调整。
如果需要改善滤波器性能,可以通过调整腔体的几何参数和材料特性来实现。
在设计过程中,需要注意以下几点。
首先,腔体的尺寸和几何参数应该合理选择,以满足设计要求。
其次,材料的选择和特性对滤波器性能影响很大,需要选择合适的材料并设置正确的特性。
最后,仿真结果的准确性和稳定性也需要重视,可以通过调整网格精度和求解器参数来提高仿真结果的准确性。
HFSS是一种强大的工具,可以用于腔体滤波器的设计和分析。
基于HFSS设计同轴腔滤波器

第30卷 第2期2007年4月电子器件Chinese J ournal Of Elect ron DevicesVol.30 No.2Ap r.2007Design of Coaxial Filters B ased On HFSSL I U Pen g 2y u1,2,Z H A N G Yu 2hu 2,S H EN H ai 2gen11.School of Elect ronic I nf ormation and Elect ric Engineering ,S hanghai J iao Tong Universit y ,S hanghai 200240,China;2.S hanghai S pacef li ght I nstit ute of T T &C and Telecommuniation ,S hanghai 200086,Chi naAbstract :Coaxial filters is widly used in microwave circuit s.we research how to analysis and design coaxial filters used by a 3D f ull 2wave field solver ,HFSS.The 3D f ull -wave field analysis includes t he effect s of t uning screw ,interstage coupling apert ure and inp ut/outp ut coaxial excitation.Base on t hess analysises ,we work out a S -band coaxial filter aided by simulating and optimizing in HFSS.The result of t he experi 2mentation matched well wit h t he result of simulation ,and f ulfiled technic target s.The coaxial filter has been used in a spaceflight project successf ully.The way of combining t he t raditional t heory wit h t he ad 2vanced comp uter technology has great practical value ,it can save much time and co st .K ey w ords :microwave filters ;coaxial resonator ;coupling apert ure ;HFSS EEACC :1320基于HFSS 设计同轴腔滤波器刘鹏宇1,2,张玉虎2,沈海根1(1.上海交通大学电子信息与电气工程学院,上海200240;2.上海航天测控通信研究所,上海200086)收稿日期:2006204217作者简介:刘鹏宇(19782),男,工作于上海航天测控通信研究所,工程师,主要研究方向为射频与微波电路设计,pengyu_liu @ ;摘 要:同轴腔滤波器在微波电路中有着广泛的应用,在此研究如何利用3D 全波场分析软件HFSS 分析设计同轴腔滤波器.该分析包括谐振腔调谐螺钉、腔间耦合孔及输入输出激励的影响效应.基于上述分析,借助HFSS 仿真优化得到一S 波段滤波器.其实测结果与仿真相符,满足指标要求,并已成功应用于某航天工程中.这种结合传统理论和先进计算机技术的方法可以大大节省研制周期和生产成本,具有非常大的实用价值.关键词:微波滤波器;同轴谐振腔;耦合孔;HFSS 中图分类号:TN 713 文献标识码:A 文章编号:100529490(2007)022******* 传统的微波滤波器设计方法已经非常成熟,但其中一些参数需要反复试验来获得.这势必要增加产品的设计周期,对于当前研制周期紧、产品数量大的要求是一个制约.利用仿真工具进行辅助设计成为目前一种非常有效的解决途径.本文即介绍如何借助H FSS 设计同轴腔滤波器.1 HFSS 简介HFSS 是ANSO F T 公司开发的一个基于物理原型的EDA 设计软件.