交流力矩电机控制器的电路原理与检修

交流力矩电机控制器的电路原理与检修
交流力矩电机控制器的电路原理与检修

交流力矩电机控制器的电路原理与检修

交流力矩电机控制器的电路原理与检修

一、交流力矩电动机性能简述

力矩电动机,又分为交流力矩电动机和直流力矩电动机,在电路结构上与一般的交、直流电动机相类似,但在性能上有所不同。本文以交流力矩电机控制器的原理和检修内容为重点。交流力矩电动机转子的电阻比变通交流电动机的转子电阻大,其机械特性比较软。对力矩电机的使用所注重的技术参数主要是额定堵转电压、额定堵转电流和额定堵转电流下的堵转时间等。

力矩电动机是一种具有软机械特性和宽调速范围的特种电机,允许较大的转差率,电机轴不是像变通电机一样以恒功率输出动力而是近似以恒定力矩输出动力。当负载增加时,电机转速能随之降低,而输出力矩增加;力矩电动机的堵转电流小,能承受一定时间的堵转运行。配以晶闸管控制装置,可进行调压调速,调整范围达1:4;力矩电动机适用于纺织、电线电缆、金属加工、造纸、橡胶塑料以及印刷机械等工业领域,其机械特性特别适用于卷绕、开卷、堵转和调速等工艺流程。

早期对力矩电动机的调速和出力控制,是采用大功率三相自耦变压器,来调节力矩电机的电源电压,电力电子技术相对成熟后,逐步过渡到采用晶闸管调速(调压)电路和变频器调速(调频),实施对力矩电动机的调速控制。交流力矩电动机的晶闸管调速控制器,与一般的三相晶闸管调压电路(主电路结构和控制电路)是相同的,只不过驱动负载有所不同而已。有的设备在控制环节引入电流或电压负反馈闭环控制,改善了起动和运行性能,也提高了机械特性硬度。

2 、一款最简单的力矩电动机控制器

_此主题相关图片如下,点击图片看大图:

图1 HDY-2型力矩电机控制器

这是一款适用于额定堵转电流12A以下小功率三相力矩电动机的控制器电路,整机电路安装于一个小型机壳内,机器留有6个接线端子,三个为电源进线端子,三个为电机接线端子。主电路采用双向晶闸管BT139(三端塑封元件),工作电流16A,耐压600V,触发电流≤50mA。两只双向晶闸管串接于L1、L2电源支路,L3直通,省去了一只双向晶闸管。因为三相电源经负载互成回路,只对两相电源进行移相调压控制,即改变了三相输出电压。移相触发电路和调光台灯的控制思路相同,用R、C积分电路与双向触发二极管相配合,提供双向晶闸管每个电网周期内正、负半波的两个触发电流,实现交流调压。470k电位器为双联电位器,调节时使两只双向晶闸管的控制角同步变化,使输出三相电压平衡。

〔故障实例1〕HDY-2型力矩电机控制器,工作不正常,检测为输出电压不平衡。U、W之间输出电压为380V。检查发现L1电源所接双向晶闸管BT139击穿损坏,失去调压功能,导致三相输出电压不平衡。

晶闸管调压电路中,发现1000V以下截止电压的器件,较易发生击穿损坏故障。BT139为截止电压600V的管子,处于交流电压峰值500V的边缘,虽然实际上有200V的截止电压余量(标定击穿电压值尚有100V富裕量),若用于优质电网(未被污染,电压呈较好的正弦波),一般没有问题。但问题是现在的电网,因非线性整流设备的大量安装和应用,好多地区电网波形畸变已相当严重,这使得晶闸管调压设备的运行(电气)环境变得恶劣,设备本身的应用,又反过来加剧了电网的劣变。用户和供应厂商,往往又出于成本的考虑,省掉了安装该类设备必须追加的输入电抗器!所以导致晶闸管调压设备的高故障率,表现为耐电压稍低的晶闸管模块屡被击穿!

遇有此类故障,须尽量更换反向耐压值高的管子。对于屡损晶闸管的场所,应追加输入电抗器,以改善电网供电质量。

更换损坏晶闸管器件,在三相供电回路中串入了3只由XD1-25扼流圈代作的三相电抗器,交付用户使用后,晶闸管击穿的故障率大为降低。

二、TYPE TMA-4B力矩电机控制器

TYPE TMA-4B系列力矩电机控制器,额定电压3相380V±10%;输出电压70V~365V,输出电压不平衡度<±2%;输出最大电流6~80A;转矩调节比:10:1。

1、TYPE TMA-4B力矩电机控制器的电路分析:

〔交流调压主电路〕采用BTA40三只40A600V双向塑封三端晶闸管器件,担任三相交流调压输出的任务,晶闸管器件的两端并联有压敏电阻,以吸收有害尖峰电压。U、W接有450V量程的电压表,便于监控输出电压的高低。U、W输出端还接输出电压反馈变压器(见图3),将输出电压信号反馈回控制电路,实现电压闭环控制,达到稳定输出电压的目的。

〔末级触发电路〕末级触发电路为三路脉冲变压器TB1~TB3,由前级电路的功率放大管驱动(见图3),D3、D6、D9用于吸收放大管截止期间脉冲变压器产生的反峰电压,D1/D2、D4/D5、D7/D8,用于限制触发电流的方向,使晶闸管只承受正向触发电路。末级触发电路的供电,由非稳压电源+15V供给。

〔同步信号电路〕三相交流电源经R1、R4、R7降压和限流,加至由D10~D21的三路桥式整流电路,各自取得对应电网正、负半波的同步信号。因为任一相桥式整流电路均与另两相回构成桥式整流通路,触发电路又完全依据同步脉冲进行移相控制,所以不必选择输入相序。所采集的L1+、L3-信号作为A相正半波同步信号,采集的L1-、L2+信号作为A相负半波同步信号,采集L3+、L1-信号和L2+、L1负同步信号作为补脉冲信号,也从A相移相电路输出。这种采样方式,省掉了后级补脉冲生成电路,使电路结构得以优化。整流电路所得到的正向同步信号,经PC1~PC3光耦合器隔离,在负载电阻R3、R6、R9上得到三相正向宽脉冲信号,输送到后级移相电路。

_此主题相关图片如下,点击图片看大图:

图2同步信号/末级触发电路/电源电路

〔电源电路〕电源变压器的12V交流绕组电压,经整流滤波,成为+15V非稳压电源,供末级触发电路,提供晶闸管的触发电流。

双15V绕组的交流电压,经整流、滤波,由LM7812、LM7912稳压IC得到+12V、-12V稳压电源,供前级调压信号给定电路和移相脉冲形成电路。

_此主题相关图片如下,点击图片看大图:

图3 调压控制信号电路、移相信号形成电路

〔调压控制信号电路〕见图3。调压给定信号与反馈电压信号,相减形成控制信号1,再经积分放大器输出,形成控制信号2。这是一个电压闭环PI控制电路。电位器RP1为输出电压调整信号,Q1、C1、D2、R5等元件构成恒流源电路,在R8左端形成线性上升电压,形成起动缓冲(软起)控制电路。即上电后,无论RP1在任意调整位置(D1、D2起到电位隔离作用),R8左端的给定信号,总有一个缓慢上升的过程,避免上电后给出全速信号,易发生设备故障。当调整RP1使给给定电压上升,至D1正偏导通时,R8左端电压将跟随D2的负端电压上升而上升,给定信号电压值取决于电位器RP1调整位置。RP1调整信号经1N1电压跟随器放大,与输出电压反馈信号相减后,输入1N2积分放大器的同相输入端。

输出电压由U、W输出端引入反馈变压器T1的一次绕组,经二次绕组降压后,由桥式整流电路变为直流电压信号,再由R、C网络分压和滤波,形成在一定幅度内变化的直流电压反馈信号,与给定信号相混合。积分放大器输出4V~-10V的控制信号,至移相触发电路。

