【5套打包】成都市初三九年级数学上(人教版)第24章圆单元测试题及答案

合集下载

人教版九年级上数学第24章圆章节测试(含答案解析)

人教版九年级上数学第24章圆章节测试(含答案解析)

人教版九年级上数学第24章圆章节测试学校:___________姓名:___________班级:___________考号:___________一、单选题1.有下列五个命题:①半圆是弧,弧是半圆;②周长相等的两个圆是等圆;③半径相等的两个半圆是等弧;④直径是圆的对称轴;⑤直径平分弦与弦所对的弧. 其中正确的有()A.1个B.2个C.3个D.4个2.如图,△ABC内接于⊙O,若o∠=,则∠ACB的度数是( )AOB100A.40°B.50°C.60°D.80°3.如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为()A.2cm BC.D.4.如图,直径为10的圆A经过点C和点O,点B是y轴右侧圆A优弧上一点,∠OBC=30°,则点C的坐标为( )A.(0,5)B.(0,C.(0)D.(05.一个点到圆的最小距离为6cm,最大距离为9cm,则该圆的半径是()A.1.5cm B.7.5cm C.1.5cm或7.5cm D.3cm或15cm 6.如图,AB是⊙O的切线,切点为B,AO交⊙O于点C,D是优弧BC上一点,∠A=30°,则∠D为()A.25°B.30°C.35°D.45°7.如图,已知以直角梯形ABCD的腰CD为直径的半圆O与梯形上底AD,下底BC 以及腰AB均相切,切点分别是点D,C,E,若半圆O的半径为2,梯形的腰AB为5,则该梯形的周长是( )A.9 B.10 C.12 D.148.如图,以G(0,1)为圆心,半径为2的圆与x轴交于A、B两点,与y 轴交于C、D两点,点E为⊙G上一动点,CF⊥AE于F,当点E从点B出发顺时针运动到点D时,点F所经过的路径长为()A B C D二、填空题9.一条弧所对的圆心角为135°弧长等于半径为5cm的圆的周长的3倍,则这条弧的半径为__________cm.10.如图,在⊙O中,弦B是圆上一点,且∠ABC=45°,则⊙O的半径R=_____.11.如图,AB 、CD 是半径为5的O 的两条弦,8AB =,6CD =,MN 是直 径,AB MN ⊥于点E ,CD MN ⊥于点FPC ,P 为EF 上的任意一点,则PA PC +的最小值为____.12.如图,四边形ABCD 内接于⊙O ,且四边形OABC 是平行四边形,则∠D =______.13.如图,在△ABC 中,AB=15,AC=12,BC=9,经过点C 且与边AB 相切的动圆与CB 、CA 分别相交于点E 、F ,则线段EF 长度的最小值是__.14.如图,AE 是半圆O 的直径,弦CD=DE=4,连结OB ,OD ,则图中两个阴影部分的面积和为___.三、解答题15.已知:如图,AB 是⊙O 的弦,半径OC 、OD 分别交AB 于点E 、F ,且OE=OF.求证:AE=BF.16.校运会期间,小捷同学积极参与各项活动.在铅球项目中,他掷出的铅球在场地上压出一个小坑(图示是其主视图),经测量,其中坑宽AB为8cm,小坑的最大深度为2cm,请帮助小捷同学计算铅球的半径OA的长为多少?17.如图,AB是⊙O的直径,弦CD⊥AB于点E,且CD=24,点M在⊙O上,MD 经过圆心O,联结MB.(1)若BE=8,求⊙O的半径;(2)若∠DMB=∠D,求线段OE的长.18.如图,AB是⊙O的直径,E为弦AC的延长线上一点,DE与⊙O相切于点D,且DE⊥AC,连结OD,若AB=10,AC=6,求DE的长.19.如图,OA、OB、OC都是⊙O的半径,∠AOB=2∠BOC,(1)求证:∠ACB=2∠BAC;(2)若AC 平分∠OAB ,求∠AOC 的度数.20.如图,A ,P ,B ,C 是半径为8的⊙O 上的四点,且满足∠BAC=∠APC=60°,(1)求证:△ABC 是等边三角形;(2)求圆心O 到BC 的距离OD .21.如图,AB 与O 相切于点B ,BC 为O 的弦,OC OA ⊥,OA 与BC 相交于点P ; (1)求证:AP AB =;(2)若OB 4=,3AB =,求线段BP 的长.22.如图,已知O .(1)用尺规作正六边形,使得O 是这个正六边形的外接圆,并保留作图痕迹; (2)用两种不同的方法把所做的正六边形分割成六个全等的三角形.23.如图1,四边形ABCD 是正方形,点E 是边BC 上一点,点F 在射线CM 上,∠AEF=90°,AE=EF ,过点F 作射线BC 的垂线,垂足为H ,连接AC .(1) 试判断BE 与FH 的数量关系,并说明理由;(2) 求证:∠ACF=90°;(3) 连接AF,过A,E,F三点作圆,如图2. 若EC=4,∠CEF=15°,求的长.图1 图2∆是O的内接正三角形,点P为弧BC上一动点,求证:24.(1)已知:如图1,ABCPA PB PC=+;(2)如图2,四边形ABCD是O的内接正方形,点P为弧BC上一动点,求证:=;PA PC(3)如图3,六边形ABCDEF是O的内接正六边形,点P为弧BC上一动点,请探究、、三者之间有何数量关系,并给予证明.PA PB PC25.如图,A(-5,0),B(-3,0),点C在y轴的正半轴上,∠CBO=45°,CD∥AB.∠CDA=90°.点P从点Q(4,0)出发,沿x轴向左以每秒1个单位长度的速度运动,运动时时间t秒.(1)求点C的坐标;(2)当∠BCP=15°时,求t的值;(3)以点P为圆心,PC为半径的⊙P随点P的运动而变化,当⊙P与四边形ABCD的边(或边所在的直线)相切时,求t的值.参考答案1.B【详解】根据弧的定义知半圆是弧,而弧不一定是半圆,所以①错误;根据圆的周长计算公式:C=2πr 可得,周长相等,则半径相等,两圆是等圆,所以②正确;半径相等的两个半圆是等弧,故③正确;对称轴是直线,而直径是线段,所以④错误;垂直于弦的直径平分弦与弦所对的弧,所以⑤错误.故选B点睛:此题考查了命题与定理,用到的知识点是弦、弧、等圆、等弧、半圆、直径、对称轴、垂径定理等定义和性质,关键是要熟悉课本中分性质定理.2.B【分析】根据圆周角定理可得∠ACB=12∠AOB ,代值计算即可.【详解】解:∵⊙O 是△ABC 的外接圆,∠AOB =100°,∴∠ACB=12∠AOB=50°,故选B.【点睛】本题考查了圆周角定理:同弧所对圆周角等于它所对圆心角的一半,熟练掌握相关定理是解题关键.3.C【详解】过点O 作OC AB ⊥,由垂径定理,可得2AB BC =,连接OB ,由勾股定理可得BC AB =,故选C4.A【详解】首先设⊙A 与x 轴另一个的交点为点D ,连接CD ,由∠COD=90°,根据90°的圆周角所对的弦是直径,即可得CD 是⊙A 的直径,又由在同圆或等圆中,同弧或等弧所对的圆周角相等,即可求得∠ODC=30°,继而求得OC=12CD=5,因此点C 的坐标为:(0,5).故选A.点睛:此题考查了圆周角定理与含30°角的直角三角形的性质.此题难度适中,注意掌握辅助线的作法是解此题的关键,注意数形结合思想的应用.5.C【详解】试题分析:分为两种情况:①当点P在圆内时,最近点的距离为6cm,最远点的距离为9cm,则直径是15cm,因而半径是7.5cm;②当点P在圆外时,最近点的距离为6cm,最远点的距离为9cm,则直径是3cm,因而半径是1.5cm.故选C.考点:点与圆的位置关系.6.B【详解】∠AOB,所以只要求出∠AOB即可解决问题.试题分析:欲求∠D,因为∠D=12∵AB是⊙O的切线,∴AB⊥OB,∴∠ABO=90°,∵∠A=30°,∴∠AOB=90°﹣∠A=60°,∠AOB=30°.∴∠D=12故选B.考点:切线的性质.7.D【详解】根据切线长定理,得AD=AE,BC=BE,所以梯形的周长是5×2+4=14.故选D8.B【详解】分析:连接AC,AG,由OG垂直于AB,利用垂径定理得到O为AB的中点,由G的坐标确定出OG的长,在直角三角形AOG中,由AG与OG的长,利用勾股定理求出AO的长,进而确定出AB的长,由CG+GO求出OC的长,在直角三角形AOC中,利用勾股定理求出AC的长,由CF垂直于AE,得到三角形ACF始终为直角三角形,点F的运动轨迹为以AC为直径的半径,如图中红线所示,当E位于点B时,CO⊥AE,此时F与O重合;当E 位于D时,CA⊥AE,此时F与A重合,可得出当点E从点B出发顺时针运动到点D时,点F所经过的路径长AO,在直角三角形ACO中,利用锐角三角函数定义求出∠ACO的度数,进而确定出AO所对圆心角的度数,再由AC的长求出半径,利用弧长公式即可求出AO 的长.详解:连接AC,AG,∵GO⊥AB,∴O为AB的中点,即AO=BO=12 AB,∵G(0,1),即OG=1,∴在Rt △AOG 中,根据勾股定理得:∴又CO=CG+GO=2+1=3,∴在Rt △AOC 中,根据勾股定理得:∵CF ⊥AE ,∴△ACF 始终是直角三角形,点F 的运动轨迹为以AC 为直径的半圆,当E 位于点B 时,CO ⊥AE ,此时F 与O 重合;当E 位于D 时,CA ⊥AE ,此时F 与A 重合,∴当点E 从点B 出发顺时针运动到点D 时,点F 所经过的路径长AO ,在Rt △ACO 中,tan ∠ACO=AO CO = ∴∠ACO=30°,∴AO 度数为60°,∵直径∴AO =,则当点E 从点B 出发顺时针运动到点D 时,点F . 故选B .点睛:此题属于圆综合题,涉及的知识有:坐标与图形性质,勾股定理,锐角三角函数定义,弧长公式,以及圆周角定理,其中根据题意得到点E 从点B 出发顺时针运动到点D 时,点F 所经过的路径长AO 是解本题的关键.9.40【分析】设出弧所在圆的半径,由于弧长等于半径为5cm 的圆的周长的3倍,所以根据原题所给出的等量关系,列出方程,解方程即可.【详解】解:设弧所在圆的半径为r ,由题意得,135253180r ππ⨯⨯=⨯⨯, 解得,r=40cm .10【分析】通过∠ABC=45°,可得出∠AOC=90°,根据OA=OC 就可以结合勾股定理求出AC 的长了.【详解】∵∠ABC=45°,∴∠AOC=90°,∴OA 2+OC 2=AC 2.∴OA 2+OA 2=(2.∴故⊙O11.【分析】A 、B 两点关于MN 对称,因而PA+PC=PB+PC ,即当B 、C 、P 在一条直线上时,PA+PC 的最小,即BC 的值就是PA+PC 的最小值【详解】连接OA ,OB ,OC ,作CH 垂直于AB 于H .根据垂径定理,得到BE= 114,322BE AB CF CD ====3OE ∴4OF∴CH=OE+OF=3+4=7,BH=BE+EH=BE+CF=4+3=7,在直角△BCH中根据勾股定理得到则PA+PC的最小值为【点睛】正确理解BC的长是PA+PC的最小值,是解决本题的关键.12.60°【分析】∠AOC,根根据圆内接四边形的性质得到∠D+∠B=180°,根据圆周角定理得到∠D=12据平行四边形的性质列式计算即可.【详解】∵四边形ABCD内接于⊙O,∴∠D+∠B=180°,∠AOC,由圆周角定理得,∠D=12∵四边形OABC为平行四边形,∴∠AOC=∠B,∴2∠D=180°−∠D,解得,∠D=60°,故答案为:60.【点睛】本题考查圆内接四边形的性质、圆周角定理和平行四边形的性质,掌握圆内接四边形的对角互补是解题的关键.13.7.2.【分析】三角形ABC中,利用勾股定理的逆定理判断得到∠C为直角,利用90度的圆周角所对的弦为直径,得到EF为圆的直径,设圆与AB的切点为D,连接CD,当CD垂直于EF时,即CD是圆的直径的时,EF长度最小,求出即可.【详解】解:∵在△ABC中,AB=15,AC=12,BC=9,∴AB 2=AC 2+BC 2,∴△ABC 为RT △,∠C=90°,即知EF 为圆的直径,设圆与AB 的切点为D ,连接CD ,当CD 垂直于EF ,即CD 是圆的直径时,EF 长度最小,最小值是9127.215⨯=. 故答案为:7.2【点睛】 此题考查了切线的性质,以及圆周角定理,熟练掌握切线的性质是解本题的关键. 14.10π.【详解】∵弦AB=BC ,弦CD=DE ,∴点B 是弧AC 的中点,点D 是弧CE 的中点.∴∠BOD=90°,过点O 作OF ⊥BC 于点F ,OG ⊥CD 于点G ,则CG=GD=2,∠FOG=45°.在四边形OFCG 中,∠FCD=135°.