使用H FSS 建立结构模型进行3D 全波场分析,可以计算.①基本电磁场数值解和开边界问题,近远场辐射问题;②端口特征阻抗和传输常数;③S 参数和相应端口阻抗的归一化S 参数;④结构的本征模或谐振解.依靠其对电磁场精确分析的性能,使用户能够方便快速地建立产品虚拟样机,以便在物理样机制造之前,准确有效地把握产品特性,被广泛应用于射频和微波器件、天线和馈源、高速IC 芯片等产品设计中.H FSS 有本征模解(Eigenmode Solution )和激励解(Driven Solution )两种求解方式.选择Eigen 2mode Solution 用于计算某一结构的谐振频率以及谐振频率点的场值和腔的空载Q0值.选择Driven Solution用于计算无源高频结构的S参数和特性端口阻抗、传播常数等.本课题的研究中,将用到本征模解求解单同轴腔特性和腔间耦合系数;激励解求解有载品质因数Q L值和滤波器响应特性.2 同轴腔滤波器工作原理及设计2.1 工作原理同轴腔滤波器主要用于米波、分米波段.传输TEM模,无色散、场结构简单稳定、空载品质因数高[1].其基本结构由谐振腔、腔间耦合、输入输出激励组成,如图1所示即为一个三腔同轴滤波器.输入信号通过闭合圆环耦合到谐振腔中产生谐振,能量在谐振腔之间由耦合孔进行逐级耦合,再经图1 三腔同轴滤波器结构模型(a=3.25mm,b=9mm,l=29mm,l1=l2=14mm)过输出端的闭合圆环耦合输出.各腔均工作在同一谐振频率附近,只有该谐振频率附近的电磁波有效传输,形成一带通滤波器.2.2 集总参数网络设计下面以S波段滤波器设计为例,主要技术指标见表1.表1 滤波器技术指标技术参数工作频率f0插入损耗L A带宽(4f3dB)通带波动L Ar阻带抑制L As(f0±15M Hz)输入输出阻抗Z o指标要求2.0~2.15GHz≤2dB≥8M Hz≤±0.3dB≥25dB50Ω 利用网络综合法[2],选取切比雪夫函数作为逼近函数,查表或计算[3]确定滤波器阶数n=3,对应的低通原型参数:g0=g4=1,g1=g3=1.0316,g2=1.1474,由此得到腔间耦合系数K ij和外部品质因数Q L.K ij=bwg i・g j=0.0036(i=1,j=2;i=2,j=3)(1)Q L=g1bw=266.3(2)2.3 微波结构设计2.3.1 同轴腔为减小体积和便于安装,本滤波器采用内圆外方的1/4λ缩短电容同轴腔结构.依据谐振腔结构尺寸参数选取三个原则[1]:①避免高次模,(a+b)≤λmin/π;②满足功率容量,b/a=1.65时功率容量最大;③损耗要小,b/a=3.6时Q0值最高,损耗最小.b/a一般选择在2.0~3.6之间.在此选取内导体半径a=3.25mm,外导体内半径b=9mm.内导体长度l、调谐螺钉最大调谐距离t的设计既要考虑能够满足所需的调谐范围,同时还要考虑到内导体缩短会降低Q0值[4]的因素,一般选择内导体长度为1/4λ的65%以上,在此选取l=29mm,t=3mm.谐振腔的调谐范围将通过HFSS进行仿真验算.2.3.2 耦合考虑到本滤波器属于窄带滤波器,腔间耦合[5]采用圆孔实现,输入输出耦合采用闭合半圆环实现.耦合圆孔、半圆环需要确定的参数是中心位置和半径大小.滤波器带宽基本上由级间耦合决定.设计一个在某个频率范围内可调谐的滤波器时,若要保持固定的带宽,则必须控制带宽对频率的敏感性,即要保持d(Δf)/d f=0.Cohn[6]研究得出,当耦合孔中心离腔短路端距离l1在中心频率电长度36°附近时,耦合带宽最大且随频率变化缓慢.则取l1=14mm.半圆环的几何位置通常与耦合孔保持一致,所以也取l2=14mm.关于耦合孔径的大小,下面通过HFSS仿真腔间耦合系数K ij和外部品质因数Q L获取.3 HFSS仿真分析3.1 单谐振腔仿真根据选定的结构尺寸(a=3.25mm,b=9mm, l=29mm),在H FSS中对单谐振腔建模(图2),不需要加载激励,进行Eigenmode分析,获取在不同间距t的加载电容下对应的谐振频率.仿真结果(图3)得出,当t在0.25~3mm之间调整,对应谐振频率范围在1619~2171M Hz之间变化,可以满足要求.图2 单谐振腔模型 图3 谐振频率与加载电容关系3.2 腔间耦合系数K ij仿真腔间耦合的电性能用耦合系数K ij表示.当两134第2期刘鹏宇,张玉虎等:基于H FSS设计同轴腔滤波器个相邻的谐振腔耦合在一起、并且对源和负载具有非常小的耦合时,K ij 与相邻腔谐振频率f 1、f 2存在如下关系[7]:K 12=2(f 2-f 1)/(f 2+f 1)(3)因此,对两个相邻谐振腔在不接源和负载(图4)情况下进行Eigenmode 分析(modes =2),得到在不同圆孔半径下对应的谐振频率f 1、f 2,从而绘制出对应的腔间耦合系数曲线(图5).结果表明耦合孔越大,耦合越强.