〔偏置/基准电压电路〕2N3等元件对电源+12V分压并经电压跟随放大器后,输出+4.83V的第一路基准电压,作为3N3、4N3、5N3放大器反相输入端的静态偏置电压。

〔调制脉冲形成电路〕2N1、2N2电路构成自激多谐振荡器电路,振荡频率为10kHz以下。R13、R12对2N1的7脚电压分压,在2N1的同相输入端5脚形成振荡转折点,R4对C4的正、反向充电电压,在2N1的反相端6脚形成锯齿波电压,当其电压值与5脚电压值产生“交点”时,输出端7脚产生电路“跳转”,由此形成振荡输出。

输出电压波形为矩形波,占空比为1:1。

2N1输出的振荡脉冲信号,经2N2电压跟随器放大后,经二极管D3、D4、D5引入到移相脉冲功率放大器的信号输入回路中,在2N2输出负向脉冲时,D3、D4、D5导通,对低频的高电平宽脉冲进行“开槽”,完成高频调制;在2N2输出正向脉冲时,移相脉冲为低电平期间,D3、D4、D5反偏截止,调制信号不起作用。高频调制的工作过程见下图4。对触发脉冲进行高频调制,可降低后级电路脉冲变压器的直流磁化效应和减小触发功耗,提高触发电路的工作可靠性。

〔移相信号电路〕以U相移相信号电路为例。2N1电压比较器同相输入端的信号,为来自前级同步信号电路的同步脉冲信号,3N1具有信号整形作用,输出矩形正向宽脉冲(低电平对应电网过零点)。3N2输入端正反向并联二极管对2N1输出信号进行正、反向限幅后输入反相端,3N1、C4等元件组成积分放大器电路,在输入、输出端连接二极管D6,是对输入负向脉冲信号产生深度负反馈,将输出(倒相)正电压嵌位于0.7V地电平上,只对输入正向脉冲产生积分放大。输入正向矩形脉冲经积分放大器积分后,输入信号上升沿及前半部分变为斜线段,3N2输出电压为“近似负向锯齿波”。

_此主题相关图片如下,点击图片看大图:

图4 移相电路的工作过程示意波形图

3N3的基极输入信号是3N2输出负向锯齿波、2N3输出的+4.83V偏置电压和PI电路输出的信号的三者合成信号,其中控制信号经过D9输入至3N3的反上输入端,起到“拉低或抬高”3N3反相输入端电压的作用,换言之,PI控制信号起到对+4.83V偏置电压分流(分压)作用,决定着直流控制电压的高低,当给定转速信号上升或电压反馈信号变小时,PI输出电压上升,控制电压相应上升,与负向锯齿波相互作用,使m点波形占空比加大,输出脉冲上升沿左移,向电网过零点靠近,三相输出电压相应升高。反之,3N3输出脉冲占空比减小,脉冲左上升沿右移,晶闸管导通角变小,输出三相电压变低。

2、TYPE TMA-4B力矩电机控制器故障检修:

本机电路的控制电路部分,采用了5片集成运算放大器担任同步信号采样,形成高频调制脉冲和组成积分放大器、可调脉宽放大器、电压比较器电路等,已经出离“比例放大器”的范畴,其工作方式更接近或等同于开关电路,所处理的信号,也为脉冲(开关)信号。各个工作点都有相应的工作波形,如用示波器检测,是很方便的,尤其运行双踪示波器,如将同步脉冲和移相触冲相比较,还能看出移相角度。如配合给定调压信号的调节,可看到电路的移相动作(如移相触冲逐渐右移)。电路传输的脉冲电压,往往其最大值为正、负供电电源电压,但因脉冲宽度不一,所测直流电压值会有较大差异,因根据电路点的信号性质,进行测量判断。

图3电路中,除1N1工作于模拟放大状态,其余电路均近乎工作于开关状态,对正常工作时的各点工作电压都作了标注,便于检测和判断。另外,三路移相触发电路结构是相同的,可以对比测量各工作点电压值,得出检测结果。

〔故障实例2〕TYPE TMA-4B力矩电机控制器,输出严重偏相,检查主电路双向晶闸管,有一只已经击穿损坏。该类设备,主电路晶闸管故障的发生率较高。更换晶闸管后故障排除。

〔故障实例3〕TYPE TMA-4B力矩电机控制器,输出电压最高达不到300V,三相输出平衡,判断故障在Q1、1N1、1N2等PI控制电路。上电,调速RP1,检测1N1的1脚输出电压,正常时有0~5.6V的变化范围。现在测量在4V左右,比正常值偏低。判断故障可能为Q1等元件不良,导致Q1的集电极电压偏低。更换Q1,故障排除。检测Q1,基本上已无放大能力。

〔故障实例4〕YPE TMA-4B力矩电机控制器,输出偏相约50V左右。判断PI控制电路和移相控制电路,工作基本正常,产生移相角度不一致,故障可能在3N2、4N2、5N2三级移相放大器电路。放大器本身应应该是正常的,3只0.22uF电容,容量产生偏差的可能性最大。拆下3只电容检测,发现其容量偏差较大,引起三路积分输出波形的斜率不一致,使3路触发脉冲的宽度产生差异,三只晶闸管导通角不一致,产生输出电压偏相。

挑选3只容量一致的新电容,一并更换。测量三相输出电压,达到平衡要求,故障排除。

力矩电机控制器工作原理

力矩电机控制器工作原理-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

一、力矩电机控制器工作原理: 力矩电机控制器Y LJ-K-3-F系列是在原YKT-3,LTS系列力矩电机控制器的基础上改制的一种新型的电子调压(开、闭环)控制装置,主要特点是在线速度变化后,张力仍能保持在所允许的范围内,适用于卷绕产品时的张力基本保持不变,电机性能与卷绕性能协调匹配,因此能代替传统复杂的设备系统,可大大节省投资。是机电一体化力矩电机的理想配套装置。控制器采用可控硅对电机无级调速、电压调节平稳,起动性能好、体积小、重量轻、效率高、解决传统设备维护困难的缺点,延长使用寿命。本控制器有开环、闭环控制两种模式。开环控制有系统简单、调整方便等优点,闭环控制是指系统中由检测传感器,如张力传感器、速度传感器、电流传感器、位移传感器、温度传感器、流量传感器等,将所需控制的物理量转换成电压讯号反馈到控制器中,控制器通过调压方式对这些物理量实现闭环控制。控制器采用GB3797-89及Q/JBHZ2-99标准。 主要技术数据 1、额定电压:三相 380V±10%;频率: 50Hz或60Hz。 2、输出电压范围:电压从70V到365V。 3、输出最大电流:6、8A、12、22、32、50、80A。 4、输出电压三相偏差:±3%。 5、转矩调节比:10﹕1。 使用条件 1、环境温度:-5℃~+40℃,温度变化率应不大于5℃/h。 2、相对湿度:在40℃时,不超过50%;在20℃以下时,不超过90%,相对湿度的变化率不超过5%/h,且无凝露现象。 3、安装使用地点的海拔高度不超过1000m。 4、控制器在使用环境中,不得有过量的尘埃和足以使电气元器件金属腐蚀的气体。 5、控制器工作时,外部振动频率≦150Hz,振动加速度不得超过5m/s2。 6、交流输入电源 a、电压持续波动范围±10%;短暂波动不超过-10%~+15%; b、频率波动不超过±2%,频率的变化速度不超过±1%/S ;