过点C 作CN ∥OF ,交OG 于点N ,则∠FCN=90°,∠NCG=135°-90°=45°.∴△CNG 为等腰直角三角形,∴CG=NG=2.过点N 作NM ⊥OF 于点M ,则在等腰三角形MNO 中,.∴OG=ON+NG=6.在Rt △OGD 中,OD =O 的半径为.∴(2OBD 90S S 10360ππ⨯⨯===阴影扇形.15.见试题解析【分析】利用垂径定理得AM BM=,再由等腰三角形“三线合一”的性质得EM FM=.还可以连接OA OB,证明AOE BOF,∆≅∆得AE BF=【详解】⊥于点M过点O作OM AB则AM BM=又∵OE OF=∴EM FM=∴AE BF=16.5cm【分析】先根据垂径定理求出AD的长,设OA=rcm,则OD=(r-2)cm,再根据勾股定理求出r的值即可.【详解】解:作OD⊥AB于D,如图所示:∵AB=8cm,OD⊥AB,小坑的最大深度为2cm,∴AD=1AB=4cm.2设OA=rcm,则OD=(r-2)cm在Rt△OAD中,∵OA2=OD2+AD2,即r2=(r-2)2+42,解得r=5cm;即铅球的半径OA的长为5cm.【点睛】本题考查的是垂径定理的应用,熟知平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧是解答此题的关键.17.(1)13;(2)【分析】(1)根据垂径定理求出DE的长,设出半径,根据勾股定理,列出方程求出半径;(2)根据OM=OB,证出∠M=∠B,根据∠M=∠D,求出∠D的度数,根据锐角三角函数求出OE的长.【详解】(1)设⊙O的半径为x,则OE=x﹣8,∵CD=24,由垂径定理得,DE=12,在Rt△ODE中,OD2=DE2+OE2,x2=(x﹣8)2+122,解得:x=13.(2)∵OM=OB,∴∠M=∠B,∴∠DOE=2∠M,又∠M=∠D,∴∠D=30°,在Rt△OED中,∵DE=12,∠D=30°,∴考点:垂径定理;勾股定理;圆周角定理.18.4【详解】分析:连结BC,如图,BC与OD相交于点F,利用圆周角定理得到BC⊥AE,则BC∥DE,BC,接下来判定四边形再利用切线的性质得到OD⊥DE,接着利用垂径定理得到CF=12BC,然后利用勾股定理计算出BC,从而得到CF和DE的长.CEDF是矩形得到DE=CF=12详解:连结BC,如图,BC与OD相交于点F,∵AB是⊙O的直径,∴∠ACB=90°,∴BC⊥AE,又∵DE⊥AC,∴BC∥DE,∵DE是⊙O的切线,∴OD⊥DE,∴OD⊥BC,BC,∴CF=12∵BC⊥AE,DE⊥AC,DE⊥AC,∴四边形CEDF是矩形.BC,∴DE=CF=12在Rt△ACB中,∠ACB=90°,∴,∴CF=4,∴DE=4.点睛:本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了垂径定理和勾股定理.19.(1)证明详见解析;(2)135°.【详解】试题分析:(1)根据圆周角定理可得∠BOC=2∠BAC,∠AOB=2∠ACB,再根据条件∠AOB=2∠BOC可得∠ACB=2∠BAC;(2)设∠BAC=x°,则∠OAB=2∠BAC=2x°,再表示出∠AOB=2∠ACB=4∠BAC=4x°,再根据三角形内角和为180°可得方程4x+2x+2x=180,再解即可得x的值,进而可得答案.试题解析:(1)在⊙O中,∵∠AOB=2∠ACB,∠BOC=2∠BAC,∵∠AOB=2∠BOC.∴∠ACB=2∠BAC;(2)解:设∠BAC=x°.∵AC平分∠OAB,∴∠OAB=2∠BAC=2x°,∵∠AOB=2∠ACB,∠ACB=2∠BAC,∴∠AOB=2∠ACB=4∠BAC=4x°,在△OAB中,∠AOB+∠OAB+∠OBA=180°,∴4x+2x+2x=180,解得:x=22.5,∴∠AOC=6x°=135°.考点:圆周角定理;圆心角、弧、弦的关系.20.(1)证明见解析(2)4【详解】解:(1)证明:∵∠APC和∠ABC是同弧所对的圆周角,∴∠APC=∠ABC.又∵在△ABC中,∠BAC=∠APC=60°,∴∠ABC=60°.∴∠ACB=180°﹣∠BAC﹣∠ABC=180°﹣60°﹣60°=60°.∴△ABC是等边三角形.(2)连接OB,∵△ABC为等边三角形,⊙O为其外接圆,∴O为△ABC的外心.=4.∴BO平分∠ABC.∴∠OBD=30°.∴OD=8×12(1)根据同弧所对的圆周角相等的性质和已知∠BAC=∠APC=60°可得△ABC的每一个内角都等于60°,从而得证.(2)根据等边三角形三线合一的性质,得含30度角直角三角形OBD,从而根据30度角所=4对边是斜边一半的性质,得OD=8×1221.(1)详见解析;(2)BP=.【详解】试题分析:(1)根据已知条件易得∠ABP+∠OBC=90°,∠C+∠CPO=90°,因为∠APB=∠CPO,即可得∠C+∠APB=90°,再由∠C=∠OBC,即可得∠ABP=∠APB,所以AP=AB;(2)过点A 作AD BP,垂足为D,所以∠ADP=90°,PD=BP,由勾股定理求得OA的长,再由勾股定理求得CP的长,由∠ADP=∠CPO,∠ADP=∠COP,证得△ADP∽△COP,根据相似三角形的性质求得PD的长,即可得BP的长.试题解析:(1)因为与相切于点,所以,∠ABP+∠OBC=90°,因为,所以∠C+∠CPO=90°,因为∠APB=∠CPO,所以∠C+∠APB=90°,因为OC=OB,所以∠C=∠OBC,所以∠ABP=∠APB,因此AP=AB.(2) 过点A作AD BP,垂足为D,所以∠ADP=90°,PD=BP因为∠ABO=90°,,,所以,故OA=5因为AP=AB=3,所以OP=OA-AP=2因为∠COP=90°,所以,因为∠ADP=∠CPO,∠ADP=∠COP,所以△ADP∽△COP.所以,即PD=,所以BP=.22.(1)答案见解析;(2)答案见解析【分析】(1)利用正六边形的性质外接圆边长等于外接圆半径;(2)连接对角线以及利用正六边形性质.【详解】解:(1)如图所示:,(2)如图所示:【点睛】此题主要考查了复杂作图以及全等三角形和正六边形的性质,根据正六边形性质得出作法是解题关键.23.(1)BE="FH" ;理由见解析(2)证明见解析(3)=2π【详解】试题分析:(1)由△ABE≌△EHF(SAS)即可得到BE=FH(2)由(1)可知AB=EH,而BC=AB,FH=EB,从而可知△FHC是等腰直角三角形,∠FCH 为45°,而∠ACB也为45°,从而可证明(3)由已知可知∠EAC=30°,AF是直径,设圆心为O,连接EO,过点E作EN⊥AC于点N,则可得△ECN为等腰直角三角形,从而可得EN的长,进而可得AE的长,得到半径,得到所对圆心角的度数,从而求得弧长试题解析:(1)BE=FH.理由如下:∵四边形ABCD是正方形∴∠B=90°,∵FH⊥BC ∴∠FHE=90°又∵∠AEF=90°∴∠AEB+∠HEF="90°" 且∠BAE+∠AEB=90°∴∠HEF=∠BAE ∴∠AEB=∠EFH 又∵AE=EF∴△ABE≌△EHF(SAS)∴BE=FH(2)∵△ABE≌△EHF∴BC=EH,BE=FH 又∵BE+EC=EC+CH ∴BE="CH"∴CH=FH∴∠FCH=45°,∴∠FCM=45°∵AC是正方形对角线,∴∠ACD=45°∴∠ACF=∠FCM +∠ACD =90°(3)∵AE=EF,∴△AEF是等腰直角三角形△AEF外接圆的圆心在斜边AF的中点上.设该中点为O.连结EO得∠AOE=90°过E作EN⊥AC于点NRt△ENC中,EC=4,∠ECA=45°,∴EN=NC=Rt△ENA中,EN =又∵∠EAF=45°∠CAF=∠CEF=15°(等弧对等角)∴∠EAC=30°∴AE=Rt△AFE中,AE== EF,∴AF=8AE所在的圆O半径为4,其所对的圆心角为∠AOE=90°=2π·4·(90°÷360°)=2π考点:1、正方形;2、等腰直角三角形;3、圆周角定理;4、三角函数24.(1)答案见解析;(2)答案见解析;(3)PA PC=【分析】(1)延长BP至E,使PE=PC,连接CE,证明△PCE是等边三角形.利用CE=PC,∠E=∠3=60°,∠EBC=∠PAC,得到△BEC≌△APC,所以PA=BE=PB+PC;(2)过点B作BE⊥PB交PA于E,证明△ABE≌△CBP,所以PC=AE,可得PB.(3)在AP上截取AQ=PC,连接BQ可证△ABQ≌△CBP,所以BQ=BP.又因为∠APB=30°,则,.【详解】证明:(1)延长BP至E,使PE=PC,连接CE.∵A、B、P、C四点共圆,∴∠BAC+∠BPC=180°,∵∠BPC+∠EPC=180°,∴∠BAC=∠CPE=60°,PE=PC,∴△PCE是等边三角形,∴CE=PC,∠E=60°;又∵∠BCE=60°+∠BCP,∠ACP=60°+∠BCP,∴∠BCE=∠ACP,∵△ABC、△ECP为等边三角形,∴CE=PC,AC=BC,∴△BEC≌△APC(SAS),∴PA=BE=PB+PC.(2)过点B作BE⊥PB交PA于E.∵∠1+∠2=∠2+∠3=90°∴∠1=∠3,∴∠APB=45°,∴BP=BE,∴PE=2PB;又∵AB=BC,∴△ABE≌△CBP,∴PC=AE.∴.(3),理由如下:过点B,作BM⊥AP,在AP上截取AQ=PC,连接BQ,∵∠BAP=∠BCP,AB=BC,∴△ABQ≌△CBP,∴BQ=BP.∴MP=QM,又∵∠APB=30°,∴cos30°=PM BP,∴,∴∴【点睛】本题考查三角形全等的性质和判定方法以及正多边形和圆的有关知识,熟练掌握相关性质是解题关键.25.(1)C (0,3);(2)t的值为(3)t的值为1或4或5.6.【详解】试题分析:(1)由∠CBO=45°,∠BOC为直角,得到△BOC为等腰直角三角形,又OB=3,利用等腰直角三角形AOB的性质知OC=OB=3,然后由点C在y轴的正半轴可以确定点C 的坐标;(2)需要对点P的位置进行分类讨论:①当点P在点B右侧时,如图2所示,由∠BCO=45°,用∠BCO-∠BCP求出∠PCO为30°,又OC=3,在Rt△POC中,利用锐角三角函数定义及特殊角的三角函数值求出OP的长,由PQ=OQ+OP求出运动的总路程,由速度为1个单位/秒,即可求出此时的时间t;②当点P在点B左侧时,如图3所示,用∠BCO+∠BCP求出∠PCO为60°,又OC=3,在Rt△POC中,利用锐角三角函数定义及特殊角的三角函数值求出OP的长,由PQ=OQ+OP求出运动的总路程,由速度为1个单位/秒,即可求出此时的时间t;(3)当⊙P与四边形ABCD的边(或边所在的直线)相切时,分三种情况考虑:①当⊙P与BC边相切时,利用切线的性质得到BC垂直于CP,可得出∠BCP=90°,由∠BCO=45°,得到∠OCP=45°,即此时△COP为等腰直角三角形,可得出OP=OC,由OC=3,得到OP=3,用OQ-OP求出P运动的路程,即可得出此时的时间t;②当⊙P与CD相切于点C时,P与O重合,可得出P运动的路程为OQ的长,求出此时的时间t;③当⊙P与AD相切时,利用切线的性质得到∠DAO=90°,得到此时A为切点,由PC=PA,且PA=9-t,PO=t-4,在Rt△OCP中,利用勾股定理列出关于t的方程,求出方程的解得到此时的时间t.综上,得到所有满足题意的时间t的值.试题解析::(1)∵∠BCO=∠CBO=45°,∴OC=OB=3,又∵点C在y轴的正半轴上,∴点C的坐标为(0,3);(2)分两种情况考虑:①当点P在点B右侧时,如图2,若∠BCP=15°,得∠PCO=30°,故PO=CO•tan30°=3,此时t=4+3;②当点P在点B左侧时,如图3,由∠BCP=15°,得∠PCO=60°,故OP=COtan60°=33,此时,t=4+33,∴t的值为4+3或4+33;(3)由题意知,若⊙P与四边形ABCD的边相切时,有以下三种情况:①当⊙P与BC相切于点C时,有∠BCP=90°,从而∠OCP=45°,得到OP=3,此时t=1;②当⊙P与CD相切于点C时,有PC⊥CD,即点P与点O重合,此时t=4;③当⊙P与AD相切时,由题意,得∠DAO=90°,∴点A为切点,如图4,PC2=PA2=(9-t)2,PO2=(t-4)2,于是(9-t)2=(t-4)2+32,即81-18t+t2=t2-8t+16+9,解得:t=5.6,∴t的值为1或4或5.6.。