图4 腔间耦合系数仿真模型图5 耦合圆孔与耦合系数关系3.3 有载品质因数Q L 仿真当单个谐振腔耦合源和负载时,有载品质因数Q L 与谐振频率f o 及3dB 带宽Δf 3dB 存在如下关系[7]:Q L =f o /Δf 3dB(4)建立模型对单谐振腔加载源和负载(图6),进图6 有载品质因数 图7 耦合圆环与有载品质仿真模型因数关系行Driven Terminal 分析,得到在不同耦合圆环半径下对应的有载品质因数Q L 曲线(图7).耦合环越大,耦合越强,Q L 值越低. 根据公式(1)、(2)中计算结果,对照以上仿真分析图表,即可选取适当的结构参数,在H FSS 中完成整个滤波器的建模(图1),经过进一步优化,获取理想的特性曲线,确定最终的结构尺寸:r _apert ure =3.18mm ,r _loop =2.6mm .4 实测结果与分析综合上述设计及优化结果,并考虑到为实物调试时留有一定的调整余量,耦合孔和耦合环半径均取的略小一些,确定最终的加工尺寸见表2.表2 同轴腔滤波器结构加工尺寸结构参数a bltl 1l 2r _loop r _aperture尺寸/mm 3.25929314142.53 按照表2结构尺寸机械加工,进行适当的谐振频率和耦合调整,获得了满意的特性曲线(图8),达到技术指标要求(表3).结果表明,插入损耗、带外抑制实测结果比与仿真结果要差一些.这是可以理解的,因为HFSS 仿真是在理想边界条件下进行的,而滤波器实物是由三个单谐振腔和输入输出端口组合在一起的,,还有腔体内部镀银表面不光滑,这些都会引入损耗[8],导致Q 0值降低,使得插损、带外抑制指标略有变差.图8 实测(粗线)与仿真(细线)滤波器响应表3 滤波器测试数据技术参数工作频率f 0插入损耗L A带宽(Δf 3dB )通带波动L Ar 阻带抑制L A s(f 0±15M Hz )驻波比指标要求2.065GHz 1.75dB8.5M Hz 0.15dB33.6dB1.345 结束语本文利用ANSO F T HFSS 仿真软件对同轴腔滤波器中的谐振腔、腔间耦合及输入输出激励进行了优化设计,确定了滤波器实际结构尺寸,测试结果与仿真一致.该方法可以有效并准确地替代传统试验方法,也可以应用在其它的微波滤波器设计中.参考文献:[1] 廖承恩,陈达章.微波技术基础[M].北京:国防工业出版社,1979.[2] 甘本,吴万春.现代微波滤波器的结构与设计[M].北京:科学技术出版社,1973.[3] Hong Jia 2Sheng.Microstrip Filters for RF/Microwave Applications ,ncaster C opyrightc 2001John W illy &S ons ,Inc.pp.29261.[4] K urzrok R.M.Design of C omb 2Line Band 2Pass Filters (C orrespon 2dence )[J ].T ransactions on Microwave Theory and T echniques ,Jul.1966,T 2MTT 214(7):3512353.[5] 姚毅,黄尚锐.调谐滤波器的腔间耦合结构研究[J ].微波学报,1994(1):16222.[6] K urzrok R M.Design of Interstate C oupling Apertures for Narrow 2Band T unable C oaxial F ilters[J ].(C orrespondence )IRE T rans.on M i 2crowave ’Theory and T echniques ,March ,1961,MTT 210:1432144.[7] Randall W.Rhea ,HF Filter Design and Computer Simulation[M ].Mc Graw 2Hill ,Inc.,1995.[8] 高葆新.波导带通滤波器的设计[J ].国外电子测量技术,2001(1):34237.234电 子 器 件第30卷。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定义材料、边界
HFSS->solution type中选择求解 方式为Eigenmode
把cavity定义为空气,resonator 和screw定义为银,把cavity定义 为Finite Conductivity边界 电导率设置为61000000 不定义边界则默认为Perfect E。
画 抽 头(一)
在xz平面画圆,中心点为“腔体_x/2,0,抽头高度” 半径为“抽头半径”初始化值为1mm
画 抽 头(二)
同时选定圆和轨迹线,右键点击它们,在弹出菜单 中选择Edit->Sweep->Alone Path.