力矩电机控制系统设计

力矩电机控制系统 一、设计目的及任务 力矩电机分直流力矩电机和交流力矩电机,其工作原理和普通直流和交流电 机的工作原理是一样的。但是不同的是直流力矩电机的电枢绕组的电阻比普通直流电机的电枢绕组的电阻大,同样交流力矩电机转子的电阻比普通交流电机的转子电阻大。对于力矩电机我们注重它的技术参数主要是额定堵转电压,额定堵转电流和额定堵转电流下的堵转时间。 力矩电机的特点是具有软的机械特性,可以堵转。当负载转矩增大时能自动 降低转速,同时加大输出转矩。当负载转矩为一定值时改变电机端电压便可调速,但转速的调整率不好。因而在电机轴上加一测速装置,配上控制器,利用测速装置输出的电压和控制器给定的电压相比,来自动调节电机的端电压,使电机稳定。 设计任务就是要设计一个控制系统来控制力矩电机,使其产生满足要求的力矩。 1、能产生所要求的力矩,可用于一些地面模拟设备上,用来模拟设备运行时的干扰力矩; 2、可用于控制系统设计课程实验设备或是控制算法的验证。 二、设计要求 本系统为力矩电机的控制系统,设计要求如下: 1、可以产生三种固定的力矩波形; 2、可以根据要求任意设定力矩波形,这样可以大大增加系统的灵活性; 3、可以实现单片机和PC的相互传输; 4、控制精度高,响应快; 5、力求简单,实用。 三、设计方案 系统的装置由光电码盘,稀土永磁直流力矩电机和飞轮组成。 在控制器的设计上,为了做到简单、实用,选择了常用的PID控制;为了提高系统的控制精度,从软件上对系统进行误差补偿。 1、系统工作原理 通过控制向力矩电机施加的电流,向飞轮施加力矩,使飞轮加速后减速旋转,反作用力矩通过模拟器机械装置的底座同时施加到连接的转台上,达到向状态施加力矩的作用,全部过程再闭环控制下进行。系统总体框图如图1所示: 图1.系统总体框图 2、控制系统描述 电机转动的角度经光电码盘检测转化为脉冲输出,对脉冲信号进行计算就得 到角度转动的累计值,控制计算机将指令与光电码盘输出的角度信号相比较,得

力矩电机控制器 工作原理

本控制器为代替三相自耦变压器,而专门设计的一种先进的全电子化控制装置,能工作在电阻、电感性负载。广泛适用于五金机械塑料、电线、电缆、绳网、印刷、造纸、纺织、印染、化疑纤、橡绞、电影胶皮等各种机械、机电行业。 与三相自藕调压器相比较,本控制器由于采用了电子调节,无触点磨损,电压调节平衡,起动性能好,本控制器具有体积小、重量轻、效率高、发热小、节约能源(经测定平均节能17%以上),使用寿命长、安装、维修方便。 二、工作条件: 1、环境温度:-25℃~+55℃。 2、空气相对湿度:≤85%(20℃±5℃)。 3、无显著冲击震动外。 4、工作电压:三相电压交流380V、220V(±10%)。 5、50~60HZ。 三、工作原理: 三相调压器调速控制器主回路采用进口双向可控硅,改变可控制硅的开放角大小,就能使电机或其它负载的工作电压从0至375V连续可调,也就实现了平衡地调压调速过程,以满足不同生产的工艺要求。 在可控硅控制电路中采用了三相同步集成模块,加入了电流正反馈,构成一个闭环控制系统。既提高了力矩电机的机械性硬度,又改善了力矩电机在低电压时的起动性能,同时还提高了力矩电机的过载能力,扩大了力矩电机的使用范围。为了使调速过程尽快进入稳定状态,在控制回路中还加入了电压反馈,以提高控制器的技术性能。 四、使用方法: 接线说明:请严格按以下接线示意图接线,D1、D2、D3三点为控制器的输出端,接力矩电机的电源线柱W1V1U1(Ⅱ型力矩电机必须为Y接法及星型接法,电机中性点W2V2U2必须严格接电源零线N,否则,本控制器无法正常工作或烧毁本装置。) 1、调速旋钮旋至零位。 2、接通总电源,打开控制器开关。(指示灯亮) 3、整好面板上反馈设定按键。(一般不需调节,出厂时已按常规设定好,可适用不同启动电压的力矩电机)。 4、调节调速电位器旋钮,使电机达到你所需的速度。

力矩电机控制器工作原1

力矩电机控制器工作原理: 力矩电机控制器Y LJ-K-3-F系列是在原YKT-3,LTS系列力矩电机控制器的基础上改制的一种新型的电子调压(开、闭环)控制装置,主要特点是在线速度变化后,张力仍能保持在所允许的范围内,适用于卷绕产品时的张力基本保持不变,电机性能与卷绕性能协调匹配,因此能代替传统复杂的设备系统,可大大节省投资。是机电一体化力矩电机的理想配套装置。控制器采用可控硅对电机无级调速、电压调节平稳,起动性能好、体积小、重量轻、效率高、解决传统设备维护困难的缺点,延长使用寿命。本控制器有开环、闭环控制两种模式。开环控制有系统简单、调整方便等优点,闭环控制是指系统中由检测传感器,如张力传感器、速度传感器、电流传感器、位移传感器、温度传感器、流量传感器等,将所需控制的物理量转换成电压讯号反馈到控制器中,控制器通过调压方式对这些物理量实现闭环控制。控制器采用GB3797-89及Q/JBHZ2-99标准。 主要技术数据 1、额定电压:三相380V±10%;频率: 50Hz或60Hz。 2、输出电压范围:电压从70V到365V。 3、输出最大电流:6、8A、12、22、32、50、80A。 4、输出电压三相偏差:±3%。 5、转矩调节比:10﹕1。 使用条件 1、环境温度:-5℃~+40℃,温度变化率应不大于5℃/h。 2、相对湿度:在40℃时,不超过50%;在20℃以下时,不超过90%,相对湿度的变化率不超过5%/h,且无凝露现象。 3、安装使用地点的海拔高度不超过1000m。 4、控制器在使用环境中,不得有过量的尘埃和足以使电气元器件金属腐蚀的气体。 5、控制器工作时,外部振动频率≦150Hz,振动加速度不得超过5m/s2。 6、交流输入电源 a、电压持续波动范围±10%;短暂波动不超过-10%~+15%; b、频率波动不超过±2%,频率的变化速度不超过±1%/S ; c、三相电源的不平衡度不大于2%; d、波形畸变不超过5%。 工作原理与电路特性: 控制器主要电路采用三相全波Y联接,可任意选择所需要的负载形式,即为三角形或星形(星形负载中线不必联接);与其他类型电路相比这样的电路优点是输出谐波分量低,使电机内部损耗小于任何一种其他类型的电路,则电路效率高,并对邻近通讯电路干扰小,是控制器各种形式主电路中最为理想的一种。 控制器采用进口的双向晶闸管,改变流过电机交流电流的导通角,从而使电机的工作电压从70V~365V连续可调,以适应不同的工作情况;控制电路中采用宽脉冲及光电耦合管来触发主晶闸管,采用自动跟踪控制方法,用三相网路相位同步控制,保证三相输出自动平衡,并通过输出反馈控制,能有效地防止电机在运行过程调压失控;其次对电机起动、关机均采取了控制措施。因此产品性能优良,具有抗干扰能力强,起动性能好,平稳,无电流冲击,运行稳定,可靠等优点。 本控制器除具有同类型控制器特点之外,还有以下独具的特点。 1. 控制器有二种工作模式选择:即调压工作模式、反馈控制模式。 调压工作模式:工作电压从70V~365V连续可调。 反馈控制模式:可进行恒张力反馈或速度反馈控制,视反馈信号性质的不同。