人教版九年级数学上册第24章圆单元测试题(含答案)

人教版九年级数学上册第24章圆单元测试题(含答案)

人教版九年级数学上册第24章圆单元测试题(含答案)一、选择题(每小题3分,共24分)1.已知⊙O 的半径为5 cm ,点P 在直线l 上,且点P 到圆心O 的距离为5 cm ,则直线l 与⊙O ( )A .相离B .相切C .相交D .相交或相切2.若一个圆锥的侧面积是18π,侧面展开图是半圆,则该圆锥的底面圆半径是( ) A .6 B .3 C. 3 D .123.如图1,四边形ABCD 内接于⊙O ,若∠C =36°,则∠A 的度数为( ) A .36° B .56° C .72° D .144°图1 图24.如图2所示,⊙O 的半径为4 cm ,C 是AB ︵的中点,半径OC 交弦AB 于点D ,OD =2 3 cm ,则弦AB 的长为( )A .2 cmB .3 cmC .2 3 cmD .4 cm5.如图3所示,D 是弦AB 的中点,点C 在⊙O 上,CD 经过圆心O ,则下列结论不一定正确的是( )A .CD ⊥AB B .∠OAD =2∠CBDC .∠AOD =2∠BCD D.AC ︵=BC ︵图3 图46.如图4,直线AB 是⊙O 的切线,C 为切点,OD ∥AB 交于⊙O 点D , 点E 在⊙O 上,连接OC ,EC ,ED ,则∠CED 的度数为( )A .30°B .35°C .40°D .45° 7.把球放在长方体纸盒内,球的一部分露出盒外,其轴截面如图5所示,已知EF =CD =4 cm ,则球的半径是( )A .2 cmB .2.5 cmC .3 cmD .4 cm图5 图68.如图6,在Rt △ABC 中,∠ACB =90°,∠A =30°,BC =2 3,以直角边AC 为直径作⊙O 交AB 于点D ,则图中阴影部分的面积是( )A.15 34-32πB.15 32-32πC.734-π6D.732-π6π二、填空题(每小题4分,共32分)9.如图7,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,若AB =8,AE =1,则弦CD 的长是________.图7 图810.如图8,AB 为⊙O 的直径,CD 为⊙O 的弦,∠ACD =54°,则∠BAD =________°. 11.在Rt △ABC 中,∠C =90°,若AC =4,BC =3,则△ABC 的内切圆半径r =________. 12.一个扇形的圆心角是120°,它的半径是3 cm ,则扇形的弧长为________ cm.13.如图9,⊙M 与x 轴相切于原点,平行于y 轴的直线交⊙M 于P ,Q 两点,点P 在点Q 的下方.若点P 的坐标是(2,1),则圆心M 的坐标是________.图914.若用圆心角为120°,半径为9的扇形围成一个圆锥侧面,则这个圆锥的底面圆的直径是________.15.如图10所示,AB 是半圆O 的直径,E 是BC ︵的中点,OE 交弦BC 于点D .若BC =8 cm ,DE =2 cm ,则OD =________ cm.图10 图1116.如图11,以AD 为直径的半圆O 经过Rt △ABC 的斜边AB 的两个端点,交直角边AC 于点E .B ,E 是半圆弧的三等分点,弧BE 的长为2π3,则图中阴影部分的面积为________.三、解答题(共44分)17.(10分)如图12,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,G 是AC ︵上的一点,AG 与DC 的延长线交于点F .(1)若CD =8,BE =2,求⊙O 的半径; (2)求证:∠FGC =∠AGD .图1218.(10分)如图13,在Rt △ABC 中,∠ACB =90°,以斜边AB 上的中线CD 为直径作⊙O ,分别与AC ,BC 交于点M ,N .(1)过点N 作⊙O 的切线NE 与AB 相交于点E ,求证:NE ⊥AB ;(2)连接MD,求证:MD=NB.图1319.(12分)如图14,在Rt△ABC中,∠B=90°,点O在边AB上,以点O为圆心,OA长为半径的圆经过点C,过点C作直线MN,使∠BCM=2∠A.(1)判断直线MN与⊙O的位置关系,并说明理由;(2)若OA=4,∠BCM=60°,求图中阴影部分的面积.图1420.(12分)如图15①所示,OA是⊙O的半径,D为OA上的一个动点,过点D作线段CD⊥OA交⊙O于点F,过点C作⊙O的切线BC,B为切点,连接AB,交CD于点E. (1)求证:CB=CE;(2)如图②,当点D 运动到OA 的中点时,CD 刚好平分AB ︵,求证:△BCE 是等边三角形;(3)如图③,当点D 运动到与点O 重合时,若⊙O 的半径为2,且∠DCB =45°,求线段EF 的长.图11.D2.[解析] B 设圆锥的母线长为R ,π×R 2÷2=18π,解得R =6,∴圆锥侧面展开图的弧长为6π,∴圆锥的底面圆半径是6π÷2π=3.故选B. 3.D4.[解析] D 由圆的对称性,将圆沿OC 折叠,A ,B 两点重合,所以OC ⊥AB .连接OA ,由勾股定理求得AD =2 cm ,所以AB =4 cm.5.[解析] B ∵D 是弦AB 的中点,CD 经过圆心O , ∴CD ⊥AB ,AC ︵=BC ︵,故A ,D 正确; 连接OB , ∴∠AOD =∠BOD . ∵∠BOD =2∠C ,∴∠AOD =2∠BCD ,故C 正确;B 不一定正确.故选B. 6.D7.[解析] B 过点O 作OM ⊥EF 于点M ,延长MO 交BC 于点N ,连接OF ,如图. ∵四边形ABCD 是矩形, ∴∠C =∠D =90°,∴四边形CDMN 是矩形, ∴MN =CD =4. 设OF =x , 则ON =OF =x ,∴OM =MN -ON =4-x ,MF =2, 在Rt △OMF 中,OM 2+MF 2=OF 2, 即(4-x )2+22=x 2,解得x =2.5. 故选B.8.A9.[答案] 2 7[解析] 连接OC,如图,由题意,得OE=OA-AE=4-1=3,∴CE=ED=OC2-OE2=7,∴CD=2CE=2 7.10.[答案] 36[解析] 连接BD,如图所示.∵∠ACD=54°,∴∠ABD=54°.∵AB为⊙O的直径,∴∠ADB=90°,∴∠BAD=90°-∠ABD=36°.11.[答案] 1[解析] 如图,设△ABC的内切圆与各边分别相切于点D,E,F,连接OD,OE,OF,则OE⊥BC,OF⊥AB,OD⊥AC.设⊙O的半径为r,∴CD=CE=r.∵∠C=90°,AC=4,BC=3,∴AB=5,∴BE=BF=3-r,AF=AD=4-r,∴4-r+3-r=5,∴r=1,∴△ABC的内切圆的半径为1.12.[答案] 2π[解析] 根据题意,扇形的弧长为120π×3180=2π.13.[答案] (0,2.5)[解析] 如图,连接MP ,过点P 作P A ⊥y 轴于点A , 设点M 的坐标是(0,b ),且b >0. ∵P A ⊥y 轴,∴∠P AM =90°, ∴AP 2+AM 2=MP 2, ∴22+(b -1)2=b 2,解得b =2.5.故答案是(0,2.5). 14.[答案] 6[解析] 扇形的弧长l =120π×9180=6π,所以圆锥底面圆的周长为6π,则圆锥底面圆的直径为6ππ=6.15.[答案] 3[解析] 因为E 为BC ︵的中点,所以OE ⊥BC ,所以△OBD 为直角三角形. 设OD =x cm ,则OB =OE =OD +DE =(x +2)cm. 在Rt △OBD 中,根据勾股定理,得 (x +2)2=42+x 2, 解得x =3.故OD =3 cm. 16.[答案]3 32-23π[解析] 如图,连接BD ,BE ,BO ,EO . ∵B ,E 是半圆弧的三等分点, ∴∠EOA =∠EOB =∠BOD =60°,∴∠BAC =∠EBA =∠BAD =30°,∴BE ∥AD . ∵BE ︵的长为23π,∴60π×R 180=23π,解得R =2,易得AB =2 3,∴BC =12AB =3,∴AC =AB 2-BC 2=(2 3)2-(3)2=3, ∴S △ABC =12BC ·AC =12×3×3=3 32.∵△BOE 和△ABE 同底等高, ∴△BOE 和△ABE 面积相等,∴图中阴影部分的面积为S △ABC -S 扇形BOE =3 32-60π×22360=3 32-23π.故答案为3 32-23π.17.解:(1)如图,连接OC .设⊙O 的半径为R . ∵CD ⊥AB , ∴DE =EC =4.在Rt △OEC 中, ∵OC 2=OE 2+EC 2, ∴R 2=(R -2)2+42, 解得R =5.(2)证明:连接AD , ∵CD ⊥AB , ∴AD ︵=AC ︵, ∴∠ADC =∠AGD .∵四边形ADCG 是圆内接四边形,∴∠ADC=∠FGC,∴∠FGC=∠AGD.18.证明:(1)连接ON,如图.∵CD为斜边AB上的中线,∴CD=AD=DB,∴∠1=∠B.∵OC=ON,∴∠1=∠2,∴∠2=∠B,∴ON∥DB.∵NE为⊙O的切线,∴ON⊥NE,∴NE⊥AB.(2)连接DN,如图.∵CD为⊙O的直径,∴∠CMD=∠CND=90°.而∠MCB=90°,∴四边形CMDN为矩形,∴MD=CN.∵DN⊥BC,∠1=∠B,∴CN=NB,∴MD=NB.19.解:(1)MN是⊙O的切线.理由:如图,连接OC.∵OA=OC,∴∠A=∠OCA,∴∠BOC=∠A+∠OCA=2∠A.又∵∠BCM =2∠A ,∴∠BCM =∠BOC .∵∠B =90°,∴∠BOC +∠BCO =90°,∴∠BCM +∠BCO =90°,即∠OCM =90°,∴OC ⊥MN ,∴MN 是⊙O 的切线.(2)由(1)可知∠BOC =∠BCM =60°,∴∠AOC =120°.在Rt △BCO 中,OC =OA =4,∠BCO =90°-60°=30°,∴BO =12OC =2,BC =2 3,∴S 阴影=S 扇形OAC -S △OAC =120π×42360-12×4×2 3=16π3-4 3. ∴图中阴影部分的面积为163π-4 3. 20.解:(1)证明:在图①中,连接OB .∵CB 为⊙O 的切线,切点为B ,∴OB ⊥BC ,∴∠OBC =90°.∵OA =OB ,∴∠DAE =∠OBA .∵∠DAE +∠DEA =90°,∠OBA +∠CBE =90°,∴∠DEA =∠CBE .∵∠CEB =∠DEA ,∴∠CEB =∠CBE ,∴CB =CE .(2)证明:在图②中,连接OF ,OB .在Rt △ODF 中,OF =OA =2OD ,∴∠OFD =30°,∴∠DOF =60°.∵CD 平分AB ︵,∴∠AOB =2∠AOF =120°,∴∠C =360°-∠ODC -∠OBC -∠AOB =60°.∵CB =CE ,∴△BCE 是等边三角形.(3)在图③中,连接OB ,∴∠OBC =90°.又∵∠DCB =45°,∴△OBC 为等腰直角三角形,∴BC =OB =2,OC =2 2.又∵CB =CE ,∴OE =OC -CE =OC -BC =2 2-2,∴EF =DF -OE =2-(2 2-2)=4-2 2.人教新版九年级数学上第23章旋转单元练习试题含详细答案一.选择题(共10小题)1.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.五角星可以看成由一个四边形旋转若干次而生成的,则每次旋转的度数可以是()A.36°B.60°C.72°D.90°3.如图,△ODC是由△OAB绕点O顺时针旋转50°后得到的图形,若点D恰好落在AB上,且∠AOC的度数为130°,则∠C的度数是()A.25°B.30°C.35°D.40°4.下列各图中,既可经过平移,又可经过旋转,由图形①得到图形②的是()A.B.C.D.5.如图,将△ABC绕点A逆时针旋转110°,得到△ADE,若点D落在线段BC的延长线上,则∠B大小为()A.30°B.35°C.40°D.45°6.在俄罗斯方块游戏中,若某行被小方格块填满,则该行中的所有小方格会自动消失.现在游戏机屏幕下面三行已拼成如图所示的图案,屏幕上方又出现一小方格块正向下运动,为了使屏幕下面三行中的小方格都自动消失,你可以将图形进行以下的操作()A.先逆时针旋转90°,再向左平移B.先顺时针旋转90°,再向左平移C.先逆时针旋转90°,再向右平移D.先顺时针旋转90°,再向右平移7.如图,香港特别行政区标志紫荆花图案绕中心旋转n°后能与原来的图案互相重合,则n 的最小值为()A.45 B.60 C.72 D.1448.在平面直角坐标系中,点A的坐标是(1,3),将点A绕原点O顺时针旋转90°得到点A′,则点A′的坐标是()A.(﹣3,1)B.(3,﹣1)C.(﹣1,3)D.(1,﹣3)9.如图,在平面直角坐标系xOy中,点A从(3,4)出发,绕点O顺时针旋转一周,则点A不经过()A.点M B.点N C.点P D.点Q10.如图,△ABC与△A′B′C′关于点O成中心对称,则下列结论不成立的是()A.点A与点A′是对称点B.BO=B′OC.AB∥A′B′D.∠ACB=∠C′A′B′二.填空题(共9小题)11.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连结AA′,若∠1=20°,则∠B=度.12.如图,正方形ABCD与正三角形AEF的顶点A重合,将△AEF绕其顶点A旋转,在旋转过程中,当BE=DF时,∠BAE的大小是.13.点A(﹣2,3)关于原点对称的点的坐标是.14.如图,点A、B、C、D都在方格纸的格点上,若△AOB绕点O按逆时针方向旋转到△COD的位置,则旋转角为.15.如图,在平面直角坐标系xOy中,直线y=x经过点A,作AB⊥x轴于点B,将△ABO 绕点B逆时针旋转60°得到△CBD,若点B的坐标为(2,0),则点C的坐标为.16.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A′B′C,M 是BC的中点,P是A′B′的中点,连接PM,若BC=2,∠BAC=30°,则线段PM的最大值是.17.在△ABC中,∠C=90°,AC=BC,将△ABC绕点A按顺时针方向旋转60°到△AB′C′的位置,连结C′B、BB′,则∠BB′C′=.18.在平面直角坐标系中,已知点A(3,0),B(0,4),将△BOA绕点A按顺时针方向旋转得△CDA,使点B在直线CD上,连接OD交AB于点M,直线CD的解析式为.19.如图,△ABC是边长为12的等边三角形,D是BC的中点,E是直线AD上的一个动点,连接EC,将线段EC绕点C逆时针旋转60°得到FC,连接DF.则在点E的运动过程中,DF的最小值是.三.解答题(共6小题)20.如图,在4×4的方格纸中,△ABC的三个顶点都在格点上.(1)在图1中,画出一个与△ABC成中心对称的格点三角形;(2)在图2中,画出一个与△ABC成轴对称且与△ABC有公共边的格点三角形;(3)在图3中,画出△ABC绕着点C按顺时针方向旋转90°后的三角形.21.在边长为1个单位长度的正方形网格中建立如图所示的平面直角坐标系,△ABC的顶点都在格点上,请解答下列问题:(1)作出△ABC向左平移4个单位长度后得到的△A1B1C1,并写出点C1的坐标;(2)作出△ABC关于原点O对称的△A2B2C2,并写出点C2的坐标;(3)已知△ABC关于直线l对称的△A3B3C3的顶点A3的坐标为(﹣4,﹣2),请直接写出直线l的函数解析式.22.如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,2)请解答下列问题:(1)画出△ABC关于y轴对称的△A1B1C1,并写出A1的坐标.(2)画出△ABC绕点B逆时针旋转90°后得到的△A2B2C2,并写出A2的坐标.(3)画出△A2B2C2关于原点O成中心对称的△A3B3C3,并写出A3的坐标.23.在平面直角坐标系中,△ABC三个顶点的坐标分别为A(2,3),B(1,1),C(5,1).(1)把△ABC平移后,其中点A移到点A1(4,5),画出平移后得到的△A1B1C1;(2)把△A1B1C1绕点A1按逆时针方向旋转90°,画出旋转后的△A2B2C2.24.将矩形ABCD绕点A顺时针旋转α(0°<α<360°),得到矩形AEFG.(1)如图,当点E在BD上时.求证:FD=CD;(2)当α为何值时,GC=GB?画出图形,并说明理由.25.如图,已知△ABC中,AB=AC,把△ABC绕A点沿顺时针方向旋转得到△ADE,连接BD,CE交于点F.(1)求证:△AEC≌△ADB;(2)若AB=2,∠BAC=45°,当四边形ADFC是菱形时,求BF的长.参考答案一.选择题(共10小题)1.解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项正确.故选:D.2.解:根据旋转的性质可知,每次旋转的度数可以是360°÷5=72°或72°的倍数.故选C.3.解:∵∠AOC的度数为130°,∠AOD=∠BOC=50°,∴∠AOB=130°﹣50°=80°,∵△AOD中,AO=DO,∴∠A=(180°﹣50°)=65°,∴△ABO中,∠B=180°﹣80°﹣65°=35°,由旋转可得,∠C=∠B=35°,故选:C.4.解:A、B、C中只能由旋转得到,不能由平移得到,只有D可经过平移,又可经过旋转得到.故选:D.5.解:∵△ABC绕点A逆时针旋转110°,得到△ADE∴AB=AD,∠BAD=110°由三角形内角和∠B=故选:B.6.解:屏幕上方又出现一小方格块正向下运动,为了使屏幕下面三行中的小方格都自动消失,可以先逆时针旋转90°,再向左平移.故选:A.7.解:该图形被平分成五部分,旋转72°的整数倍,就可以与自身重合,故n的最小值为72.故选:C.8.解:如图所示,由旋转可得:∠AOA'=∠BOC=90°,AO=A'O,∴∠AOB=∠A'OC,而∠ABO=∠A'CO=90°,∴△AOB≌△A'OC,∴A'C=AB=1,CO=BO=3,∴点A'的坐标为(3,﹣1),故选:B.9.解:由图形可得:OA=,OM=,ON=,OP=,OQ=5,所以点A从(3,4)出发,绕点O顺时针旋转一周,则点A不经过P点,故选:C.10.解:观察图形可知,A、点A与点A′是对称点,故本选项正确;B、BO=B′O,故本选项正确;C、AB∥A′B′,故本选项正确;D、∠ACB=∠A′C′B′,故本选项错误.故选:D.二.填空题(共9小题)11.解:∵Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,∴∠ACA′=90°,CA=CA′,∠B=∠CB′A′,∴△CAA′为等腰直角三角形,∴∠CAA′=45°,∵∠CB′A′=∠B′AC+∠1=45°+20°=65°,∴∠B=65°.