画 端 口(一)
画一个圆柱体,中心坐标“腔体_x/2,0,抽头高度” 半径为“抽头半径”长度为“端口长度,初始化为10mm
定义材料开始运算
把腔体材料定义为空气,其余材料全部为理想导体 (这时候不需要考虑腔体的无载Q值),在项目管 理窗口中把“setup1”中的“Number of”由1改为 2 边界改为Perfect E,开始运算。
查看结果计算耦合系数
在solution data中查看结果,把求得的两个频率 带入耦合系数公式k=2*(f1-f2)/(f1+f2)=0.004487 如此,改变窗口大小或者耦合螺杆参数直到 耦合系数满足要求。这就是窗口大小的确定方法
定义端口
把求解模式改为“Driven Modal” 在“S”下拉菜单中把“object”改为 “face”
选中port1的端面,右键点击如图选择端口 用同样的方法定义另外一个端口。
仿 真 结 束
分析设置
在项目管理窗口中如图添加设置
扫描设置
右键点击“Setup1”选择“Add Sweep” 如图输入扫描参数。点击Display。
使用Ansoft_HFSS9.0进 行腔体滤波器设计
设计目标
1. 仿真一个 53mm×50mm×65mm 的单腔,使其谐振频率在 465MHZ,记录无载Q值。 2.用凡谷滤波器设计软件查看插损以及带外抑制,并确定 各耦合系数。 3.仿真该尺寸腔体的窗口大小,使其耦合系数为0.01左右。 4.滤波器的谐波仿真,观察该单腔尺寸滤波器的谐波位置。
画第二个单腔
使用Edit中的copy和past把第一步中所 有的元件复制一份。
移动第二个单腔位置
使用MOVE命令把所复制的元件沿y轴 移动“腔体_y+窗口厚度”的距离,其 中 窗口厚度初始化为4mm。
画窗口
画一个长方体,起始坐标定为“0,腔体_y,窗口高度”窗口高度初始 值 0mmXsize为“窗口大小”初始化值20mm,Ysize为“窗口厚度” Zsize为“腔体_z-窗口高度”。
画圆盘
从谐振杆的顶部往下画一个圆盘, 设置参数,初始化圆盘半径为 15mm,圆盘厚度为-2mm 使用unite命令合并谐振杆和圆盘
画谐振杆内孔
从谐振杆的顶部往下画一个内孔, 设置参数,初始化谐振杆内径为 6.5mm,谐振杆孔深为-50mm 使用subtract命令把内孔从谐振杆 上减去
画调谐螺杆
画 端 口(二)
画一个圆柱体,中心坐标“腔体_x/2,0,抽头高度 ” 半径为“端口半径”长度为“端口长度” 端口半径初始化为2.3mm(保证端口50ohms)
把大圆柱减去小圆柱,剩下部分的定义材料为空气。
画 端 口(三)
把已经画好的抽头和端口复制一份,使用“Mirrow” 命令,把复制品镜像到另一边,第一个镜像点为 “0,腔体_y+窗口厚度,0”第二镜像点“0,1,
合并腔体
把窗口命名为“window”定义材料为空气 使用unit命令把前面画的两个单腔和窗口 合并,得到如图的一个耦合腔体。
画耦合螺杆
画一个圆柱体,起始坐标为“窗口大小/2,腔体厚度/2,腔体 _z” Radios为“耦合螺杆半径”初始值2.5mm Height为“耦合螺杆长度”窗口中的Analysis, 选择Add solution setup,在弹出 对话框中做如图设置。点击工具栏 上的analyz图标开始求解
查看结果
点击工具栏上的solution data图标在弹出 的对话框中选择Eigenmode Data,可以 看到该腔体的主模谐振频率。
改变谐振杆尺寸,一直到满足频率要求, 使单腔主模谐振频率为465MHZ左右。 这里把圆盘半径设置为18.5mm,谐振频 率456.81MHZ,无载Q值3744.9
开始运算
查 看 结 果(一)
右键点击项目管理窗口中的Results,选择Creat Report, 在Traces对话框中添加s11、s12绘制曲线
历史ⅱ岳麓版第13课交通与通讯 的变化资料
驱动模腔体确定谐波位置
说
明
确定谐波的时候如果只用一个腔体则结果与实际情况相 差较大,我们常用2个耦合的腔体来确定谐波位置。 因为飞杆的影响,用这种方法得出的结果只能近似的模 拟谐波。当飞杆对谐波影响很大时这种方法就不适用了, 这种情况较少发生。
画抽头轨迹线
使用“Draw Line”命令画抽头轨迹线第一个点坐标 : “腔体_x/2,抽头位置,0”抽头位置初始化为10mm ; 第二个点坐标“腔体_x/2,抽头位置,抽头高度”
确定单腔尺寸记录Q值
HFSS 作 图
新建一个设计,命名为 “single”
画腔体
画一个长方体谐振腔,把各边长度 设置为参数,分别初始化为 53mm、50mm和65mm 命名该谐振腔为“cavity”
画谐振杆
从谐振腔底部中心画谐振杆,设置 参数,并初始化谐振杆半径为 7.5mm。谐振杆高度为63mm 命名谐振杆为“resonator”
确定窗口尺寸
说
明
使用设计软件得出各腔之间耦合系数。 用HFSS的耦合双腔模型可以求得两个腔的谐振
频率。 把谐振频率带入以下公式计算耦合系数K k=2*(f1-f2)/(f1+f2) 或者使用工作站中 matlab 里计算程序计算耦 合系数K值。 在这一部分讲到如何使用 HFSS计算窗口大小使 其耦合系数为0.01左右。