电机控制线路图大全

电机控制线路图大全 Y-△(星三角)降压启动控制线路-接触器应用接线图 Y-△降压启动适用于正常工作时定子绕组作三角形连接的电动机。由于方法简便且经济,所以使用较普遍,但启动转矩只有全压启动的三分之…,故只适用于空载或轻载启动。 Y-△启动器有OX3-13、Qx3—30、、Qx3—55、QX3—125型等。OX3后丽的数字系指额定电压为380V时,启动器可控制电动机的最大功率值(以kW计)。 OX3—13型Y-△自动启动器的控制线路如图11—11所示。(https://www.360docs.net/doc/3c4846886.html,) 合上电源开关Qs后,按下启动按钮SB2,接触器KM和KMl线圈同时获电吸合,KM和KMl 主触头闭合,电动机接成Y降压启动,与此同时,时间继电器KT的线圈同时获电,I 星形—三角形降压起动控制线路

星形——三角形降压起动控制线路 星形——三角形( Y —△)降压起动是指电动机起动时,把定子绕组接成星形,以降低起动电压,减小起动电流;待电动机起动后,再把定子绕组改接成三角形,使电动机全压运行。 Y —△起动只能用于正常运行时为△形接法的电动机。 1.按钮、接触器控制 Y —△降压起动控制线路 图 2.19 ( a )为按钮、接触器控制 Y —△降压起动控制线路。线路的工作原理为:按下起动按钮 SB1 , KM1 、 KM2 得电吸合, KM1 自锁,电动机星形起动,待电动机转速接近额定转速时,按下 SB2 , KM2 断电、 KM3 得电并自锁,电动机转换成三角形全压运行。 2.时间继电器控制 Y —△降压起动控制线路 图 2.19 ( b )为时间继电器自动控制 Y —△降压起动控制线路,电路的工作原理为:按下起动按钮 SB1 , KM1 、 KM2 得电吸合,电动机星形起动,同时 KT 也得电,经延时后时间继电器 KT 常闭触头打开,使得 KM2 断电,常开触头闭合,使得 KM3 得电闭合并自锁,电动机由星形切换成三角形正常运行。 图2定子串电阻降压起动控制线路

YLJ系列力矩电机简介

YLJ系列力矩电机简介 YLJ、YDLJ系列力矩三相异步电动机是一种具有软机械特性和宽调速的范围的 特种电机。当负载增加时,电动机的转速能自动的随之降低,而输出力矩增加,保持与负载平衡。力矩电机的堵转转矩高,堵转电流小,能承受一定时间的堵转运行。由于转子电阴高,损耗大,所产生的热量也大,特别在低速运行和堵转时更为严重,因此,电机在后端盖上装有独立的轴流或离心式风机(输出力矩较小100机座号及以下除外),作强迫通风冷却,力矩电机配以可控硅控制装置,可进行调压调速,调速范围可达1:4,转速变化率≤10%。本系列电机的特性使其适用于卷绕,开卷、堵转和调速等场合及其他用途,被广泛应用于纺织、电线电缆、金属加工、造纸、橡胶、塑料以及印刷机械等工业领域。 应用范围 一、卷绕: 在电线电缆、纺织、金属加工、造纸等加工时,卷绕是一个十分重要的工序。产品卷绕时卷筒的直径逐渐增大,在整个过程中保持被卷产品的张力不变十分重要,因为张力过大会将线材的线径拉细甚至拉断,或造成产品的厚薄不均匀,而张力过小则可造成卷绕松驰。为使在卷绕过程中张力保持不变,必须在产品卷绕到卷盘上的盘径增大时驱动卷筒的电机的输出力矩也增大,同时为保持卷绕产品线速度不变,须使卷盘的转速随之降低,力矩电动机的机械特性恰好能满足这一要求。图一、为卷绕工序示意图、典型力矩电机转矩-转速特性与卷绕张力的匹配曲线。在力矩电机1/3~2/3N0转速范围内(卷径比1:2)二条曲线相交的阴影部份,卷绕特性最为理想,这时P=F·V=常数即T·n=常数(P:功率、F:张力、V线速度、T:力矩、n:电机转速)。对于卷径比1:3、1:4或更大时,在一定程度上也能达到控制张力的要求,只是精度稍差,对卷径比大且张力控制精度要求较高的场合,可选用双速或三速力矩电机来达到。 通常每台设备生产的品种和规格较多,在材料和规格变化时,所要求的张力和转速也不同,这时可利用调压装置调节电机端电压,即可达到增减电机输出力矩的目的。图二、为不同电压力矩电机特性曲线族,此时输出力矩与电压的关系为 TαU2。 力矩电机卷绕时具有优点: 1.从空盘到满盘过程中张力保持稳定。 2.张力调节方便,一次调节后能正确重复。 3.结构可靠,维护方便,控制,操作简便, 成本低。 二、开卷(制动恒功率特性) 开卷亦称松卷、放卷、放线等,见图三。在工业生产中,有时需要把卷绕在滚筒上的产品输送到下一个工序。在输送过程中,要求施于产品一个与传动方向相反的张力,同时要求随着筒径的变化,而保持产品传动的线速度和反张力恒定,这就要求电机具有制动恒功率特性。利用力矩电机在制动状态的机械特性,见图四,把已成卷的产品松开后再加工,可防止产品在开卷过程中因时松时紧而影响质量。其原理同于卷绕时一样分析。 三、无级调速 力矩电机的机械特性很软,当负载增加时,电机的转速降低,输出力矩增加,而输出力矩是正比于电压的平方。如果负载固定,则电机的转速将随电压变化而变化,如图五所示。因此在负载恒定的装置上,只要通过调压装置改变电机的输入

力矩电机

当负载增加时,电动机的转速能自动的随之降低,而输出力矩增加,保持与负载平衡。力矩电机的堵转转矩高,堵转电流小,能承受一定时间的堵转运行。由于转子电阴高,损耗大,所产生的热量也大,特别在低速运行和堵转时更为严重,因此,电机在后端盖上装有独立的轴流或离心式风机(输出力矩较小100机座号及以下除外),作强迫通风冷却,力矩电机配以可控硅控制装置,可进行调压调速,调速范围可达1:4,转速变化率≤10%。本系列电机的特性使其适用于卷绕,开卷、堵转和调速等场合及其他用途,被广泛应用于纺织、电线电缆、金属加工、造纸、橡胶、塑料以及印刷机械等工业领域。 力矩电机的特点是具有软的机械特性,可以堵转.当负载转矩增大时能自动降低转速,同时加大输出转矩.当负载转矩为一定值时改变电机端电压便可调速.但转速的调整率不好!因而在电机轴上加一测速装置,配上控制器.利用测速装置输出的电压和控制器给定的电压相比,来自 动调节电机的端电压.使电机稳定!具有低转速、大扭矩、过载能力强、响应快、特性线性度好、力矩波动小等特点,可直接驱动负载省去减速传动齿轮,从而提高了系统的运行精度。为取得不同性能指标,该电机有小气隙、中气隙、大气隙三种不同结构形式,小气隙结构,可以满足一般使用精度要求,优点是成本较低;大气隙结构,由于气隙增大,消除了齿槽效应,减小了力矩波动,基本消除了磁阻的非线性变化,电机线性度更好,电磁气隙加大,电枢电感小,电气时间常数小,但是制造成本偏高;中气隙结构,其性能指标略低于大气隙结构电机,但远高于小气隙结构电机,而体积小于大气隙结构电机,制造成本低于大气隙结构电机。 在纺织、造纸、橡胶、塑料、金属线材和电线电缆等工业中,需要将产品卷绕在卷筒(盘)上。卷绕的直径从开始至末了是越卷越大,为保持被卷物张力均匀(即线速度不变),就要求卷筒转速越卷越小,卷绕力越卷越大. 一、卷绕: 力矩电机 在电线电缆、纺织、金属加工、造纸等加工时,卷绕是一个十分重要的工序。产品卷绕时卷筒的直径逐渐增大,在整个过程中保持被卷产品的张力不变十分重要,因为张力过大会将线材的线径拉细甚至拉断,或造成产品的厚薄不均匀,而张力过小则可造成卷绕松驰。为使在卷绕过程中张力保持不变,必须在产品卷绕到卷盘上的盘径增大时驱动卷筒的电机的输出力矩也增大,同时为保持卷绕产品线速度不变,须使卷盘的转速随之降低,力矩电动机的机械特性恰好能满足这一要求。