故答案为65.12.解:∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∵△AEF是等边三角形,∴AE=AF,∠EAF=60°,分两种情况:①如图,当正△AEF在正方形ABCD内部时,在△ABE和△ADF中,∴△ABE≌△ADF(SSS),∴∠BAE=∠DAF=(90°﹣60°)=15°②如图,当正△AEF在正方形ABCD外部时,在△ABE和△ADF中,∴△ABE≌△ADF(SSS),∴∠BAE=∠DAF=(360°﹣90°+60°)=165°故答案为:15°或165°.13.解:根据两个点关于原点对称,∴点P(﹣2,3)关于原点对称的点的坐标是(2,﹣3);故答案为(2,﹣3).14.解:∵△AOB绕点O按逆时针方向旋转到△COD的位置,∴对应边OB、OD的夹角∠BOD即为旋转角,∴旋转的角度为90°.故答案为:90°.15.解:过点C作CE⊥x轴于点E,∵OB=2,AB⊥x轴,点A在直线y=x上,∴AB=2,OA==4,∴RT△ABO中,tan∠AOB==,∴∠AOB=60°,又∵△CBD是由△ABO绕点B逆时针旋转60°得到,∴∠D=∠AOB=∠OBD=60°,AO=CD=4,∴△OBD是等边三角形,∴DO=OB=2,∠DOB=∠COE=60°,∴CO=CD﹣DO=2,在RT△COE中,OE=CO•cos∠COE=2×=1,CE=CO•sin∠COE=2×=,∴点C的坐标为(﹣1,),故答案为:(﹣1,).16.解:如图连接PC.在Rt△ABC中,∵∠A=30°,BC=2,∴AB=4,根据旋转不变性可知,A′B′=AB=4,∴A′P=PB′,∴PC=A′B′=2,∵CM=BM=1,又∵PM≤PC+CM,即PM≤3,∴PM的最大值为3(此时P、C、M共线).故答案为:3.17.解:∵∠C=90°,AC=BC,∴∠ABC=∠BAC=45°,∵将△ABC绕点A按顺时针方向旋转60°到△AB′C′的位置,∴∠AB′C′=∠ABC=45°,∠BAB′=60°,AB′=AB,∴AB′=B′B=BA,∴∠AB′B=60°,∴∠BB′C′=∠AB′B﹣∠AB′C′=60°﹣45°=15°,故答案为:15°.18.解:∵△BOA绕点A按顺时针方向旋转得△CDA,∴△BOA≌△CDA,∴AB=AC,OA=AD,∵B、D、C共线,AD⊥BC,∴BD=CD=OB,∵OA=AD,BO=CD=BD,∴OD⊥AB,设直线AB解析式为y=kx+b,把A与B坐标代入得:,解得:,∴直线AB解析式为y=﹣x+4,∴直线OD解析式为y=x,联立得:,解得:,即M(,),∵M为线段OD的中点,∴D(,),设直线CD解析式为y=mx+n,把B与D坐标代入得:,解得:m=﹣,n=4,则直线CD解析式为y=﹣x+4.故答案为:y=﹣.19.解:取线段AC的中点G,连接EG,如图所示.∵△ABC为等边三角形,且AD为△ABC的对称轴,∴CD=CG=AB=6,∠ACD=60°,∵∠ECF=60°,∴∠FCD=∠ECG.在△FCD和△ECG中,,∴△FCD≌△ECG(SAS),∴DF=GE.当EG∥BC时,EG最小,∵点G为AC的中点,∴此时EG=DF=CD=BC=3.故答案为3.三.解答题(共6小题)20.解:(1)如图所示,△DCE为所求作(2)如图所示,△ACD为所求作(3)如图所示△ECD为所求作21.解:(1)如图,△A1B1C1为所作,C1(﹣1,2);(2)如图,△A2B2C2为所作,C2(﹣3,﹣2);(3)因为A的坐标为(2,4),A3的坐标为(﹣4,﹣2),所以直线l的函数解析式为y=﹣x,22.解:(1)画出△ABC关于y轴对称的△A1B1C1,如图所示,此时A1的坐标为(﹣2,2);(2)画出△ABC绕点B逆时针旋转90°后得到的△A2B2C2,如图所示,此时A2的坐标为(4,0);(3)画出△A2B2C2关于原点O成中心对称的△A3B3C3,如图所示,此时A3的坐标为(﹣4,0).23.解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求.24.解:(1)由旋转可得,AE=AB,∠AEF=∠ABC=∠DAB=90°,EF=BC=AD,∴∠AEB=∠ABE,又∵∠ABE+∠EDA=90°=∠AEB+∠DEF,∴∠EDA=∠DEF,又∵DE=ED,∴△AED≌△FDE(SAS),∴DF=AE,又∵AE=AB=CD,∴CD=DF;(2)如图,当GB=GC时,点G在BC的垂直平分线上,分两种情况讨论:①当点G在AD右侧时,取BC的中点H,连接GH交AD于M,∵GC=GB,∴GH⊥BC,∴四边形ABHM是矩形,∴AM=BH=AD=AG,∴GM垂直平分AD,∴GD=GA=DA,∴△ADG是等边三角形,∴∠DAG=60°,∴旋转角α=60°;②当点G在AD左侧时,同理可得△ADG是等边三角形,∴∠DAG=60°,∴旋转角α=360°﹣60°=300°.25.解:(1)由旋转的性质得:△ABC≌△ADE,且AB=AC,∴AE=AD,AC=AB,∠BAC=∠DAE,∴∠BAC+∠BAE=∠DAE+∠BAE,即∠CAE=∠DAB,在△AEC和△ADB中,,∴△AEC≌△ADB(SAS);(2)∵四边形ADFC是菱形,且∠BAC=45°,∴∠DBA=∠BAC=45°,由(1)得:AB=AD,∴∠DBA=∠BDA=45°,∴△ABD为直角边为2的等腰直角三角形,∴BD2=2AB2,即BD=2,∴AD=DF=FC=AC=AB=2,∴BF=BD﹣DF=2﹣2.人教版九年级上册第二十四章《圆》培优练习卷(含答案)一.选择题1.一个圆锥的侧面展开图是半径为8的半圆,则该圆锥的全面积是()A.48πB.45πC.36πD.32π2.如图,AB为⊙O的直径,P为弦BC上的点,∠ABC=30°,过点P作PD⊥OP交⊙O于点D,过点D作DE∥BC交AB的延长线于点E.若点C恰好是的中点,BE=6,则PC的长是()A.6﹣8 B.3﹣3 C.2 D.12﹣63.如图,已知⊙O的内接正六边形ABCDEF的边长为6,则弧BC的长为()A.2πB.3πC.4πD.π4.《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就.它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(ED=1寸),锯道长1尺(AB=1尺=10寸)”,问这块圆柱形木材的直径是多少?”如图所示,请根据所学知识计算:圆柱形木材的直径AC是()A.13寸B.20寸C.26寸D.28寸5.如图,PA、PB是⊙O切线,A、B为切点,点C在⊙O上,且∠ACB=55°,则∠APB等于()A.55°B.70°C.110°D.125°6.如图,在Rt△ABC中,∠ACB=90°,⊙O是△ABC的内切圆,三个切点分别为D、E、F,若BF=2,AF=3,则△ABC的面积是()A.6 B.7 C.7D.127.如图,正方形ABCD内接于圆O,AB=4,则图中阴影部分的面积是()A.4π﹣16 B.8π﹣16 C.16π﹣32 D.32π﹣168.如图,正方形ABCD和正△AEF都内接于⊙O,EF与BC、CD分别相交于点G、H.若AE =3,则EG的长为()A.B.C.D.9.小明用图中所示的扇形纸片作一个圆锥的侧面.已知扇形的半径为5cm,弧长是8πcm,那么这个圆锥的高是()A.8cm B.6cm C.3cm D.4cm10.如图,点C为△ABD外接圆上的一点(点C不在上,且不与点B,D重合),且∠ACB=∠ABD=45°,若BC=8,CD=4,则AC的长为()A.8.5 B.5C.4D.11.在△ABC中,∠C=90°,∠A=30°,AB=12,将△ABC绕点B按逆时针方向旋转60°,直角边AC扫过的面积等于()A.24πB.20πC.18πD.6π12.如图,矩形ABCD中,BC=2,CD=1,以AD为直径的半圆O与BC相切于点E,连接BD,则阴影部分的面积为()A.B.C.D.二.填空题13.若一个圆锥的底面圆的周长是5πcm,母线长是6cm,则该圆锥的侧面展开图的圆心角度数是.14.如图,△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,连接DE,过点D作DF⊥AC于点F.若AB=6,∠CDF=15°,则阴影部分的面积是.15.如图,已知AB是⊙O的弦,C是的中点,联结OA,AC,如果∠OAB=20°,那么∠CAB 的度数是.16.如图,用等分圆的方法,在半径为OA的圆中,画出了如图所示的四叶幸运草,若OA=2,则四叶幸运草的周长是.17.半径为6的扇形的面积为12π,则该扇形的圆心角为°.18.在平面直角坐标系中,点A(a,a),以点B(0,4)为圆心,半径为1的圆上有一点C,直线AC与⊙B相切,切点为C,则线段AC的最小值为.三.解答题19.如图,⊙O与△ABC的AC边相切于点C,与AB、BC边分别交于点D、E,DE∥OA,CE是⊙O的直径.(1)求证:AB是⊙O的切线;(2)若BD=4,EC=6,求AC的长.20.如图,AB是⊙O的直径,AC与⊙O交于点F,弦AD平分∠BAC,DE⊥AC,垂足为E.(1)试判断直线DE与⊙O的位置关系,并说明理由;(2)若⊙O的半径为2,∠BAC=60°,求线段EF的长.21.如图,AB为⊙O的直径,C,D为圆上的两点,OC∥BD,弦AD,BC相交于点E.(1)求证:=;(2)若CE=1,EB=3,求⊙O的半径;(3)在(2)的条件下,过点C作⊙O的切线,交BA的延长线于点P,过点P作PQ∥CB 交⊙O于F,Q两点(点F在线段PQ上),求PQ的长.22.如图,AB为⊙O的切线,切点为B,连接AO,AO与⊙O交于点C,BD为⊙O的直径,连接CD.若∠A=30°,⊙O的半径为2,则图中阴影部分的面积是多少?23.已知:△ABC中,H为垂心(各边高线的交点),O为外心,且OM⊥BC于M.(1)求证:AH=2OM;(2)若∠BAC=60°,求证:AH=AO.(初二)24.如图,AB是半圆O的直径,C是半圆上一点,=,DH⊥AB于点H,AC分别交BD、DH于E、F.(1)已知AB=10,AD=6,求AH.(2)求证:DF=EF25.如图,已知AB是⊙O的直径,点C是弧AB的中点,点D在弧BC上,BD、AC的延长线交于点K,连接AD,交BC于点E,连接CD(1)求证:∠AKB﹣∠BCD=45°;(2)若DC=DB,求证:BC=2CK.参考答案一.选择题1.解:侧面积是:πr2=×π×82=32π,底面圆半径为:,底面积=π×42=16π,故圆锥的全面积是:32π+16π=48π.故选:A.2.解:连接OD,交CB于点F,连接BD,∵=,∴∠DBC=∠ABC=30°,∴∠ABD=60°,∵OB=OD,∴△OBD是等边三角形,∴OD⊥FB,∴OF=DF,∴BF∥DE,∴OB=BE=6∴CF=FB=OB•cos30°=6×=3,在Rt△POD中,OF=DF,∴PF=DO=3(直角三角形斜边上的中线,等于斜边的一半),∴CP=CF﹣PF=3﹣3.故选:B.3.解:∵ABCDEF为正六边形,∴∠COB=360°×=60°,∴△OBC是等边三角形,∴OB=OC=BC=6,弧BC的长为=2π.故选:A.4.解:设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r﹣1,OA=r,则有r2=52+(r﹣1)2,解得r=13,∴⊙O的直径为26寸,故选:C.5.解:连接OA,OB,∵PA,PB是⊙O的切线,∴PA⊥OA,PB⊥OB,∵∠ACB=55°,∴∠AOB=110°,∴∠APB=360°﹣90°﹣90°﹣110°=70°.故选:B.6.解:连接DO,EO,∵⊙O 是△ABC 的内切圆,切点分别为D ,E ,F ,∴OE ⊥AC ,OD ⊥BC ,CD =CE ,BD =BF =3,AF =AE =4 又∵∠C =90°,∴四边形OECD 是矩形,又∵EO =DO ,∴矩形OECD 是正方形,设EO =x ,则EC =CD =x ,在Rt △ABC 中BC 2+AC 2=AB 2故(x +2)2+(x +3)2=52,解得:x =1,∴BC =3,AC =4,∴S △ABC =×3×4=6,故选:A .7.解:连接OA 、OB ,∵四边形ABCD 是正方形,∴∠AOB =90°,∠O AB =45°,∴OA =AB cos45°=4×=2,所以阴影部分的面积=S ⊙O ﹣S 正方形ABCD =π×(2)2﹣4×4=8π﹣16. 故选:B .8.解:如图,连接AC、BD、OF,,设⊙O的半径是r,则OF=OA=r,∵AO是∠EAF的平分线,∴∠OAF=60°÷2=30°,AC⊥EF,EG=EF=∵OA=OF,∴∠OFA=∠OAF=30°,∴∠COF=30°+30°=60°,∴FI=r•sin60°=r,∴EF=r×2=r=AE=3,∴r=∴OI=,∴CI=OC﹣OI=,∵EF⊥AC,∠BCA=45°∴∠IGC=∠BCI=45°∴CI=GI=∴EG=EI﹣GI=故选:B.9.解:设圆锥底面圆的半径为r,根据题意得2πr=8π,解得r=4,所以这个的圆锥的高==3(cm).故选:C.10.解:延长CD到E,使得DE=BC,连接AE,如右图所示,∵∠ACB=∠ABD=45°,∠ACB=∠ADB,∴∠ADB=45°,∴∠BAD=90°,AB=AD,∵四边形ABCD是圆内接四边形,∠ADE+∠ADC=180°,∴∠ADC+∠ABC=180°,∴∠ABC=∠ADE,在△ABC和△ADE中,,∴△ABC≌△ADE(SAS),∴∠BAC=∠DAE,∵∠BAC+∠CAD=∠BAD=90°,∴∠DAE+∠CAD=90°,∴∠CAE=90°,∵ACD=45°,BC=DE=8,CD=4,∴∠ACE=45°,CE=12,∴AC=AE=6,故选:D.11.解:∵在△ABC中,∠C=90°,∠A=30°,AB=12,∴BC=AB=6,∠ABC=60°,∴S=﹣=﹣=18π.阴影故选:C.12.解:连接OE交BD于F,如图,∵以AD为直径的半圆O与BC相切于点E,∴OE⊥BC,∵四边形ABCD为矩形,OA=OD=1,而CD=1,∴四边形ODCE和四边形ABEO都是正方形,∴BE=1,∠DOE=∠BEO=90°∵∠BFE=∠DFO,OD=BE,∴△ODF≌△EBF(AAS),∴S△ODF =S△EBF,∴阴影部分的面积=S扇形EOD==.故选:C.二.填空题13.解:∵圆锥的底面圆的周长是5πcm,∴圆锥的侧面展开扇形的弧长为5πcm,∴=5π,解得:n=150故答案为150°.14.解:连接OE,∵∠CDF=15°,∠C=75°,∴∠OAE=30°=∠OEA,∴∠AOE=120°,S △OAE =AE ×OE sin ∠OEA =×2×OE ×cos ∠OEA ×OE sin ∠OEA =,S 阴影部分=S 扇形OAE ﹣S △OAE =×π×32﹣=3π﹣.故答案3π﹣. 15.解:连接OC 交AB 于E .∵C 是的中点,∴OC ⊥AB ,∴∠AEO =90°,∵∠BAO =20°,∴∠AOE =70°,∵OA =OC ,∴∠OAC =∠C =55°,∴∠CAB =∠OAC ﹣∠OAB =35°,故答案为35°.16.解:由题意得:四叶幸运草的周长为4个半圆的弧长=2个圆的周长,连接AB 、BC 、CD 、AD ,则四边形ABCD 是正方形,连接OB ,如图所示:则正方形ABCD 的对角线=2OA =4,OA ⊥OB ,OA =OB =2,∴AB =2,过点O 作ON ⊥AB 于N ,则NA =AB =, ∴圆的半径为,∴四叶幸运草的周长=2×2π×=4π;故答案为:4π.17.解:设该扇形的圆心角为n2,则=12π,解得:n=120,故答案为:120.18.解:连结AB、BC,如图,∵A点坐标为(a,a),∴点A在直线y=x上,作BH⊥直线y=x于H,∵∠AOB=45°,∴△BOH为等腰直角三角形,∴BH=OB=2,∵直线AC与⊙B相切,切点为C,∴BC⊥AC,∴∠ACB=90°,∴AC==,当AB最小时,AC的值最小,而点A在H点时,AB最小,此时AB=BH=2,∴AC的最小值为==.故答案为.三.解答题(共7小题)19.(1)证明:连接OD、CD,∵CE是⊙O的直径,∴∠EDC=90°,∵DE∥OA,∴OA⊥CD,∴OA垂直平分CD,∴OD=OC,∴OD=OE,∴∠OED=∠ODE,∵DE∥OA,∴∠ODE=∠AOD,∠DEO=∠AOC,∴∠AOD=∠AOC,∵AC是切线,∴∠ACB=90°,在△AOD和△AOC中∴△AOD≌△AOC(SAS),∴∠ADO=∠ACB=90°,∵OD是半径,∴AB是⊙O的切线;(2)解:连接OD,CD,∵BD是⊙O切线,∴∠ODB=90°,∴∠BDE+∠ODE=90°,∵CE是⊙O的直径,∴∠CDE=90°,∴∠ODC+∠ODE=90°,∴∠BDE=∠ODC,∵OC=OD,∴∠OCD=∠ODC,∴∠BDE=∠OCD,∵∠B=∠B,∴△BDE∽△BCD,∴∴BD2=BE•BC,设BE=x,∵BD=4,EC=6,∴42=x(x+6),解得x=2或x=﹣8(舍去),∴BE=2,∴BC=BE+EC=8,∵AD、AC是⊙O的切线,∴AD=AC,设AD=AC=y,在Rt△ABC中,AB2=AC2+BC2,∴(4+y)2=y2+82,解得y=6,∴AC=6,故AC的长为6.20.解:(1)直线DE与⊙O相切,连结OD.∵AD平分∠BAC,∴∠OAD=∠CAD,∵OA=OD,∴∠OAD=∠ODA,∴∠ODA=∠CAD,∴OD∥AC,∵DE⊥AC,即∠AED=90°,∴∠ODE=90°,即DE⊥OD,∴DE是⊙O的切线;(2)过O作OG⊥AF于G,∴AF=2AG,∵∠BAC=60°,OA=2,∴AG=OA=1,∴AF=2,∴AF=OD,∴四边形AODF是菱形,∴DF∥OA,DF=OA=2,∴∠EFD=∠BAC=60°,∴EF=DF=1.21.证明:(1)∵OC=OB∴∠OBC=∠OCB∵OC∥BD∴∠OCB=∠CBD∴∠OBC=∠CBD∴(2)连接AC,∵CE=1,EB=3,∴BC=4∵∴∠CAD=∠ABC,且∠ACB=∠ACB ∴△ACE∽△BCA∴∴AC2=CB•CE=4×1∴AC=2,∵AB是直径∴∠ACB=90°∴AB==2∴⊙O的半径为(3)如图,过点O作OH⊥FQ于点H,连接OQ,∵PC是⊙O切线,∴∠PCO=90°,且∠ACB=90°∴∠PCA=∠BCO=∠CBO,且∠CPB=∠CPA∴△APC∽△CPB∴∴PC=2PA,PC2=PA•PB∴4PA2=PA×(PA+2)∴PA=∴PO=∵PQ∥BC∴∠CBA=∠BPQ,且∠PHO=∠ACB=90°∴△PHO∽△BCA∴即∴PH=,OH=∴HQ==∴PQ=PH+HQ=22.解:过O点作OE⊥CD于E,。

人教版九年级数学上册第24章圆单元测试题(含答案)

人教版九年级数学上册第24章圆单元测试题(含答案)

人教版九年级数学上册第24章圆单元测试题(含答案)一、选择题(每小题3分,共24分)1.已知⊙O 的半径为5 cm ,点P 在直线l 上,且点P 到圆心O 的距离为5 cm ,则直线l 与⊙O ( )A .相离B .相切C .相交D .相交或相切2.若一个圆锥的侧面积是18π,侧面展开图是半圆,则该圆锥的底面圆半径是( ) A .6 B .3 C. 3 D .123.如图1,四边形ABCD 内接于⊙O ,若∠C =36°,则∠A 的度数为( ) A .36° B .56° C .72° D .144°图1 图24.如图2所示,⊙O 的半径为4 cm ,C 是AB ︵的中点,半径OC 交弦AB 于点D ,OD =2 3 cm ,则弦AB 的长为( )A .2 cmB .3 cmC .2 3 cmD .4 cm5.如图3所示,D 是弦AB 的中点,点C 在⊙O 上,CD 经过圆心O ,则下列结论不一定正确的是( )A .CD ⊥AB B .∠OAD =2∠CBDC .∠AOD =2∠BCD D.AC ︵=BC ︵图3 图46.如图4,直线AB 是⊙O 的切线,C 为切点,OD ∥AB 交于⊙O 点D , 点E 在⊙O 上,连接OC ,EC ,ED ,则∠CED 的度数为( )A .30°B .35°C .40°D .45° 7.把球放在长方体纸盒内,球的一部分露出盒外,其轴截面如图5所示,已知EF =CD =4 cm ,则球的半径是( )A .2 cmB .2.5 cmC .3 cmD .4 cm图5 图68.如图6,在Rt △ABC 中,∠ACB =90°,∠A =30°,BC =2 3,以直角边AC 为直径作⊙O 交AB 于点D ,则图中阴影部分的面积是( )A.15 34-32πB.15 32-32πC.734-π6D.732-π6π二、填空题(每小题4分,共32分)9.如图7,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,若AB =8,AE =1,则弦CD 的长是________.图7 图810.如图8,AB 为⊙O 的直径,CD 为⊙O 的弦,∠ACD =54°,则∠BAD =________°. 11.在Rt △ABC 中,∠C =90°,若AC =4,BC =3,则△ABC 的内切圆半径r =________. 12.一个扇形的圆心角是120°,它的半径是3 cm ,则扇形的弧长为________ cm.13.如图9,⊙M 与x 轴相切于原点,平行于y 轴的直线交⊙M 于P ,Q 两点,点P 在点Q 的下方.若点P 的坐标是(2,1),则圆心M 的坐标是________.图914.若用圆心角为120°,半径为9的扇形围成一个圆锥侧面,则这个圆锥的底面圆的直径是________.15.如图10所示,AB 是半圆O 的直径,E 是BC ︵的中点,OE 交弦BC 于点D .若BC =8 cm ,DE =2 cm ,则OD =________ cm.图10 图1116.如图11,以AD 为直径的半圆O 经过Rt △ABC 的斜边AB 的两个端点,交直角边AC 于点E .B ,E 是半圆弧的三等分点,弧BE 的长为2π3,则图中阴影部分的面积为________.三、解答题(共44分)17.(10分)如图12,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,G 是AC ︵上的一点,AG 与DC 的延长线交于点F .(1)若CD =8,BE =2,求⊙O 的半径; (2)求证:∠FGC =∠AGD .图1218.(10分)如图13,在Rt △ABC 中,∠ACB =90°,以斜边AB 上的中线CD 为直径作⊙O ,分别与AC ,BC 交于点M ,N .(1)过点N 作⊙O 的切线NE 与AB 相交于点E ,求证:NE ⊥AB ;(2)连接MD,求证:MD=NB.图1319.(12分)如图14,在Rt△ABC中,∠B=90°,点O在边AB上,以点O为圆心,OA长为半径的圆经过点C,过点C作直线MN,使∠BCM=2∠A.(1)判断直线MN与⊙O的位置关系,并说明理由;(2)若OA=4,∠BCM=60°,求图中阴影部分的面积.图1420.(12分)如图15①所示,OA是⊙O的半径,D为OA上的一个动点,过点D作线段CD⊥OA交⊙O于点F,过点C作⊙O的切线BC,B为切点,连接AB,交CD于点E. (1)求证:CB=CE;(2)如图②,当点D 运动到OA 的中点时,CD 刚好平分AB ︵,求证:△BCE 是等边三角形;(3)如图③,当点D 运动到与点O 重合时,若⊙O 的半径为2,且∠DCB =45°,求线段EF 的长.图11.D2.[解析] B 设圆锥的母线长为R ,π×R 2÷2=18π,解得R =6,∴圆锥侧面展开图的弧长为6π,∴圆锥的底面圆半径是6π÷2π=3.故选B. 3.D4.[解析] D 由圆的对称性,将圆沿OC 折叠,A ,B 两点重合,所以OC ⊥AB .连接OA ,由勾股定理求得AD =2 cm ,所以AB =4 cm.5.[解析] B ∵D 是弦AB 的中点,CD 经过圆心O , ∴CD ⊥AB ,AC ︵=BC ︵,故A ,D 正确; 连接OB , ∴∠AOD =∠BOD . ∵∠BOD =2∠C ,∴∠AOD =2∠BCD ,故C 正确;B 不一定正确.故选B. 6.D7.[解析] B 过点O 作OM ⊥EF 于点M ,延长MO 交BC 于点N ,连接OF ,如图. ∵四边形ABCD 是矩形, ∴∠C =∠D =90°,∴四边形CDMN 是矩形, ∴MN =CD =4. 设OF =x , 则ON =OF =x ,∴OM =MN -ON =4-x ,MF =2, 在Rt △OMF 中,OM 2+MF 2=OF 2, 即(4-x )2+22=x 2,解得x =2.5. 故选B.8.A9.[答案] 2 7[解析] 连接OC,如图,由题意,得OE=OA-AE=4-1=3,∴CE=ED=OC2-OE2=7,∴CD=2CE=2 7.10.[答案] 36[解析] 连接BD,如图所示.∵∠ACD=54°,∴∠ABD=54°.∵AB为⊙O的直径,∴∠ADB=90°,∴∠BAD=90°-∠ABD=36°.11.[答案] 1[解析] 如图,设△ABC的内切圆与各边分别相切于点D,E,F,连接OD,OE,OF,则OE⊥BC,OF⊥AB,OD⊥AC.设⊙O的半径为r,∴CD=CE=r.∵∠C=90°,AC=4,BC=3,∴AB=5,∴BE=BF=3-r,AF=AD=4-r,∴4-r+3-r=5,∴r=1,∴△ABC的内切圆的半径为1.12.[答案] 2π[解析] 根据题意,扇形的弧长为120π×3180=2π.13.[答案] (0,2.5)[解析] 如图,连接MP ,过点P 作P A ⊥y 轴于点A , 设点M 的坐标是(0,b ),且b >0. ∵P A ⊥y 轴,∴∠P AM =90°, ∴AP 2+AM 2=MP 2, ∴22+(b -1)2=b 2,解得b =2.5.故答案是(0,2.5). 14.[答案] 6[解析] 扇形的弧长l =120π×9180=6π,所以圆锥底面圆的周长为6π,则圆锥底面圆的直径为6ππ=6.15.[答案] 3[解析] 因为E 为BC ︵的中点,所以OE ⊥BC ,所以△OBD 为直角三角形. 设OD =x cm ,则OB =OE =OD +DE =(x +2)cm. 在Rt △OBD 中,根据勾股定理,得 (x +2)2=42+x 2, 解得x =3.故OD =3 cm. 16.[答案]3 32-23π[解析] 如图,连接BD ,BE ,BO ,EO . ∵B ,E 是半圆弧的三等分点, ∴∠EOA =∠EOB =∠BOD =60°,∴∠BAC =∠EBA =∠BAD =30°,∴BE ∥AD . ∵BE ︵的长为23π,∴60π×R 180=23π,解得R =2,易得AB =2 3,∴BC =12AB =3,∴AC =AB 2-BC 2=(2 3)2-(3)2=3, ∴S △ABC =12BC ·AC =12×3×3=3 32.∵△BOE 和△ABE 同底等高, ∴△BOE 和△ABE 面积相等,∴图中阴影部分的面积为S △ABC -S 扇形BOE =3 32-60π×22360=3 32-23π.故答案为3 32-23π.17.解:(1)如图,连接OC .设⊙O 的半径为R . ∵CD ⊥AB , ∴DE =EC =4.在Rt △OEC 中, ∵OC 2=OE 2+EC 2, ∴R 2=(R -2)2+42, 解得R =5.(2)证明:连接AD , ∵CD ⊥AB , ∴AD ︵=AC ︵, ∴∠ADC =∠AGD .∵四边形ADCG 是圆内接四边形,∴∠ADC=∠FGC,∴∠FGC=∠AGD.18.证明:(1)连接ON,如图.∵CD为斜边AB上的中线,∴CD=AD=DB,∴∠1=∠B.∵OC=ON,∴∠1=∠2,∴∠2=∠B,∴ON∥DB.∵NE为⊙O的切线,∴ON⊥NE,∴NE⊥AB.(2)连接DN,如图.∵CD为⊙O的直径,∴∠CMD=∠CND=90°.而∠MCB=90°,∴四边形CMDN为矩形,∴MD=CN.∵DN⊥BC,∠1=∠B,∴CN=NB,∴MD=NB.19.解:(1)MN是⊙O的切线.理由:如图,连接OC.∵OA=OC,∴∠A=∠OCA,∴∠BOC=∠A+∠OCA=2∠A.又∵∠BCM =2∠A ,∴∠BCM =∠BOC . ∵∠B =90°,∴∠BOC +∠BCO =90°, ∴∠BCM +∠BCO =90°,即∠OCM =90°, ∴OC ⊥MN ,∴MN 是⊙O 的切线. (2)由(1)可知∠BOC =∠BCM =60°, ∴∠AOC =120°.在Rt △BCO 中,OC =OA =4,∠BCO =90°-60°=30°,∴BO =12OC =2,BC =23,∴S 阴影=S 扇形OAC -S △OAC =120π×42360-12×4×2 3=16π3-4 3.∴图中阴影部分的面积为163π-4 3.20.解:(1)证明:在图①中,连接OB . ∵CB 为⊙O 的切线,切点为B ,∴OB ⊥BC ,∴∠OBC =90°. ∵OA =OB , ∴∠DAE =∠OBA .∵∠DAE +∠DEA =90°,∠OBA +∠CBE =90°, ∴∠DEA =∠CBE . ∵∠CEB =∠DEA ,∴∠CEB =∠CBE ,∴CB =CE . (2)证明:在图②中,连接OF ,OB . 在Rt △ODF 中,OF =OA =2OD ,∴∠OFD =30°,∴∠DOF =60°. ∵CD 平分AB ︵,∴∠AOB =2∠AOF =120°,∴∠C =360°-∠ODC -∠OBC -∠AOB =60°. ∵CB =CE ,∴△BCE 是等边三角形. (3)在图③中,连接OB ,∴∠OBC =90°. 又∵∠DCB =45°,∴△OBC 为等腰直角三角形, ∴BC =OB =2,OC =2 2. 又∵CB =CE ,∴OE =OC -CE =OC -BC =2 2-2, ∴EF =DF -OE =2-(2 2-2)=4-2 2.人教新版九年级上学期第24章《圆》单元测试卷(含详解)一.选择题1.下随有关圆的一些结论:①任意三点确定一个圆;②相等的圆心角所对的弧相等;③平分弦的直径垂直于弦;并且平分弦所对的弧,④圆内接四边形对角互补其中错误的结论有()A.1个B.2个C.3个D.4个2.如图,AB是⊙O直径,若∠AOC=140°,则∠D的度数是()A.20°B.30°C.40°D.70°3.一个点到圆的最小距离为3cm,最大距离为8cm,则该圆的半径是()A.5cm或11cm B.2.5cmC.5.5cm D.2.5cm或5.5cm4.如图,已知O是四边形ABCD内一点,OA=OB=OC,∠ABC=∠ADC=65°,则∠DAO+∠DCO =()A.90°B.110°C. 120°D.165°5.如图,以AB为直径,点O为圆心的半圆经过点C,若AC=BC=,则图中阴影部分的面积是()A.πB. +C.D. +6.如图,正六边形螺帽的边长是2cm,这个扳手的开口a的值为()A.1 B.C.D.7.如图所示,已知AB为⊙O的弦,且AB⊥OP于D,PA为⊙O的切线,A为切点,AP=6cm,OP=4cm,则BD的长为()A. cm B.3cm C. cm D.2cm8.如图,在菱形ABCD中,以AB为直径画弧分别交BC于点F,交对角线AC于点E,若AB =4,F为BC的中点,则图中阴影部分的面积为()A.B.C.D.9.如图,BC是⊙O的直径,A,D是⊙O上的两点,连接AB,AD,BD,若∠ADB=70°,则∠ABC的度数是()A.20°B.70°C.30°D.90°10.如图,AB是⊙O的弦,作OC⊥OA交⊙O的切线BC于点C,交AB于点D.已知∠OAB=20°,则∠OCB的度数为()A.20°B.30°C.40°D.50°11.如图,四边形ABCD中,AB=CD,AD∥BC,以点B为圆心,BA为半径的圆弧与BC交于点E,四边形AECD是平行四边形,AB=3,则的弧长为()A.B.πC.D.312.如图,⊙O的半径为4,A、B、C、D是⊙O上的四点,过点C,D的切线CH,DG相交于点M,点P在弦AB上,PE∥BC交AC于点E,PF∥AD于点F,当∠ADG=∠BCH=30°时,PE+PF的值是()A.4 B.2C.4D.值不确定二.填空题13.把一个半径为12,圆心角为150°的扇形围成一个圆锥(按缝处不重叠),那么这个圆锥的高是.14.(1)已知一个直角三角形的面积为12cm2,周长为12cm,那么这个直角三角形外接圆的半径是cm,内切圆半径是cm.(2)等边△ABC的边长为10cm,则它的外接圆的半径是cm,内切圆半径是cm.15.在圆内接四边形ABCD中,弦AB=AD,AC=2016,∠ACD=60°,则四边形ABCD的面积为.16.已知⊙O的半径为1cm,弦AB=cm,AC=cm,则∠BAC=.17.如图,CD是⊙O的直径,点A是半圆上的三等分点,B是弧AD的中点,P点为直线CD 上的一个动点,当CD=6时,AP+BP的最小值为.三.解答题18.AB是⊙O的直径,PA切⊙O于点A,PO交⊙O于点C,连接BC,若∠P=30°.(1)求∠B的度数;(2)若PC=2,求BC的长.19.如图,在△ABC中,以AB为直径的⊙O分别与BC,AC相交于点D,E,BD=CD,过点D 作⊙O的切线交边AC于点F.(1)求证:DF⊥AC;(2)若⊙O的半径为2,CF=1,求的长(结果保留π).20.如图,点I是△ABC的内心,BI的延长线与△ABC的外接圆⊙O交于点D,与AC交于点E,延长CD、BA相交于点F,∠ADF的平分线交AF于点G.(1)求证:DG∥CA;(2)求证:AD=ID;(3)若DE=4,BE=5,求BI的长.21.某隧道施工单位准备在双向道路中间全程增加一个宽为1米的隔离带,已知隧道截面是一个半径为4米的半圆形,点O是其圆心,AE是隔离带截面,问一辆高3米,宽1.9米的卡车ABCD能通过这个隧道吗?请说明理由.22.如图,AB是⊙O的直径,AC⊥AB,E为⊙O上的一点,AC=EC,延长CE交AB的延长线于点D.(1)求证:CE为⊙O的切线;(2)若OF⊥AE,OF=1,∠OAF=30°,求图中阴影部分的面积.(结果保留π)23.如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=2.(1)求直径AB的长;(2)求阴影部分图形的周长和面积.24.如图,在Rt△ABC中,∠ACB=90°,以BC为直径的⊙O交AB于点D,E为的中点,CE交AB于点H,且AH=AC,AF平分线∠CAH.(1)求证:BE∥AF;(2)若AC=6,BC=8,求EH的长.25.如图所示,△ABC内接于⊙O,AC是直径,D在⊙O上,且AC平分∠BCD,AE∥BC,交CD于E,F在CD的延长线上,且AE=EF.连接AF.(1)求证:AF是⊙O的切线;(2)连接BF交AE于G,若AB=12,AE=13,求AG的长.参考答案一.选择题1.解:①任意三点确定一个圆;错误,应该的不在同一直线上的三点可以确定一个圆;②相等的圆心角所对的弧相等;错误,应该是在同圆或等圆中;③平分弦的直径垂直于弦;并且平分弦所对的弧,错误,此弦不是直径;④圆内接四边形对角互补;正确;故选:C.2.解:∵∠AOC=140°,∴∠BOC=40°,∵∠BOC与∠BDC都对,∴∠D=∠BOC=20°,故选:A.3.解:当点P在圆内时,最近点的距离为3cm,最远点的距离为8cm,则直径是11cm,因而半径是5.5cm;当点P在圆外时,最近点的距离为3cm,最远点的距离为8m,则直径是5cm,因而半径是2.5cm.故选:D.4.解:∵OA=OB=OC,∴∠ABO=∠BAO,∠OBC=∠OCB,∵∠ABC=65°=∠ABO+∠OBC,∴∠BAO+∠BCO=65°,∵∠ADC=65°,∴∠DAO+∠DCO=360°﹣(∠ADC+∠BAO+∠BCO+∠ABC)=360°﹣(65°+65°+65°)=165°,故选:D.5.解:∵AB为直径,∴∠ACB =90°,∵AC =BC =,∴△ACB 为等腰直角三角形,∴OC ⊥AB ,∴△AOC 和△BOC 都是等腰直角三角形,∴S △AOC =S △BOC ,OA =,∴S 阴影部分=S 扇形OAC ==π.