力矩电机技术水平分析及关键技术

力矩电机技术水平分析及关键技术 沈阳机床集团 技术中心 立式加工中心项目组 2006年10月

–Firstly—力矩电机简介及技术分析 力矩电动机(torque motor),也有人翻译为扭矩电机,力矩电动机与直线电动机相似,为基于同步传动技术的直接驱动电动机.与直线电动机的高速度不同的是,力矩电动机经常工作在较低的速度,并且在这种较低的额定转速下输出很高的扭矩. 它本质是低速大扭矩的伺服电动机,与我们熟悉的伺服电机分类相同,分为直流,无刷直流,正弦交流几种。 a.永磁直流力矩电动机技术 永磁式直流力矩电机属于低速直流伺服电动机,通常使用在堵转或低速情况下。 其特点是堵转力矩大,空载转速低,不需要任何减速装置可直接驱动负载,过载能力强。长期堵转时能产生足够大的转矩而不损坏。广泛应用于各种雷达天线的驱动、光电跟踪等高精度传动系统、以及一般仪器仪表驱动装置上。 2专利技术: 目前国内外关于直流永磁力矩电动机的专利文献主要针对电动机的结构,以及槽极数的设计,其发展趋势是使该类力矩发动机的结构更紧凑、力矩更大。其中美国专利US5990584(公开日:1999-11-23)涉及一种永磁直流力矩电动机,其定子安装在基座上悬臂中,并嵌套在一个杯形转子中。其永磁体贴在转子的内部,定子铁心外部由线圈直接包成网状,可加工成片状或薄板状。磁极片具有缩短的电极靴表面与转子磁体形成放射形的间隙。磁极片向轴向和横向扩展,轴向磁极片的扩展部分可提供给定电动机所有的磁通量,无需再增加电流的安培。 国内实用新型95218685.3(公开日:1996.12.18)也涉及一种大力矩直流电动机,转子采用双数正槽,单层绕组,换向片至少6片,使转子产生的磁场与定子磁场的磁轴交角小于直角(30-45°)。具有起动力矩大,机械加工容易,省工省料,制造维修方便,工作可靠,过负荷能力强,使用寿命长等特点。 2产品介绍: 国外永磁直流力矩电动机的主要生产厂商有美国Kollmorgen公司、Poly-Scientific公司、英国Muirhead Aerospace等公司,设计生产了各种型号的永磁直流力矩电动机,其中美国Kollmorgen公司的直流力矩电机由永磁场和绕线式电

交流力矩电机控制器的电路原理与检修

交流力矩电机控制器的电路原理与检修 交流力矩电机控制器的电路原理与检修 一、交流力矩电动机性能简述 力矩电动机,又分为交流力矩电动机和直流力矩电动机,在电路结构上与一般的交、直流电动机相类似,但在性能上有所不同。本文以交流力矩电机控制器的原理和检修内容为重点。交流力矩电动机转子的电阻比变通交流电动机的转子电阻大,其机械特性比较软。对力矩电机的使用所注重的技术参数主要是额定堵转电压、额定堵转电流和额定堵转电流下的堵转时间等。 力矩电动机是一种具有软机械特性和宽调速范围的特种电机,允许较大的转差率,电机轴不是像变通电机一样以恒功率输出动力而是近似以恒定力矩输出动力。当负载增加时,电机转速能随之降低,而输出力矩增加;力矩电动机的堵转电流小,能承受一定时间的堵转运行。配以晶闸管控制装置,可进行调压调速,调整范围达1:4;力矩电动机适用于纺织、电线电缆、金属加工、造纸、橡胶塑料以及印刷机械等工业领域,其机械特性特别适用于卷绕、开卷、堵转和调速等工艺流程。 早期对力矩电动机的调速和出力控制,是采用大功率三相自耦变压器,来调节力矩电机的电源电压,电力电子技术相对成熟后,逐步过渡到采用晶闸管调速(调压)电路和变频器调速(调频),实施对力矩电动机的调速控制。交流力矩电动机的晶闸管调速控制器,与一般的三相晶闸管调压电路(主电路结构和控制电路)是相同的,只不过驱动负载有所不同而已。有的设备在控制环节引入电流或电压负反馈闭环控制,改善了起动和运行性能,也提高了机械特性硬度。 2 、一款最简单的力矩电动机控制器 _此主题相关图片如下,点击图片看大图: 图1 HDY-2型力矩电机控制器 这是一款适用于额定堵转电流12A以下小功率三相力矩电动机的控制器电路,整机电路安装于一个小型机壳内,机器留有6个接线端子,三个为电源进线端子,三个为电机接线端子。主电路采用双向晶闸管BT139(三端塑封元件),工作电流16A,耐压600V,触发电流≤50mA。两只双向晶闸管串接于L1、L2电源支路,L3直通,省去了一只双向晶闸管。因为三相电源经负载互成回路,只对两相电源进行移相调压控制,即改变了三相输出电压。移相触发电路和调光台灯的控制思路相同,用R、C积分电路与双向触发二极管相配合,提供双向晶闸管每个电网周期内正、负半波的两个触发电流,实现交流调压。470k电位器为双联电位器,调节时使两只双向晶闸管的控制角同步变化,使输出三相电压平衡。 〔故障实例1〕HDY-2型力矩电机控制器,工作不正常,检测为输出电压不平衡。U、W之间输出电压为380V。检查发现L1电源所接双向晶闸管BT139击穿损坏,失去调压功能,导致三相输出电压不平衡。 晶闸管调压电路中,发现1000V以下截止电压的器件,较易发生击穿损坏故障。BT139为截止电压600V的管子,处于交流电压峰值500V的边缘,虽然实际上有200V的截止电压余量(标定击穿电压值尚有100V富裕量),若用于优质电网(未被污染,电压呈较好的正弦波),一般没有问题。但问题是现在的电网,因非线性整流设备的大量安装和应用,好多地区电网波形畸变已相当严重,这使得晶闸管调压设备的运行(电气)环境变得恶劣,设备本身的应用,又反过来加剧了电网的劣变。用户和供应厂商,往往又出于成本的考虑,省掉了安装该类设备必须追加的输入电抗器!所以导致晶闸管调压设备的高故障率,表现为耐电压稍低的晶闸管模块屡被击穿! 遇有此类故障,须尽量更换反向耐压值高的管子。对于屡损晶闸管的场所,应追加输入电抗器,以改善电网供电质量。 更换损坏晶闸管器件,在三相供电回路中串入了3只由XD1-25扼流圈代作的三相电抗器,交付用户使用后,晶闸管击穿的故障率大为降低。