故选:A . 6.解:∵正六边形的任一内角为120°,∴∠1=30°(如图),∴a =2cos ∠1=,∴a =2. 故选:D .7.解:∵PA 为⊙O 的切线,A 为切点,∴∠PAO =90°,在直角△APO 中,OA ==2,∵AB ⊥OP ,∴AD =BD ,∠ADO =90°,∴∠ADO =∠PAO =90°,∵∠AOP =∠DOA ,∴△APO ∽△DAO ,∴=,即=, 解得:AD =3(cm ),∴BD =3cm .故选:B .8.解:如图,取AB 的中点O ,连接AF ,OF .∵AB 是直径,∴∠AFB =90°,∴AF ⊥BF ,∵CF =BF ,∴AC =AB ,∵四边形ABCD 是菱形,∴AB =BC =AC ,∴△ABC 是等边三角形,∴AE =EC ,易证△CEF ≌△BOF ,∴S 阴=S 扇形OBF ==,故选:D .9.解:连接AC ,如图,∵BC 是⊙O 的直径,∴∠BAC =90°,∵∠ACB =∠ADB =70°,∴∠ABC =90°﹣70°=20°.故答案为20°.故选:A .10.解:连接OB,∵BC是⊙O的切线,∴∠OBC=90°,∵OA=OB,∴∠OAB=∠OBA=20°,∴∠DBC=70°,∵∠AOC=90°,∴∠ODA=∠BDC=70°,∴∠OCB=40°,故选:C.11.解:∵四边形AECD是平行四边形,∴AE=CD,∵AB=BE=CD=3,∴AB=BE=AE,∴△ABE是等边三角形,∴∠B=60°,∴的弧长为=π,故选:B.12.解:当∠ADG=∠BCH=30°时,PE+PF是定值.理由:连接OA、OB、OC、OD,如图:∵DG与⊙O相切,∴∠GDA=∠ABD.∵∠ADG=30°,∴∠ABD=30°.∴∠AOD=2∠ABD=60°.∵OA=OD,∴△AOD是等边三角形.∴AD=OA=4.同理可得:BC=4.∵PE∥BC,PF∥AD,∴△AEP∽△ACB,△BFP∽△BDA.∴=,=.∴+=+=1.∴+=1.∴PE+PF=4.∴当∠ADG=∠BCH=30°时,PE+PF=4.故选:A.二.填空题(共5小题)13.解:设这个圆锥的底面圆的半径为r,根据题意得2πr=,解得r=5,所以圆锥的高==.故答案为.14.解:(1)如果设这个直角三角形的直角边是a,b,斜边是c,那么由题意得:S=ab=12,a+b+c=12,△∴ab=24,a+b=12﹣c,根据勾股定理得a2+b2=c2,(a+b)2﹣2ab=c2,(12﹣c)2﹣48=c2,解得c=,所以直角三角形外接圆的半径是cm;设内切圆的半径是r,则×12r=12,解得:r=cm.故答案是:,;(2)连接OC和OD,如图:由等边三角形的内心即为中线,底边高,角平分线的交点所以OD⊥BC,∠OCD=30°,OD即为圆的半径.又由BC=10cm,则CD=5cm在直角三角形OCD中:=tan30°代入解得:OD=CD=,则CO=×10=;故答案为:,.15.解:过A作AE⊥BC于E,AF⊥CD于F.∵∠ADF+∠ABC=180(圆的内接四边形对角之和为180),∠ABE+∠ABC=180,∴∠ADF=∠ABE.∵∠ABE=∠ADF,AB=AD,∠AEB=∠AFD,∴△AEB≌△AFD,∴四边形ABCD的面积=四边形AECF的面积,AE=AF.又∵∠E=∠AFC=90°,AC=AC,∴Rt△AEC≌Rt△AFC(HL).∵∠ACD=60°,∠AFC=90°,∴∠CAF =30°,∴CF =1008,AF =,∴四边形ABCD 的面积=2S △ACF =2×CF ×AF =88144.故答案为:88144.16.解:当圆心O 在弦AC 与AB 之间时,如图(1)所示,过O 作OD ⊥AC ,OE ⊥AB ,连接OA ,由垂径定理得到:D 为AB 中点,E 为AC 中点,∴AE =AC =cm ,AD =AB =cm ,∴cos ∠CAO =,cos ∠BAO ==, ∴∠CAO =45°,∠BAO =30°,此时∠BAC =∠CAO +∠BAO =45°+30°=75°;当圆心在弦AC 与AB 一侧时,如图(2)所示,同理得:∠BAC =∠CAO ﹣∠BAO =45°﹣30°=15°,综上,∠BAC =15°或75°.故答案为:15°或75°.17.解:作点A 关于CD 的对称点A ′,连接A ′B ,交CD 于点P ,则PA +PB 最小, 连接OA ′,AA ′.∵点A与A′关于CD对称,点A是半圆上的一个三等分点,∴∠A′OD=∠AOD=60°,PA=PA′,∵点B是弧AD的中点,∴∠BOD=30°,∴∠A′OB=∠A′OD+∠BOD=90°,又∵OA=OA′=3,∴A′B=.∴PA+PB=PA′+PB=A′B=3.故答案为:3.三.解答题(共8小题)18.解:(1)∵PA是⊙O的切线,∴OA⊥PA,∴∠P=30°,∴∠POA=60°,∴∠B=∠POA=×60°=30°,(2)如图,连接AC,∵AB是⊙O的直径,∴∠ACB=90°且∠B=30°,∴BC=AC,设OA=OB=OC=x,在Rt△AOP中,∠P=30°,∴PO=2OA,∴2+x=2x,x=2.即OA=OB=2.又在Rt△ABC中,∠B=30°,∴AC=AB=×4=2,∴BC=tan60°•AC=AC=2.19.(1)证明:连接OD,如图所示.∵DF是⊙O的切线,D为切点,∴OD⊥DF,∴∠ODF=90°.∵BD=CD,OA=OB,∴OD是△ABC的中位线,∴OD∥AC,∴∠CFD=∠ODF=90°,∴DF⊥AC.(2)解:连接BE,∵AB是直径,∴BE⊥AC,∵DF⊥AC,∴==,∵FC=1,∴EC=2,∵OD=AC=2,∴AC=4,∴AE=EC=2,∴AB=BC,∵AB=AC=4,∴AB=BC=AC,∴△ABC是等边三角形,∴∠BAC=60°,∵OD∥AC,∴∠BOD=∠BAC=60°,∴的长:=.20.(1)证明:∵点I是△ABC的内心,∴∠2=∠7,∵DG平分∠ADF,∴∠1=∠ADF,∵∠ADF=∠ABC,∴∠1=∠2,∵∠3=∠2,∴∠1=∠3,∴DG∥AC;(2)证明:∵点I是△ABC的内心,∴∠5=∠6,∵∠4=∠7+∠5=∠3+∠6,即∠4=∠DAI,∴DA=DI;(3)解:∵∠3=∠7,∠AED=∠BAD,∴△DAE∽△DBA,∴AD:DB=DE:DA,即AD:9=4:AD,∴AD=6,∴DI=6,∴BI=BD﹣DI=9﹣6=3.21.解:如图所示:连接OC,∵OA=AE=0.5m,∴OB=1.9+0.5=2.4m,∴BC===3.2>3m ∴一辆高3米,宽1.9米的卡车能通过隧道.22.(1)证明:连接OE,∵AC=EC,OA=OE,∴∠CAE=∠CEA,∠FAO=∠FEO,∵AC⊥AB,∴∠CAD=90°,∴∠CAE+∠EAO=90°,∴∠CEA+∠AEO=90°,即∠CEO=90°,∴OE⊥CD,∴CE为⊙O的切线;(2)解:∵∠OAF=30°,OF=1∴AO=2;∴AF=即AE=;∴;∵∠AOE=120°,AO=2;∴;=.∴S阴影23.解:(1)设CD交AB于E.∵∠BOC=2∠CDB,∠CDB=30°,∴∠COB=60°,∵OC=OB,∴△BOC是等边三角形,∴∠CBO=60°,∵CD⊥AB,CD=2,∴CE=ED=,∴OC=EC÷os30°=2,∴AB=2OC=4.(2)连接BC,OD,∵∠CBO=∠BOD=60°,∴BC∥OD,∴S△BCD =S△BCO,∴S阴=S扇形OBC==π,阴影部分的周长=2+2+=2+2+π.24.(1)证明:∵AH=AC,AF平分线∠CAH∴∠HAF=∠CAF,AF⊥EC,∴∠HAF+∠ACH=90°∵∠ACB=90°,即∠BCE+∠ACH=90°,∴∠HAF=∠BCE,∵E为的中点,∴,∴∠EBD=∠BCE,∴∠HAF=∠E BD,∴BE∥AF;(2)解:连接OH、CD.∵BC为直径,∴∠BDC=90°,∵∠ACB=90°,AC=6,BC=8,∴AB=,∵AH=AC=6∴BH=AB﹣AH=10﹣6=4,∵∠EBH=∠ECB,∠BEH=∠CEB∴△EBH∽△ECB,∴,EB=2EH,由勾股定理得BE2+EH2=BH2,即(2EH)2+EH2=42,∴EH=.25.证明:(1)∵AC平分∠BCD∴∠ACB=∠ACD,∵AE∥BC∴∠ACB=∠CAE=∠ACD∴AE=CE,且AE=EF∴AE=CE=EF∴△CAF是直角三角形∴∠CAF=90°∴AF是⊙O的切线(2)连接AD,∵AC是直径∴∠ABC=90°=∠ADC∵∠ACB=∠ACD,AC=AC,∠ABC=∠ADC=90°∴△ABC≌△ADC(AAS)∴AB=AD=12,BC=CD在Rt△AED中,DE==5∵AE=CE=EF=13∴CF=2EF,CD=BC=CE+DE=18,∵AE∥BC∴=∴EG=9∴AG=AE﹣EG=13﹣9=4人教版九年级上册第24章数学圆单元测试卷(含答案)(8)一、选择题(本大题10小题,每小题3分,共30分)1. 下列说法错误的是( C )A. 半圆是弧B. 半径相等的圆是等圆C. 过圆心的线段是直径D. 直径是弦2. 如图24-1,在⊙O中,AC∥OB,∠BAO=25°,则∠BOC的度数为( B )A. 25°B. 50°C. 60°D. 80°图24-1 图24-2 图24-33. 如图24-2,AB是⊙O的直径,点C在⊙O上,若∠B=50°,则∠A的度数为( C )A. 80°B. 60°C. 40°D. 50°4. 如图24-3,四边形ABCD为圆内接四边形,∠A=85°,∠B =105°,则∠C的度数为( C )A. 115°B. 75°C. 95°D. 无法确定5. 一个扇形的圆心角为60°,它所对的弧长为2πcm,则这个扇形的半径为( A )A. 6 cmB. 12 cmC. 2 cmD. 6 cm6. 已知⊙O的直径为12 cm,圆心到直线l的距离5 cm,则直线l与⊙O的公共点的个数为( A )A . 2个B . 1个C . 0个D . 不确定7. 如图24-4,AC 是⊙O 的直径,AB ,CD 是⊙O 的两条弦,且AB ∥CD ,若∠BAC =44°,则∠AOD 等于( D )A. 22°B. 44°C. 66°D. 88°图24-4 图24-5 图24-6图24-78. 如图24-5,AB 是⊙O 的弦,OC ⊥AB 于点H ,∠AOC =60°,OH =1,则⊙O 的半径为( B )A . 3B . 2C . 3D . 49. 如图24-6,P 是⊙O 外一点,PA ,PB 分别交⊙O 于C ,D 两点,已知⌒AB ,错误!的度数别为88°,32°,则∠P 的度数为( B )A . 26°B . 28°C . 30°D . 32°10. 如图24-7,在 ABCD 中,AD =2,AB =4,∠A =60°,以点A 为圆心,AD 的长为半径画弧交AB 于点E ,连接CE ,则阴影部分的面积是( A )A. 3 3-2π3B. 3 3-π3C. 4 3-2π3D. 4 3-π3二、填空题(本大题6小题,每小题4分,共24分)11. 已知点P与⊙O在同一平面内,⊙O的半径为4 cm,OP=5 cm,则点P与⊙O的位置关系为点P在⊙O外.12. 一个正n边形的中心角等于18°,那么n=20 .13. 如图24-8,在⊙O中,AB=DC,∠AOB=35°,则∠COD =35° .图24-8 图24-9 图24-1014. 如图24-9,在△ABC中,AB=6,AC=8,BC=10,D,E分别是AC,AB的中点,则以DE为直径的圆与BC的位置关系是相交.15. 已知如图24-10,PA,PB切⊙O于A,B两点,MN切⊙O 于点C,交PB于点N.若PA=7.5 cm,则△PMN的周长是15 cm.16. 圆锥的底面半径是4 cm,母线长是5 cm,则圆锥的侧面积等于20πcm2.三、解答题(一)(本大题3小题,每小题6分,共18分)17. 如图24-11,点A,B,C,D,E,F分别在⊙O上,AC=BD,CE=DF,连接AE,BF.△ACE与△BDF全等吗?为什么?图24-11解:△ACE 与△BDF 全等.理由如下.∵AC =BD ,CE =DF ,∴错误!=错误!, 错误!=错误!, 错误!=错误!.∴AE =BF.在△ACE 和△BDF 中,⎪⎩⎪⎨⎧===,,,BF AE DF CE BD AC ∴△ACE ≌△BDF(SSS).18. 如图24-12,在⊙O 中,弦AB 与弦AC 相等,AD 是⊙O 的直径. 求证:BD =CD .图24-12证明:∵AB =AC ,∴⌒AB =错误!. ∴∠ADB =∠ADC.∵AD 是⊙O 的直径,∴∠B =∠C =90°.∴∠BAD =∠DAC. ∴错误!=错误!. ∴BD =CD.19. 如图24-13,在⊙O中,半径OC⊥弦AB,垂足为点D,AB=12,CD=2. 求⊙O的半径长.图24-13解:如答图24-1,连接AO.∵半径OC⊥弦AB,∴AD=BD.∵AB=12,答图24-1∴AD=BD=6.设⊙O的半径为R,∵CD=2,∴OD=R-2.在Rt△AOD中,OA2=OD2+AD2,即R2=(R-2)2+62.∴R=10.∴⊙O 的半径长为10.四、解答题(二)(本大题3小题,每小题7分,共21分) 20.图24-14如图24-14,AB 是⊙O 的直径,AC 是⊙O 的弦,∠ACB 的平分线交⊙O 于点D ,若AB =10,求BD 的长.解:如答图24-2,连接AD.∵AB 是⊙O 的直径,∴∠ACB =∠ADB =90°.答图24-2∵∠ACB 的平分线交⊙O 于点D ,∴∠DCA =∠BCD.∴错误!=错误!. ∴AD =BD.∴在Rt △ABD 中,AD =BD =22AB =22×10=5 2.21.图24-15如图24-15,已知⊙O 的周长等于6π cm ,求以它的半径为边长的正六边形ABCDEF 的边心距OP 的长.解:如答图24-3,连接OB ,OC. 设正六边形的边长为R ,则⊙O 的半径为R.由题意,得2πR =6π.∴R =3(cm ).则∠POC =360°6×12=30°,PC =12OC =32(cm).答图24-3在Rt △OPC 中,边心距OP =OC 2-PC 2=3 32(cm).22. 如图24-16,在△ABC 中,∠ACB =90°,点D 是AB 上一点,以BD 为直径的⊙O 和AC 相切于点P . 求证:BP 平分∠ABC .图24-16证明:如答图24-4,连接OP.∵AC是⊙O的切线,∴OP⊥AC.又∵BC⊥AC,∴OP∥BC.∴∠OPB=∠PBC.∵OP=OB,答图24-4∴∠OPB=∠OBP.∴∠PBC=∠OBP.∴BP平分∠ABC.五、解答题(三)(本大题3小题,每小题9分,共27分)23. 如图24-17,C,D是以AB为直径的半圆周的三等分点,CD=8 cm,P是直径AB上的任意一点.(1)求错误!的长;(2)求阴影部分的面积.图24-17解:(1)如答图24-5,连接OC ,OD.依题意,得∠COD =180°3=60°.又∵OC =OD ,∴△COD 是等边三角形.∴OC =OD =8 cm .∴错误!的长为错误!=错误!π(cm).答图24-5(2)∵∠OCD =∠POC =60°,∴CD ∥AB.∴S △PCD =S △OCD .∴S 阴影=S 扇形COD =60π×82360=323π(cm 2).24. 如图24-18,在Rt△ABC中,∠C=90°,AC=BC,点O 在AB上,经过点A的⊙O与BC相切于点D,交AB于点E.(1)求证:AD平分∠BAC;(2)若CD=1,求图中阴影部分的面积.(结果保留π)图24-18(1)证明:连接DE,OD,如答图24-6.∵BC与⊙O相切于点D,∴∠ODB=90°.∵AC⊥BC,∴∠ACD=90°.∴OD∥AC.∴∠ODA=∠CAD.又∵OA=OD,∴∠OAD=∠ODA.∴∠OAD=∠CAD.∴AD平分∠BAC.答图24-6(2)解:∵在Rt△ABC中,∠C=90°,AC=BC,∴∠B=∠BAC=45°.∵BC 与⊙O 相切于点D ,∴∠ODB =90°. ∴∠BOD =45°.∴OD =BD.设BD =x ,则OD =OA =x ,OB =2x ,∴BC =AC =x +1.∵AC 2+BC 2=AB 2,∴2(x +1)2=(2x +x)2.解得x = 2. ∴BD =OD = 2.∴图中阴影部分的面积=S △BOD -S 扇形DOE =12×2×2-45·π(2)2360=1-π4.25. 如图24-19,以△ABC 的BC 边上一点O 为圆心作圆,⊙O 经过A ,C 两点且与BC 边交于点E ,点D 为错误!的中点,连接AD 交线段EO 于点F ,若AB =BF .(1)求证:AB 是⊙O 的切线;图24-19 (2)若CF =4,DF =10,求⊙O 的半径r.(1)证明:如答图24-7,连接OA ,OD.∵点D 为错误!的中点,∴OD ⊥BC.∴∠EOD =90°.∵AB =BF ,OA =OD ,∴∠BAF=∠BFA,∠OAD=∠D.而∠BFA=∠OFD,∠OFD+∠D=90°,答图24-7∴∠OAD+∠BAF=∠D+∠BFA=90°,即∠OAB=90°.∴OA⊥AB. ∴AB是⊙O的切线.(2)解:∵OF=CF-OC=4-r,OD=r,DF=10,在Rt△DOF中,OD2+OF2=DF2,即r2+(4-r)2=(10)2. 解得r1=3,r2=1(不符题意,舍去). ∴半径r=3。