直流力矩电动机

1.3 直流力矩电动机 1.3.1 概述 在某些自动控制系统中,被控对象的运动速度相对来说是比较低的。例如某一种防空雷达天线的最高旋转速度为90°/s,这相当于转速15 r/min。一般直流伺服电动机的额定转速为1500 r/min或3000 r/min,甚至6000 r/min,这时就需要用齿轮减速后再去拖动天线旋转。但是齿轮之间的间隙对提高自动控制系统的性能指标很有害,它会引起系统在小范围内的振荡和降低系统的刚度。因此,我们希望有一种低转速、大转矩的电动机来直接带动被控对象。 直流力矩电动机就是为满足类似上述这种低转速、大转矩负载的需要而设计制造的电动机。它能够在长期堵转或低速运行时产生足够大的转矩,而且不需经过齿轮减速而直接带动负载。它具有反应速度快、转矩和转速波动小、能在很低转速下稳定运行、机械特性和调节特性线性度好等优点。特别适用于位置伺服系统和低速伺服系统中作执行元件,也适用于需要转矩调节、转矩反馈和一定张力的场合(例如在纸带的传动中)。 1.3.2 结构特点 直流力矩电动机的工作原理和普通的直流伺服电动机相同,只是在结构和外形尺寸的比例上有所不同。一般直流伺服电动机为了减少其转动惯量,大部分做成细长圆柱形。而直流力矩电动机为了能在相同的体积和电枢电压下产生比较大的转矩和低的转速,一般做成圆盘状,电枢长度和直径之比一般为0.2 左右;从结构合理性来考虑,一般做成永磁多极的。为了减少转矩和转速的波动,选取较多的槽数、换向片数和串联导体数。 总体结构型式有分装式和内装式两种,分装式结构包括定子、转子和刷架三大部件,机壳和转轴由用户根据安装方式自行选配;内装式则与一般电机相同,机壳和轴已由制造厂装配好。 图1 - 28 直流力矩电动机的结构示意图 1.3.3 为什么直流力矩电动机转矩大、转速低 如上所述,力矩电动机之所以做成圆盘状,是为了能在相同的体积和控制电压下产

力矩控制器原理与接线

力矩控制器 一.概述 力矩控制器为代替三相自耦变压器,而专门设计的一种先进的全电子化控制装置,能工作在电阻、电感性负载。此控制器广泛应用于五金机械塑料、电线、电缆、绳网、印刷、造纸、纺织、印染、化疑纤、橡绞、电影胶皮等各种机械、机电行业。 与三相自藕调压器相比较,本控制器由于采用了电子调节,无触点磨损,电压调节平衡,起动性能好,本控制器具有体积小、重量轻、效率高、发热小、节约能源(经测定平均节能17%以上),使用寿命长、安装、维修方便。 二.技术参数 1.输入电压:三相交流电压 380V±10% 2.输出电压:三相交流电压 0-380V 3.额定电流:标称电流(面板上标称的电流) 4.输出电压可以无极调节,从而使电机实现无极调速 5、频率50~60HZ。 三.工作环境 1、环境温度:-25℃~+55℃。 2、空气相对湿度:≤85%(20℃±5℃)。 3、无显著冲击震动。 四.工作原理 三相调压器调速控制器主回路采用进口双向可控硅,改变可控硅的开放角大小,就能使电机或其它负载的工作电压从0至380V连续可调,也就实现了平衡地调压调速过程,以满足不同生产的工艺要求。 在可控硅控制电路中采用了先进的集成电路,加入了电

流回馈, 构成一个循环控制系统。既提高了力矩电机的机械性硬度,又改善性能,同时还提高了力矩电机的超载能力,扩大了力矩电机的使用范围。为了使调速过程尽快进入稳定状态,在控制回路中还加入了电压回馈以提高控制器的技术性能。 五.使用方法 1. 接线说明:请严格按以下接线示意图接线:D1、D2、D3三点为 控制器的输出端,接力矩电机;A 、B 、C 、为输入端接三相380V 电源。 N 为零线接口,接零线。 2.旋钮旋至零位。 3.总电源。(指示灯亮) 4.控制开关,调节调速电位器旋钮,使电机达到你所需的速度。 5. 电位器为精密长寿电位器。 六.注意事项 1.严禁输出短路。 2.严禁使用中,负载电流超过过面板标称电流值。 3、严禁零线N 接入电机星点. 4、若控制器出现问题务必请专业人员检修,以免使故障范围扩大. 六.接线图 A B C D1D2D3A B C 输入 380V 输出 0~380V V 1 U1 W1 W2V 2U2力矩电机 A B C D1D2D3 A B C 输入 380V 输出 0~380V V 1 U1 W1 W2V 2U2力矩电机 N

伺服电机驱动控制器DOC

目录 一、伺服驱动概述 (1) 二、本产品特性 (2) 三、电路原理图及PCB版图 (4) 四、电路功能模块分析 (4) 五、焊接(附元件清单) (14)

一.伺服驱动概述 1. 伺服电机的概念 伺服电机是在伺服系统中控制机械元件运转的发动机,作为一种执行元件,把所收到的电信号转换成电动机轴上的角位移或角速度输出,是一种补助马达间接变速装置。伺服电机是可以连续旋转的电-机械转换器,直流伺服电机的输出转速与输入电压成正比,并能实现正反向速度控制。 2.伺服电机分类 普通直流伺服电动机 直流伺服电机低惯量直流伺服电动机 直流力矩电动机 3. 控制系统对伺服电动机的基本要求 宽广的调速范围 机械特性和调节特性均为线性 无“自转”现象 快速响应 控制功率小、重量轻、体积小等。 4. 直流伺服电机的基本特性 (1)机械特性在输入的电枢电压Ua保持不变时,电机的转速n随电磁转矩M变化而变化的规律,称直流电机的机械特性 (2)调节特性直流电机在一定的电磁转矩M(或负载转矩)下电机的稳态转速n随电枢的控制电压Ua变化而变化的规律,被称为直流电机的调节特性 (3)动态特性从原来的稳定状态到新的稳定状态,存在一个过渡过程,这就是直流电机的动态特性。 5. 直流伺服电机的驱动原理 伺服主要靠脉冲来定位,基本上可以这样理解,伺服电机接收到1个脉冲,就会旋转1个脉冲对应的角度,从而实现位移,因为,伺服电机本身具备发出脉冲的功能,所以伺服电机每旋转一个角度,都会发出对应数量的脉冲,这样,和伺服电机接受的脉冲形成了呼应,或者叫闭环,如此一来,系统就会知道发了多少脉冲给伺服电机,同时又收了多少脉冲回来,这样,就能够很精确的控制电机的转动,从而实现精确的定位,可以达到0.001mm 直流伺服电机分为有刷和无刷电机。有刷电机成本低,结构简单,启动转矩大,调速范围宽,控制容易,需要维护,但维护方便(换碳刷),产生电磁干扰,对环境有要求。因此它可以用于对成本敏感的普通工业和民用场合。无刷直流伺服电机电机体积小,重量轻,出力大,响应快,速度高,惯量小,转动平滑,力矩稳定。容易实现智能化,其电子换相方式灵活,可以方波换相或正弦波换相。电机免维护不存在碳刷损耗的情况,效率很高,运行温度低噪音小,电磁辐射很小,长寿命,可用于各种环境

力矩电机与变频

一、摘要 本文介绍了欧瑞传动有速度传感器矢量变频器替代力矩电机在塑料机械和印刷机械收卷设备上的应用方案,由于它具有宽阔的转速/转矩设定范围、运行特性更加平滑,已经越来越多地被用于塑料包装和印刷企业。 (1) 力矩电机概述 力矩电机是一种具有软机械特性和宽调速范围的特种电机。力矩电机包括:直流力矩电机、交流力矩电机、和无刷直流力矩电机。 (2) 力矩电机的构造原理 当负载增加时,电动机的转速能自动的随之降低,而输出力矩增加,保持与负载平衡。力矩电机的堵转转矩高,堵转电流小,能承受一定时间的堵转运行。由于转子电阴高,损耗大,所产生的热量也大,特别在低速运行和堵转时更为严重,因此,电机在后端盖上装有独立的轴流或离心式风机(输出力矩较小100机座号及以下除外),作强迫通风冷却,力矩电机配以可控硅控制装置,可进行调压调速,调速范围可达1:4,转速变化率≤10%。本系列电机的特性使其适用于卷绕,开卷、堵转和调速等场合及其他用途,被广泛应用于纺织、电线电缆、金属加工、造纸、橡胶、塑料以及印刷机械等工业领域。 (3) 力矩电机主要特点 力矩电机的特点是具有软的机械特性,可以堵转.当负载转矩增大时能自动降低转速,同时加大输出转矩.当负载转矩为一定值时改变电机端电压便可调速.但转速的调整率不好!因而在电机轴上加一测速装置,配上控制器.利用测速装置输出的电压和控制器给定的电压相比,来自动调节电机的端电压.使电机稳定! 具有低转速、大扭矩、过载能力强、响应快、特性线性度好、力矩波动小等特点,可直接驱动负载省去减速传动齿轮,从而提高了系统的运行精度。为取得不同性能指标,该电机有小气隙、中气隙、大气隙三种不同结构形式,小气隙结构,可以满足一般使用精度要求,优点是成本较低;大气隙结构,由于气隙增大,消除了齿槽效应,减小了力矩波动,基本消除了磁阻的非线性变化,电机线性度更好,电磁气隙加大,电枢电感小,电气时间常数小,但是制造成本偏高;中气隙结构,其性能指标略低于大气隙结构电机,但远高于小气隙结构电机,而体积小于大气隙结构电机,制造成本低于大气隙结构电机。 (4) 力矩电机应用 在机械制造、纺织、造纸、橡胶、塑料、金属线材和电线电缆等工业中,需要将产品卷绕在卷筒(盘)上。卷绕的直径从开始至末了是越卷越大,为保持被卷物张力均匀(即线速度不变),就要求卷筒转速越卷越小,卷绕力越卷越大。应用特性卷绕、开卷(制动恒功率特性)、无级调速等。 1、卷绕 在电线电缆、纺织、金属加工、造纸等加工时,卷绕是一个十分重要的工序。产品卷绕时卷筒的直径逐渐增大,在整个过程中保持被卷产品的张力不变十分重要,因为张力过大会将线材的线径拉细甚至拉断,或造成产品的厚薄不均匀,而张力过小则可造成卷绕松弛。为使在卷绕过程中张力保持不变,必须在产品卷绕到卷盘上的盘径增大时驱动卷筒的电机的输出力矩也增大,同时为保持卷绕产品线速度不变,须使卷盘的转速随之降低,力矩电动机的机械特性恰好能满足这一要求。 2、开卷(制动恒功率特性) 开卷亦称松卷、放卷、放线等。在工业生产中,有时需要把卷绕在滚筒上的产品输送到下一个工序。在输送过程中,要求施于产品一个与传动方向相反的张力,同时要求随着筒径

电动车无刷控制器电路图(高清)

今以应用最广泛的以PIC16F72为智能控制中心,350W的整机电路为例,整机电路如图1: (原文件名:1.gif) 图1:350W整机电路图 整机电路看起来很复杂,我们将其简化成框图再看看: (原文件名:2.gif) 图2:电路框图

电路大体上可以分成五部分: 一、电源稳压,供应部分; 二、信号输入与预处理部分; 三、智能信号处理,控制部分; 四、驱动控制信号预处理部分; 五、功率驱动开关部分。 下面我们先来看看此电路最核心的部分:PIC16F72组成的单片机智能处理、控制部分,因为其他电路都是为其服务或被其控制,弄清楚这部分,其它电路就比 较容易明白。 (原文件名:3.gif)

图3:PIC16F72在控制器中的各引脚应用图 我们先来简单介绍一下PIC16F72的外部资源:该单片机有28个引脚,去掉电源、复位、振荡器等,共有22个可复用的IO口,其中第13脚是CCP1输出口,可输出最大分辨率达10BIT的可调PWM信号,另有AN0-AN4共5路AD模数转换输入口,可提供检测外部电路的电压,一个外部中断输入脚,可处理突发事件。内部软件资源我们在软件部分讲解,这里并不需要很关心。 各引脚应用如下: 1:MCLR复位/烧写高压输入两用口 2:模拟量输入口:放大后的电流信号输入口,单片机将此信号进行A-D转换后经过运算来控制PWM的输出,使电流不致过大而烧毁功率管。正常运转时电压应在0-1.5V左右 3:模拟量输入口:电源电压经分压后的输入口,单片机将此信号进行A-D转换后判断电池电压是否过低,如果低则切断输出以保护电池,避免电池因过放电而损坏。正常时电压应在3V以上 4:模拟量输入口:线性霍尔组成的手柄调速电压输入口,单片机根据此电压高低来控制输出给电机的总功率,从而达到调整速度的目的。 5:模拟/数字量输入口:刹车信号电压输入口。可以使用AD转换器判断,或根据电平高低判断,平时该脚为高电平,当有刹车信号输入时,该脚变成低电平,单片机收到该信号后切断给电机的供电,以减少不必要的损耗。 6:数字量输入口:1+1助力脉冲信号输入口,当骑行者踏动踏板使车前行时,该口会收到齿轮传感器发出的脉冲信号,该信号被单片机接收到后会给电机输出一定功率以帮助骑行者更轻松地往前走。 7:模拟/数字量输入口:由于电机的位置传感器排列方法不同,该口的电平高低决定适合于哪种电机,目前市场上常见的有所谓120°和60°排列的电机。有的控制器还可以根据该口的电压高低来控制起动时电流的大小,以适合不同的力度需求。 8:单片机电源地。 9:单片机外接振荡器输入脚。 10:单片机外接振荡器反馈输出脚。 11:数字输入口:功能开关1 12:数字输入口:功能开关2 13:数字输出口:PWM调制信号输出脚,速度或电流由其输出的脉冲占空比宽度控制。 14:数字输入口:功能开关3 15、16、17:数字输入口:电机转子位置传感器信号输入口,单片机根据其信号变化决定让电机的相应绕组通电,从而使电机始终向需要的方向转动。这个信

力矩电机调速控制器的设计

设计(论文)专用纸力矩电机调速控制器的设计 学校: 昆明理工大学 学院: 应用技术学院 姓名: 专业班级:电子信息工程081 指导教师单位: 应用技术学院 指导教师姓名:仉月仙 指导教师职称:讲师

设计(论文)专用纸Torque motor speed controller design University: Kunming University of Science and Technology Faculty: Faculty of Applied Technology Name: Wu Wen Ya Professional class: Electronic Information Engineering 081 Faculty Adviser Unit: Faculty of Applied Technology Faculty Adviser Name: Zhang Yue Xian Professional Title: Lecturer

设计(论文)专用纸 目录 摘要 (1) ABSTRACT (2) 前言 (3) 第一章绪论 (5) 1.1力矩电机 (5) 1.2调压调速 (6) 1.3课题研究的背景及其意义 (7) 1.4设计的主要目标任务 (7) 第二章设计方案及其论证 (9) 第三章系统硬件电路设计 (12) 3.1电源模块设计 (12) 3.1.1 电源的方案设计 (12) 3.1.2 元器件的选择 (12) 3.1.3 电源电路的电路图 (15) 3.1.4 元器件明细表 (15) 3.2主电路的模块设计 (16) 3.2.1 主电路方案设计 (16) 3.2.2 元器件的选择 (16) 3.2.3 主电路电路图 (19) 3.2.4 元器件明细表 (19) 3.3控制电路部分设计 (20) 3.3.1 控制电路方案设计 (20) 3.3.2 控制电路元件的选择 (20) 3.3.3 控制电路电路图 (30) 3.3.4 元件明细表 (31) 第四章调试与制作 (33) 4.1制作过程 (33) 4.2调试过程 (33) 结论 (36) 总结与体会 (37) 谢辞 (39)