人教版九年级数学上册第24章圆单元测试题含答案

人教版九年级数学上册第24章圆单元测试题含答案

人教版九年级数学上册第24章圆单元测试题(含答案).选择题(共10小题) C . 8长分别为(y9.如图,四边形ABCD 是O O 的内接四边形,O O 的半径为2,/ B=135。

,则小■的长()兀 A . 2nB . nC . —D .210 .如图,直径 AB 为12的半圆,绕A 点逆时针旋「转60°此时点B 旋转到点B',则图中 阴影部分的面积是() A . 12 nB . 24 nC . 6 nD . 36 n二 .填空题(共10小题)11 .如图,AB 是O O 的直径,CD 为O O 的一条弦,CD 丄AB 于点E ,已知CD=4 , AE=1 ,1. 下列说法,正确的是(A .弦是直径 C .半圆是弧2. 如图,在半径为 5cm 的O O 中, B .弧是半圆D .过圆心的线段是直径(8题图) O 为圆心,5为半径的圆的一部分, O O 中弦CD 的中点,EM 经过圆心O 交O O 于点E .若CD=6,则隧道的高( 为(2题图)(3题图)3. 一个隧道的横截面如图所示,它的形状是以点ME M 是的长)4. 如图,AB 是O O 的直径,i = l I,/ COD=34,则/ AEO 的度数是(5. 6. A . 51° B . 56° C . 68° D . 78° 如图,在O O 中,弦AC //半径 OB ,/ BOC=50°,则/ OAB 的度数为( A . 25° B . 50° C . 60° D . 30° O O 的半径为5cm ,点A 到圆心O 的距离OA=3cm ,则点A 与圆O 的位置关系为 A .点A 在圆上 B .点A 在圆内 C .点A 在圆外 7. 已知O O 的直径是10,圆心O 到直线I 的距离是5,则直线A .相离B .相交C .相切D .无法确定I 和O O 的位置关系是D .外切如图,正六边形 ABCDEF 内接于O O ,半径为4,则这个正六边形的边心距OMD . 2 ';,(5题图) 弦 (4题图) AB=6cm , OC 丄 AB 于点 C ,贝U OC=(6cm则O O的半径为 _____________ .14. 如图所示,在平面直角坐标系 xOy 中,半径为2的O P 的圆心P 的坐标为(-3, 0),将O P 沿x 轴正方向平移,使O P 与y 轴相切,则平移的距离为 _________________ . 15. 如图,点 O 是正五边形 ABCDE 的中心,则/ BAO 的度数为 _________________ . 16•已知一条圆弧所在圆半径为9,弧长为^|n 则这条弧所对的圆心角是 __________________ . 17.如图,在边长为 4的正方形ABCD 中,先以点A 为圆心,AD 的长为半径画弧,再以AB 边的中点为圆心,AB 长的一半为半径画弧,则两弧之间的阴影部分面积是 __________________ (结果保留n .18•已知圆锥的底面圆半径为3,母线长为5,则圆锥的全面积是 ________________ .19•如果圆柱的母线长为 5cm ,底面半径为2cm ,那么这个圆柱的侧面积是 _20. ___________________________________________________________________ 半径为R的圆中,有一弦恰好等于半径,则弦所对的圆心角为 _______________________________ . 三•解答题(共5小题)21. 如图,已知圆O 的直径AB 垂直于弦CD 于点E,连接CO 并延长交AD 于点F,且CF 丄AD . (1 )请证明:E 是OB 的中点; (2 )若AB=8,求CD 的长.1[12. 如图,在 △ ABC 中,/ C=90 ° / A=25° 以点 C 为圆心, BC 为半径的圆交 AB 于点D ,交AC 于点E ,则丨啲度数为 _________________13. 如图,四边形 ABCD 内接于O O , AB 为O O 的直径,点 C 为的中点.若/ A=40° (10题图) (11题图) (12题图) (9题图) (17题图) (13题图)(14题图) (15题图)则/ B= ____________ 度.22. 已知:如图,C, D是以AB为直径的O O上的两点,且0D // BC .求证:AD=DC .23. 如图,在△ ABC中,AB=AC,以AB为直径的O 0分别与BC , AC交于点D, E,过点D作O 0的切线DF,交AC于点F.(1)求证:DF丄AC ;(2)若0 0的半径为4,/ CDF=22.5,求阴影部分的面积.24. 如图,△ OAB中,0A=0B=4,/ A=30° , AB与O O相切于点C,求图中阴影部分的面积.(结果保留n)25. 一个几何体的三视图如图所示,根据图示的数据计算出该几何体的表面积.:主视副左视图218. 24 n 19. 20 n crh 20.三.解答题(共5小题)21. (1)证明:连接AC ,如图CF丄AD ,• AF=DF,即CF 是AD 的中垂线,• AC=CD ,即:△ ACD是等边三角形,•/ FCD=30 , _二—丄屮_',.••一二-一上.,・••点E为OB的中点;一.选择题(共1. C2. B二.填空题(共人教版九年级数学上册第24章圆单元测试题参考答案10小题)3. D10小题)4. A5.6. B7. C8. D9. B 10. B11.二12. 502 —13. 70 14. 1 或5 15.54°16. 50_°17. 2n•••直径AB垂直于弦CD于点E,「.二i,•••AC=AD ,(2)解:在Rt△ OCE 中,AB=8 , • Q马粧二q ,22. 证明:连结OC,如图,•/ OD // BC,•/ 1 = / B,Z 2= / 3, 又••• OB=OC,•/ B= / 3,「./ 1 = /2,23. ( 1)证明:连接OD ,T OB=OD ,•AD=DC .•/ AB=AC,•/ ABC= / ACB,•/ ODB= / ACB , • OD // AC ,•/ DF 是O O 的切线,• DF 丄OD, • DF 丄AC .(2)解:连接OE, •/ DF丄AC , / CDF=22.5 ,:丄 ABC= /ACB=67.5 ,T OA=OE,•/ AOE=90 ,:O O 的半径为4,二S 扇形AOE=4n , S^AOE=8 , 24•解:连接OC , •/ AB与圆O相切,• OC X AB ,•/ OA=OB, •••/•••/BAC=45 ,.• S 阴影=4n- &在Rt △ AOC中,AOC= / BOC , / A= / B=30°,/ A=30°, OA=4 , • OC==OA=2,/ AOC=60 ,2•••/ AOB=120 ,AC= 7OA2-OC2=^3,即AB=2AC=4 循,贝V S阴影=S^ AOB—S扇形丄 ^4.-2故图中阴影部分的面积为 4. —•120兀X 22360~=4 一"-60 °•••过圆心O的线• AC=AD=CD .在Rt△ COE 中,325.解:由三视图可知该几何体是圆锥,圆锥的高为12,圆锥的底面圆的半径为5, 所以圆锥的母线长=「1 ,,.-13,所以圆锥的表面积=n ?和丄?2 n ?5?13=90 n2。

人教版数学九年级的上《第24章圆》单元综合测试试题(含答案).doc

人教版数学九年级的上《第24章圆》单元综合测试试题(含答案).doc

圆单元综合测试试题一.选择题1.已知⊙O中最长的弦为8cm,则⊙O的半径为()cm.A.2B.4C.8D. 162.如图,AB是⊙O的直径,BC 是⊙ O的弦,已知∠ AOC=80°,则∠ ABC的度数为()A.20°B. 30°C. 40°D. 50°3.如图,AB是⊙O的直径,点C在⊙ O上,∠ ABC=30°, AC=4,则⊙ O的半径为()A.4B. 8C.D.4.如图,AB为⊙O的直径,点 C 为⊙ O上的一点,过点C作⊙ O的切线,交直径AB的延长线于点D;若∠ A = 23°,则∠D的度数是()A.23°B. 44°C. 46°D. 57°5.如图,正三角形ABC的边长为4cm,D, E,F 分别为 BC,AC, AB的中点,以A,B, C三点为圆心,2cm 长为半径作圆.则图中阴影部分的面积为()222 2 A.( 2﹣π )cm B.(π﹣)cm C.( 4﹣2π)cm D.( 2π ﹣2)cm6.如图,将直角三角板60°角的顶点放在圆心O上,斜边和一直角边分别与⊙O相交于 A、B 两点, P 是优弧 AB上任意一点(与A、 B 不重合),则∠ APB的度数为()A .60°B . 45°C . 30°D . 25°7.在平面直角坐标系中,以原点O 为圆心, 5 为半径作圆,若点 P 的坐标是( 3, 4),则点 P 与⊙ O 的位置关系是()A .点 P 在⊙ O 外B .点 P 在⊙ O 内C .点 P 在⊙ O 上D .点 P 在⊙ O 上或在⊙ O 外8.已知⊙ O 的半径为 4,直线 l 上有一点与⊙ O 的圆心的距离为 4,则直线 l 与⊙ O 的位置关系为()A .相离B .相切C .相交D .相切、相交均有可能9.如图, △的内切圆⊙ O 与, , 分别相切于点,, ,且 =2, =5,则△ 的周长为()ABCAB BC CA D E F ADBC ABCA .16B . 14C . 12D . 1010.如图,在矩形 ABCD 中,AB = 8,AD =12,经过 A ,D 两点的⊙ O 与边 BC 相切于点 E ,则⊙ O 的半径为()A .4B .C . 5D .二.填空题11.若四边形是⊙ 的内接四边形,∠ = 120°,则∠ C 的度数是.ABCD OA12.如图,四边形内接于⊙ ,∠ = 130°,则∠的度数是.ABCD OCBOD13.如图,四边形 ABCD 是菱形,∠ B = 60°, AB = 1,扇形 AEF 的半径为 1,圆心角为 60°,则图中阴影部分 的面积是.14.如图,已知 AB 是⊙ O 的直径, AB = 2, C 、 D 是圆周上的点,且∠ CDB =30°,则 BC 的长为 .15.如图,在△中, = ,以 为直径的⊙ O 与边相交于点 ,过点 E 作 ⊥ 于点 ,延长 、ABC AB AC ACBCEEF ABFFEAC 相交于点 D ,若 CD = 4, AF =6,则 BF 的长为.16.如图, AB 是⊙ O 的直径,弦 BC = 6cm , AC = 8cm .若动点 P 以 2cm / s的速度从 B 点出发沿着 B →A 的方向运动,点 Q 以 1cm / s 的速度从 A 点出发沿着 A → C 的方向运动,当点 P 到达点 A 时,点 Q 也随之停止运动. 设运动时间为 t ( s ),当△ APQ 是直角三角形时, t 的值为.3(1)求证:直线CE是⊙O的切线;(2)若AB= 10,CD= 4,求BC的长.18.如图,⊙O的直径AB为 10cm,弦BC= 8cm,∠ACB的平分线交⊙O于点D,连接AD,BD,求四边形ACBD 的面积.19.如图,在△ABC中,AB=AC,∠BAC= 54°,以AB为直径的⊙O分别交AC、BC于点D、E,过点B作直线BF,交 AC的延长线于点F.(1)求证:BE=CE;(2)若AB= 6,求弧DE的长;(3)当∠F的度数是多少时,BF与⊙O相切,证明你的结论.20.如图,AB是⊙O的直径,弦CD⊥ AB于点 E,连接 AC, BC.(1)求证:∠A=∠BCD;(2)若AB= 10,CD= 6,求BE的长.21.如图,在圆O中,弦 AB=8,点 C在圆 O上( C与 A, B 不重合),连接 CA、 CB,过点 O分别作OD⊥AC,OE⊥ BC,垂足分别是点D、 E.(1)求线段DE的长;(2)点O到AB的距离为 3,求圆O的半径.22.如图,AB=AC,CD⊥AB于点D,点O是∠BAC的平分线上一点,⊙O与 AB相切于点 M,与 CD相切于点N(1)求证:∠AOC=135°;(2)若NC= 3,BC= 2 ,求DM的长.23.如图,AB是⊙O的直径,C为AB延长线上一点,过点C作⊙ O的切线 CD, D为切点,点 F 是的中点,连接 OF并延长交 CD于点 E,连接 BD, BF.( 1)求证:BD∥OE;( 2)若OE= 3,tan C=,求⊙ O的半径.5参考答案一.选择题1.解:∵⊙O中最长的弦为8cm,即直径为8cm,∴⊙ O的半径为4cm.故选: B.2.解:∵=,∴∠ ABC=∠AOC=× 80°=40°,故选: C.3.解:∵AB是直径,∴∠ C=90°,∵∠ ABC=30°,∴AB=2AC=8,∴OA=OB=4,故选: A.4.解:连接OC,如图,∵CD为⊙ O的切线,∴ OC⊥CD,∴∠ OCD=90°,∵∠ COD=2∠ A=46°,∴∠ D=90°﹣46°=44°.故选: B.5.解:连接AD,∵△ ABC是正三角形,BD=DC,∴∠ B=60°, AD⊥ BC,∴AD=AB=2,∴图中阴影部分的面积=× 4× 2 ﹣×3=( 4 2﹣ 2π )cm故选: C .6.解:由题意得,∠ AOB = 60°, 则∠ APB = ∠AOB = 30°.故选: C .7.解:∵点 P 的坐标是( 3, 4), ∴ OP ==5,而⊙ O 的半径为 5,∴ OP 等于圆的半径,∴点 P 在⊙ O 上.故选: C .8.解:∵若直线L 与⊙ 只有一个交点,即为点 ,则直线 L 与⊙ O 的位置关系为:相切;OP若直线 L 与⊙ O 有两个交点,其中一个为点,则直线L 与⊙O 的位置关系 为:相交;P∴直线 L 与⊙ O 的位置关系为:相交或相切.故选: D .9.解:∵△ ABC 的内切圆⊙ O 与 AB , BC , CA 分别相切于点D ,E ,F ,∴ AF =AD = 2, BD = BE , CE =CF , ∵ BE +CE = BC = 5,∴ BD +CF = BC = 5,∴△ ABC 的周长= 2+2+5+5= 14,故选: B .10.解:如图,连结 EO 并延长交 AD 于 F ,连接 AO ,∵⊙ O与 BC边相切于点E,∴OE⊥BC,∵四边形 ABCD为矩形,∴BC∥AD,∴OF⊥AD,∴AF=DF= AD=6,∵∠ B=∠ DAB=90°, OE⊥ BC,∴四边形 ABEF为矩形,∴EF=AB=8,设⊙ O的半径为 r ,则 OA=r , OF=8﹣ r ,22 2在 Rt △AOF中,∵OF+AF=OA,∴( 8﹣r)2+62=r2,解得 r =,故选: D.二.填空题(共 6 小题)11.解:四边形ABCD是⊙ O的内接四边形,∴∠ A+∠ C=180°,∴∠ C=180°﹣∠ A=60°,故答案为: 60°.12.解:∵四边形ABCD是⊙ O的内接四边形,∴∠ A+∠ C=180°,∵∠ C=130°,∴∠ A=50°,∴∠ BOD=2∠ A=100°,故答案为100°.13.解:连接∵四边形 ABCD是菱形,∴∠ B=∠ D=60°, AB= AD= DC= BC=1,∴∠ BCD=∠ DAB=120°,∴∠ 1=∠ 2= 60°,∴△ ABC、△ ADC都是等边三角形,∴AC=AD=1,∵ AB=1,∴△ ADC的高为,AC=1,∵扇形 BEF的半径为1,圆心角为60°,∴∠ 4+∠ 5= 60°,∠ 3+∠5= 60°,∴∠ 3=∠ 4,设 AF、DC相交于 HG,设 BC、 AE相交于点G,在△ ADH和△ ACG中,,∴△ ADH≌△ ACG( ASA),∴四边形 AGCH的面积等于△ ADC的面积,∴图中阴影部分的面积是:﹣=﹣×1×=﹣.S 扇形AEF S△ACD故答案为﹣.14.解:∵AB是直径,∴∠ ACB=90°,∵∠ A=∠ CDB=30°,∴BC= AB=1,故答案为1.15.解:如图,连接AE,OE.设 BF= x.∵AC是直径,∴∠ AEC=90°,∴AE⊥BC,∵ AB=AC,∴∠ EAB=∠ EAC,∵ OA=OE,∴∠ OAE=∠ OEA,∴∠ EAB=∠ AEO,∴OE∥AB,∴=,∴AF=6, CD=4, BF= x,∴AC=AB= x+6,∴OE=OA= OD=,∴=,整理得: x2+10x﹣24=0,解得 x=2或﹣12(舍弃),经检验 x=2是分式方程的解,∴BF=2.故答案为 2.16.解:如图,∵AB是直径,∴∠ C=90°.又∵ BC=6cm, AC=8cm,∴根据勾股定理得到AB==10cm.则 AP=(10﹣2t ) cm, AQ= t .∵当点 P 到达点 A 时,点 Q也随之停止运动,∴0<t≤ 2.5 .①如图 1,当PQ⊥AC时,PQ∥BC,则△APQ∽△ ABC.故=,即=,解得t=.②如图 2,当PQ⊥AB时,△APQ∽△ACB,则=,即=,解得 t =.综上所述,当t =s 或 t =时,△ APQ为直角三角形.故答案是:s 或s.三.解答题(共7 小题)17.( 1)证明:连接OC.∵OA=OC,∴∠ OAC=∠ OCA,∵AC平分∠DAB,∴∠ CAD=∠ CAB,∴∠ DAC=∠ ACO,∴ AD∥OC,∵AD⊥DE,∴OC⊥DE,∴直线 CE是⊙ O的切线;(2)解:∵AB是直径,∴∠ ACB=90°,∵ AD⊥CD,∴∠ ADC=∠ ACB=90°,∵∠ DAC=∠ CAB,∴△ DAC∽△ CAB,∴=,∴BC?AC=40,2 2∵BC+AC=100,∴ BC+AC=6,AC﹣BC=2或BC﹣AC=2,∴BC=2或4.18.解:∵AB为直径,∴∠ ADB=90°,又∵ CD平分∠ ACB,即∠ ACD=∠ BCD,∴=,∴AD=BD,∵直角△ ABD中, AD= BD,则 AD=BD=AB=5,△ ABDAD?BD=×5 ×5 2则 S == 25(cm),在直角△ ABC中, AC=== 6(cm),△ ABCAC BC 2S cm2则 S 四边形=S△+S△=25+24=49(cm).ADBC ABD ABC19.( 1)证明:连接AE,如图,∵AB为⊙ O的直径,∴∠ AEB=90°,∴ AE⊥BC,∵AB=AC,∴BE=CE;(2)解:∵AB=AC,AE⊥BC,∴ AE平分∠ BAC,∴∠ CAE=∠BAC=×54°=27°,∴∠ DOE=2∠ CAE=2×27°=54°,∴弧 DE的长==π ;(3)解:当∠F的度数是 36°时,BF与⊙O相切.理由如下:∵∠ BAC=54°,∴当∠ F=36°时,∠ ABF=90°,∴ AB⊥BF,∴ BF为⊙ O的切线.20.( 1)证明:∵直径AB⊥弦 CD,∴弧 BC=弧 BD.∴∠ A=∠ BCD;( 2)连接OC∵直径 AB⊥弦 CD, CD=6,∴CE=ED=3.∵直径 AB=10,∴CO=OB=5.在 Rt △COE中,∵OC= 5,CE= 3,∴ OE==4,∴BE=OB﹣ OE=5﹣4=1.21.解:( 1)∵OD经过圆心O, OD⊥AC,∴AD=DC,同理: CE= EB,∴DE是△ ABC的中位线,∴DE= AB,∵AB=8,∴ DE=4.( 2)过点O作OH⊥AB,垂足为点H, OH=3,连接 OA,∵OH经过圆心 O,∴ AH=BH= AB,∵AB=8,22 2在 Rt △AHO中,AH+OH=AO,∴ AO=5,即圆 O的半径为5.22.解:( 1)如图,作OE⊥ AC于 E,连接 OM, ON.∵⊙ O与 AB相切于点 M,与 CD相切于点 N,∴OM⊥AB, ON⊥ CD,∵OA平分∠ BAC,OE⊥AC,∴ OM=OE,∴ AC是⊙ O的切线,∵ON=OE, ON⊥CD, OE⊥ AC,∴ OC平分∠ ACD,∵CD⊥AB,∴∠ ADC=∠ BDC=90°,∴∠ AOC=180°﹣(∠ DAC+∠ACD)=180°﹣45°=135°.( 2)∵AD,CD,AC是⊙O的切线,M,N,E是切点,∴AM=AE, DM=DN, CN= CE=3,设 DM= DN=x, AM =AE= y,∵ AB=AC,∴BD=3﹣ x,22 2在 Rt △BDC中,∵BC=BD+CD,∴ 20=( 3﹣x)2+( 3+x)2,∴ x=1或﹣1(舍弃)∴ DM=1.23.( 1)证明:∵OB=OF,∴∠ 1=∠ 3,∴∠ 2=∠ 3,∴BD∥OE;(2)解:连接OD,如图,∵直线 CD是⊙ O的切线,∴ OD⊥CD,在 Rt △OCD中,∵ tan C==,∴设 OD=3k, CD=4k.∴OC=5k, BO=3k,∴BC=2k.∵BD∥OE,∴.即.∴DE=6k,22 2在 Rt △ODE中,∵OE=OD+DE,∴( 3)2=(3k)2+(6k)2,解得k=∴OB=3,即⊙ O的半径的长.。