《直流力矩电机》

永磁式直流力矩电动机 1.概述 永磁式直流力矩电动机是一种特殊的控制电机,是作为高精度伺服系统的执行元件,适应大扭矩、直接驱动系统,安装空间又很紧凑的场合而特殊设计的控制电机。 实际上,许多自动控制系统控制对象的运动速度相对是比较低的,比如:地面搜索雷达天线的控制系统;陀螺平台的稳定系统;单晶炉的旋转系统;精密拉丝系统等等,在这些控制系统中如果采用齿轮减速驱动,将会大大降低系统的精度,增加系统的惯量和反应时间,加大传动噪声。如果采用力矩电机组成的直接驱动系统,就能够在很宽的范围内达到低速平稳运行,大大提高系统的精度,降低系统的噪声。还有一些负载运行在很低的速度,接近堵转状态,或是负载轴端要加一定的制动反力矩,这些场合,都适合采用力矩电机。 2.性能特点 永磁式直流力矩电动机的性能有以下特点: 2.1高的转矩惯量比 一方面力矩电机设计成在一定体积下输出尽可能大的转矩,另一方面,实现无齿轮传动,从负载轴端看,折算到负载轴上转矩与惯量之比比齿轮传动大一个齿轮传动比的倍数,使系统加速能力大大增加。 2.2高的藕合刚度 力矩电机直接装置于负载轴或轮毂上,没有齿隙,没有弹性变形,传动链短,使系统伺服刚度得以提高。 2.3快的响应速度 力矩电机具有高转矩惯量比,使电机机械时间常数比较小,同时,电气时间常数也很小,保证了在宽广运行速度下都能快速响应,大大提高系统的硬度和品质。 2.4高的速度和位置分辩率 与齿轮或液压传动系统相比,没有齿隙引起的零点死区,减少了传动链 中传动部件的非线性因素,使系统的分辩率仅取决于误差检测元件的精度。 2.5高线性度

转矩的增长正比于输入电流,不随速度和角位置而变化,转矩~电流 特性基本通过零点,非线性死区很小。 2.6结构紧凑 典型的力矩电机设计成分装式的薄环形状(由定子、转子、电刷架三大 件组成),安装时占用较小的空间,尤其在对轴向尺寸、体积、重量要求严格的场合,具有较大的结构适应性和灵活性。 3. 性能指标说明 3.1峰值堵转转矩 电机受磁钢祛磁条件限制及设计中考虑最佳性能时,施加峰值电流电机处于瞬间堵转状态,此时输出的转矩为峰值堵转转矩。 3.2峰值堵转电流 对应峰值堵转转矩时输入的最大电流。 3.3峰值堵转电压 对应于产生峰值堵转电流时的电枢电压。 3.4连续堵转转矩 电机受发热、散热条件及电机绝缘等级条件限制,允许的长期堵转输出的转矩。 3.5连续堵转电流 对应连续堵转转矩时施加的电流。 3.6连续堵转电压 对应于产生连续堵转电流时的电枢电压。 3.7最大空载转速 力矩电机在空载时加以峰值堵转电压所达到的稳定速度。 4.电动机的工作特性 永磁式直流力矩电动机的工作特性见下图:

电动汽车电机控制器原理

电动汽车电机控制器 一、电机控制器的概述 根据GB/T 18488.1-2001《电动汽车用电机及其控制器技术条件》对电机控制器的定义,电机控制器就是控制主牵引电源与电机之间能量传输的装置、是由外界控制信号接口电路、电机控制电路和驱动电路组成。 电机、驱动器和电机控制器作为电动汽车的主要部件,在电动汽车整车系统中起着非常重要的作用,其相关领域的研究具有重要的理论意义和现实意义。 二、电机控制器的原理 图1汽车电机控制器原理图 电机控制器作为整个制动系统的控制中心,它由逆变器和控制器两部分组成。逆变器接收电池输送过来的直流电电能,逆变成三相交流电给汽车电机提供电源。控制器接受电机转速等信号反馈到仪表,当发生制动或者加速行为时,控制器控制变频器频率的升降,从而达到加速或者减速的目的。 三、电机控制器的分类 1、直流电机驱动系统 电机控制器一般采用脉宽调制(PWM)斩波控制方式,控制技术简单、成熟、成本低,但效率低、体积大等缺点。 2、交流感应电机驱动系统 电机控制器采用PWM方式实现高压直流到三相交流的电源变换,采用变频调速方式实现电机调速,采用矢量控制或直接转矩控制策略实现电机转矩控制的快速响应。

3、交流永磁电机驱动系统 包括正弦波永磁同步电机驱动系统和梯形波无刷直流电机驱动系统,其中正弦波永磁同步电机控制器采用PWM方式实现高压直流到三相交流的电源变换,采用变频调速方式实现电机调速;梯形波无刷直流电机控制通常采用“弱磁调速”方式实现电机的控制。由于正弦波永磁同步电机驱动系统低速转矩脉动小且高速恒功率区调速更稳定,因此比梯形波无刷直流电机驰动系统具有更好的应用前景。 4、开关磁阻电机驱动系统 开关磁阻电机驱动系统的电机控制一般采用模糊滑模控制方法。目前纯电动汽车所用电机均为永磁同步电机,交流永磁电机采用稀土永磁体励磁,与感应电机相比不需要励磁电路,具有效率高、功率密度大、控制精度高、转矩脉动小等特点。 四、电动控制器的相关术语 1、额定功率:在额定条件下的输出功率。 2、峰值功率:在规定的持续时间内,电机允许的最大输出功率。 3、额定转速:额定功率下电机的转速。 4、最高工作转速:相应于电动汽车最高设计车速的电机转速。 5、额定转矩:电机在额定功率和额定转速下的输出转矩。 6、峰值转矩:电机在规定的持续时间内允许输出的最大转矩。 7、电机及控制器整体效率:电机转轴输出功率除以控制器输入功率再乘以100%。 扩展阅读: WP4000变频功率分析仪应用于电动汽车电机试验 现行的电动汽车相关标准大全 如何选择电动汽车电池监测系统 hb

三相力矩电机控制器自动力矩补偿

AX-LJ12A三相全桥力矩电机控制器使用手册V1.31 一,概述 AX-LJ系列力矩电机控制器,是适应力矩电机/三相风机的专用控制器,以下简称控制器。该控制器采用全数字技术,接入三相电相序自适应。控制器采用6只德国原装进口的可控硅/可控硅模块,进行精密全桥移相,6只精密脉冲变压器隔离SPWM触发,节能环保。内部采用高效能的双CPU,闭环PID力矩数字补偿算法,多任务协同处理,实现了对电机的精密控制。控制器具有深度的电压负反馈功能,输入三相电缺项、过温度、过电流、报警保护功能。可长时间带负载连续运行。控制器设计新颖,数码管全数字显示,可实现平滑无极恒力矩调速,三相输出电压平衡稳定,电压调节平滑,驱动电机软具有启动功能,性价比高。广泛应用于,冶金、纺织、塑料、电线电缆、造纸、包装等驱动恒张力收卷/调速设备以及三相风机的调速等行业。 二,技术指标 01,输入电源:三相AC380V/50Hz; 02,输出电机电压范围:10V(86V)—-370V; 03,额定工作电流AX-LJ12A=12A,输出最大瞬间电流:AX-LJ12A=20A; 04,三相不平衡:≤3%; 05,输出电压精度:>98%; 06,适配力矩电机:10N.m—-60N.m; 07,环境温度:-10℃---+40℃; 08,相对湿度:≤85%,无结露; 09,偿间隔范围1-9分钟; 10,补偿数据范围0.1%-9.9%; 11,累计补偿数据1-9999,该数据可设定保存或者不保存; 12,电位器设定范围0%-100%回差1% 三,产品特点 1,控制方式:多功能键盘+手动精密电位器+PID自动力矩补偿; 2,触发方式:三相六管全桥双脉冲; 3,反馈方式:全电压2F/2V-1042.6,霍尔20A/20MA-1014.3; 4,散热方式:电子铝+强制风冷40*40*26; 5,检测方式:缺相、过流、高温报警保护; 6,运行方式:锁相环技术相序自适应功能; 7,外部控制:有外部紧急停止功能; 8,面板控制:有运行与暂停功能,暂停时自动补偿时间暂停。 三,控制器面板与使用说明

相关文档
最新文档