人教版九年级数学上册 第24章 圆 单元检测试题(有答案)

人教版九年级数学上册  第24章  圆  单元检测试题(有答案)

第24章圆单元检测试题(满分120分;时间:120分钟)一、选择题(本题共计10 小题,每题3 分,共计30分,)1. 若用一张直径为20cm的半圆形铁片做一个圆锥的侧面,接缝忽略不计,则所得圆锥的高为()cm D.10cmA.5√3cmB.5√5cmC.5√1522. 已知⊙O的半径为5,直线EF经过⊙O上一点P(点E,F在点P的两旁),下列条件能判定直线EF与⊙O相切的是()A.OP=5B.OE=OFC.O到直线EF的距离是4D.OP⊥EF3. 如图,OA,OC是⊙O的半径,点B在⊙O上,若AB // OC,∠BCO=21∘,则∠AOC 的度数是()A.42∘B.21∘C.84∘D.60∘4. 如图,四边形ABCD内接于⊙O,E为AD延长线上一点,若∠CDE=80∘,则∠B等于()A.60∘B.70∘C.80∘D.90∘5. 如图,AB是⊙O的直径,C是⊙O上的点,过点C作⊙O的切线交AB的延长线于点D.若∠1=32∘,则∠D=()A.32∘B.26∘C.20∘D.64∘6. 若Rt△ABC的外接圆半径为R,内切圆半径为r,则其内切圆的面积与Rt△ABC的面积比为()A.πr 2r+2RB.πr2R+rC.πr4R+2rD.πr4R+r7. 下列说法错误的是()A.圆有无数条直径B.连接圆上任意两点之间的线段叫弦C.过圆心的线段是直径D.能够重合的圆叫做等圆8. 如图,⊙O阴影部分为残缺部分,现要在剩下部分裁去一个最大的正方形,若OP=2,⊙O半径为5,则裁去的最大正方形边长为多少?()A.7B.6C.5D.49. 下列说法中,正确的是()A.垂直于半径的直线一定是这个圆的切线B.任何三角形有且只有一个内切圆C.三点确定一个圆D.三角形的内心到三角形的三个顶点的距离相等10. 如图,AB是⊙O的一条弦,作直径CD,使CD⊥AB,垂足为M.AB=8cm,∠D= 40∘,那么AM的值和∠C的度数分别是()A.3cm和30∘B.3cm和40∘C.4cm和50∘D.4cm和60∘二、填空题(本题共计10 小题,每题3 分,共计30分,)11. 如图,点A、B在⊙O上,弧AB的度数是120∘,则∠OAB的大小为________∘.12. 如图,在⊙O中,半径OA垂直于弦BC,点D在圆上且∠ADC=30∘,则∠AOB的度数为________.13. 如图,四个边长为1的小正方形拼成一个大正方形,A,B,O是小正方形的顶点,⊙O的半径为1,P是⊙O上的点,且位于右上方的小正方形内,则∠APB的度数为________.14. 若两圆的半径分别是2cm和5cm,圆心距为6cm,则这两圆的位置关系是________.15. 如图所示的圆形工件,大圆的半径R为65.4mm,四个小圆的半径r为17.3mm,则图中阴影部分的面积是________mm2(结果保留π).16. 用一张面积为400cm2的正方形硬纸片围成一个圆柱的侧面,这个圆柱的底面直径是________cm(精确到0.1cm).17. 如图,在⊙O的内接四边形ABCD中AB=AD,∠C=110∘∠ABD=________∘.18. 有一个边长为50cm的正方形洞口,要用一个圆盖去盖住这个洞口,那么圆盖的直径至少应为________.19. 已知:AB是⊙O的直径,弦CD与AB相交于E,若使弧CB=弧BD,则还需要添加什么条件________.(填出一个即可)20. 在Rt△ABC中,∠C=90∘,AC=6,BC=8,如图甲,⊙O是Rt△ABC的内切圆,则有⊙O的半径r=2;如图乙若半径r n的n个等圆⊙O1、⊙O2...⊙O n依次外切,且⊙O1与AC、AB相切,⊙O1、⊙O2...⊙O n均与AB相切,则r n的值为________.三、解答题(本题共计6 小题,共计60分,)21. 如图是一块圆形砂轮破碎后的部分残片,试找出它的圆心,并将它还原成一个圆.要求:1、尺规作图;2、保留作图痕迹.(可不写作法)22. 已知如图,在△ABC中,∠C=90∘,AC=2,BC=3,AB的中点为点M.(1)以点C为圆心,2为半径作⊙C,则点A、B、M分别与⊙C有怎样的位置关系?(2)若以C为圆心作⊙C,使A、B、M三点中至少有一点在⊙C内,且至少有一点在⊙C外,则⊙C的半径r的取值范围是什么?23. 求阴影部分面积.24. 两只蚂蚁从A爬到B,一只沿大半圆的弧长,另一只沿两个小半圆的弧长爬行,哪只蚂蚁爬行的路程长?25. 如图,AB是⊙O的直径,AC是⊙O的切线,切点为A,BC交⊙O于点D,点E是AC的中点.(1)试判断直线DE与⊙O的位置关系,并说明理由;(2)若⊙O的半径为2,∠B=50∘,AC=4.8,求图中阴影部分的面积.26. 如图,△ABC是⊙O的内接三角形,∠ACB=45∘,∠AOC=150∘,过点C作⊙O的切线交AB的延长线于点D.(1)求证:CD=CB;(2)如果⊙O的半径为√2,求AC的长.参考答案与试题解析一、选择题(本题共计10 小题,每题 3 分,共计30分)1.【答案】A【解答】解:设这个圆锥的底面半径为r,,解得r=5,根据题意得2πr=180⋅π⋅10180所以这个圆锥的高=√102−52=5√3(cm).故选A.2.【答案】D【解答】∵ 点P在⊙O上,∵ 只需要OP⊥EF即可,3.【答案】A【解答】∵ AB // OC,∠BCO=21∘,∵ ∠ABC=∠BCO=21∘,∵ ∠ABC与AOC是同弧所对的圆周角与圆心角,∵ ∠AOC=2∠ABC=42∘.4.【答案】C【解答】解:∵ 四边形ABCD内接于⊙O,∵ ∠B=∠CDE=80∘.故选C.5.【答案】B【解答】解:连接OC,如图,∵ AB是⊙O的直径,CD是⊙O的切线,∴ ∠ACB=90∘,∠OCD=90∘,即∠A+∠ABC=90∘,∠OCB+∠1=90∘.又∵ ∠OCB=∠OBC,∴ ∠A=∠1=32∘.∴ ∠CBA=90∘−32∘=58∘.又∵ ∠CBA=∠1+∠D,∴ ∠D=∠CBA−∠1=58∘−32∘=26∘.故选B.6.【答案】B【解答】解:根据题意画出如下图形:由图可得Rt△ABC的周长为AD+AF+BF+BE+CE+CD =2R+2R+2r=4R+2r,则Rt△ABC的面积为:12r⋅(4R+2r)=r(2R+r).则内切圆的面积与Rt△ABC的面积比为:πr2 r(2R+r)=πr2R+r.故选B.7.【答案】C【解答】解:A,圆有无数条直径,故本选项说法正确;B,连接圆上任意两点的线段叫弦,故本选项说法正确;C,过圆心的弦是直径,故本选项说法错误;D,能够重合的圆全等,则它们是等圆,故本选项说法正确.故选C.8.【答案】B【解答】解:如图:正方形ABCD是最大的正方形,OP⊥AB,延长PO交CD于点F,∵ OF⊥CD,DF=CF,AD=PF,∵ OP=2,⊙O半径为5,可设正方形ABCD的边长为x,,OF=x−2,则DF=x2)2=52,∵ 在直角△OFD中,(x−2)2+(x2解得x=6;即正方形ABCD的边长为6.故选B.9.【答案】B【解答】解:A、过半径的外端垂直于半径的直线是这个圆的切线,所以A选项错误;B、任何三角形有且只有一个内切圆,所以B选项正确;C、不共线的三点确定一个圆,所以C选项错误;D、三角形的内心到三角形的三边的距离相等,所以D选项错误.故选B.10.【答案】C【解答】解:∵ CD⊥AB,垂足为M.AB=8cm,∵ AM=BM=4cm,∠CAD=90∘.∵ ∠D=40∘,∵ ∠C=90∘−40∘=50∘.故选C.二、填空题(本题共计10 小题,每题 3 分,共计30分)11.【答案】30【解答】解:∵ 弧AB的度数是120∘,∵ ∠AOB=120∘,∵ OA=OB,∵ ∠OAB=∠OBA,∵ ∠OAB=(180∘−∠AOB)÷2=(180∘−120∘)÷2=30∘;故答案为:30∘.12.【答案】60∘【解答】解:∵ OA⊥BC,̂=AĈ,∵ AB∵ ∠AOB=2∠ADC.∵ ∠ADC=30∘,∵ ∠AOB=60∘.故答案为:60∘.13.【答案】45∘【解答】解:由题意知,∠AOB=90∘,且A,B,P均位于⊙O的上,所以有∠APB=12∠AOB=45∘.故答案为:45∘.14.【答案】相交【解答】解:∵ 两圆的半径分别是2cm和5cm,∵ 此两圆的半径差为:5−2=3(cm),两圆的半径和为:2+5=7(cm),∵ 圆心距为6cm,3cm<6cm<7cm,∵ 这两圆的位置关系是:相交.故答案为:相交.15.【答案】12320π.【解答】解:已知大圆的半径R为65.4mm,四个小圆的半径r为17.3mm;由圆的面积公式可知S大= πR2= π(65.4)2=4277.16π(mm2)S小=4 π(17.3)2=1197.16π(mm2).即S阴影=S大−4S小=4277.16π−1197.16π=3080π(mm2).故答案为:3080πmm2.16.【答案】6.4【解答】解:这个圆柱的底面周长就是正方形的边长,面积为400cm2的正方形,边长即为20,所以直径=20π=6.4cm.17.【答案】55【解答】解:∵ ∠C=110∘,∵ ∠BAD=180∘−110∘=70∘,∵ AB=AD,∵ ∠ABD=180∘−70∘2=55∘.故答案为:55.18.【答案】50√2cm【解答】解:根据题意,知圆盖的直径至少应为正方形的对角线的长;再根据勾股定理,得圆盖的直径至少应为:√502+502=50 √2.故答案为:50√2cm.19.【答案】∠BOC=∠BOD【解答】解;同弧所对的圆心角相等,所以还需要添加的条件是∠BOC=∠BOD.20.【答案】102n+3【解答】解:如图,连接AO1,BO n,CO1,CO n,O1O n,则S△AO1C =12AC⋅r n=3r n,S△BOn C=12BC⋅r n=4r n,∵ 等圆⊙O1,⊙O2,…⊙O n依次外切,且均与AB边相切,∵ O1,O2,…,O n均在直线O1O n上,且O1O n // AB,∵ O1O n=(n−2)2r n+2r n=2(n−1)r n,过点C作CH⊥AB于点H,交O1O n于点K,则CH=245,CK=245−r n;S△CO1O n =12O1O n⋅CK=(n−1)(245−r n)r n,S梯形AO1O n B =12[2(n−1)r n+10]r n=[(n−1)r n+5]r n;∵ S△ABC=S△AO1C +S△BOn C+S△CO1O n+S梯形AO1O n B,∵ 24=3r n+4r n+(n−1)(245−r n)r n+[(n−1)r n+5]r n,解得:r n=102n+3三、解答题(本题共计6 小题,每题10 分,共计60分)21.【答案】解:在圆弧作两条弦AB,BF,分别作出AB,BF的中垂线,交于点O,以点O为圆心,OA 的长为半径,则圆O是所求的圆.【解答】解:在圆弧作两条弦AB,BF,分别作出AB,BF的中垂线,交于点O,以点O为圆心,OA 的长为半径,则圆O是所求的圆.22.【答案】解:(1)∵ 在△ABC中,∠C=90∘,AC=2,BC=3,AB的中点为点M,∵ AB =√AC 2+BC 2=√22+32=√13,CM =12AB =√132, ∵ 以点C 为圆心,4为半径作⊙C ,∵ AC =2,则A 在圆上,CM =√132<2,则M 在圆内,BC =2>2,则B 在圆外;(2)以点C 为圆心作⊙C ,使A 、B 、M 三点中至少有一点在⊙C 内时, r >√132, 当至少有一点在⊙C 外时,r <3,故⊙C 的半径r 的取值范围为:√132<r <3.【解答】解:(1)∵ 在△ABC 中,∠C =90∘,AC =2,BC =3,AB 的中点为点M , ∵ AB =√AC 2+BC 2=√22+32=√13,CM =12AB =√132, ∵ 以点C 为圆心,4为半径作⊙C ,∵ AC =2,则A 在圆上,CM =√132<2,则M 在圆内,BC =2>2,则B 在圆外;(2)以点C 为圆心作⊙C ,使A 、B 、M 三点中至少有一点在⊙C 内时, r >√132, 当至少有一点在⊙C 外时,r <3,故⊙C 的半径r 的取值范围为:√132<r <3. 23.【答案】解:如图:图1中的S 1、S 2、S 3、S 4,与图2中的S 1、S 2、S 3、S 4相等, 由图2可知:S 1+S 2+S 3+S 4=(2a)2−πa 2=4a 2−πa 2,图1中的阴影为90π(2a)2360−(S 1+S 2+S 3+S 4)=πa 2−(4a 2−πa 2)=2πa 2−4a 2.【解答】解:如图:图1中的S 1、S 2、S 3、S 4,与图2中的S 1、S 2、S 3、S 4相等, 由图2可知:S 1+S 2+S 3+S 4=(2a)2−πa 2=4a 2−πa 2,图1中的阴影为90π(2a)2360−(S 1+S 2+S 3+S 4)=πa 2−(4a 2−πa 2)=2πa 2−4a 2.24. 【答案】解:两只蚂蚁爬行的路程一样长,设小半圆的半径为r ,则大半圆的半径为2r两个小半圆的弧长=2⋅π⋅2r =4πr ,大半圆的弧长=π⋅2×2r =4πr . 则两只蚂蚁爬行的路程一样长.【解答】解:两只蚂蚁爬行的路程一样长,设小半圆的半径为r ,则大半圆的半径为2r两个小半圆的弧长=2⋅π⋅2r =4πr ,大半圆的弧长=π⋅2×2r =4πr . 则两只蚂蚁爬行的路程一样长.25.【答案】直线DE与⊙O相切.理由如下:连接OE、OD,如图,∵ AC是⊙O的切线,∵ AB⊥AC,∵ ∠OAC=90∘,∵ 点E是AC的中点,O点为AB的中点,∵ OE // BC,∵ ∠1=∠B,∠2=∠3,∵ OB=OD,∵ ∠B=∠3,∵ ∠1=∠2,在△AOE和△DOE中{OA=OD ∠1=∠2 OE=OE,∵ △AOE≅△DOE,∵ ∠ODE=∠OAE=90∘,∵ OA⊥AE,∵ DE为⊙O的切线;∵ 点E是AC的中点,∵ AE=12AC=2.4,∵ ∠AOD=2∠B=2×50∘=100∘,∵ 图中阴影部分的面积=2⋅12×2×2.4−100∗π∗22360=4.8−109π.【解答】直线DE与⊙O相切.理由如下:连接OE、OD,如图,∵ AC是⊙O的切线,∵ AB⊥AC,∵ ∠OAC=90∘,∵ 点E是AC的中点,O点为AB的中点,∵ OE // BC,∵ ∠1=∠B,∠2=∠3,∵ OB=OD,∵ ∠B=∠3,∵ ∠1=∠2,在△AOE和△DOE中{OA=OD ∠1=∠2 OE=OE,∵ △AOE≅△DOE,∵ ∠ODE=∠OAE=90∘,∵ OA⊥AE,∵ DE为⊙O的切线;∵ 点E是AC的中点,∵ AE=12AC=2.4,∵ ∠AOD=2∠B=2×50∘=100∘,∵ 图中阴影部分的面积=2⋅12×2×2.4−100∗π∗22360=4.8−109π.26.【答案】(1)证明:如图,连结OB,则∠AOB=2∠ACB=2×45∘=90∘,∵ OA=OB,∵ ∠OAB=∠OBA=45∘.∵ ∠AOC=150∘,OA=OC,∵ ∠OCA=∠OAC=15∘,∵ ∠OCB=∠OCA+∠ACB=60∘,∵ △OBC是等边三角形.∵ ∠BOC=∠OBC=60∘,∵ ∠CBD=180∘−∠OBA−∠OBC=75∘.∵ CD是⊙O的切线,∵ OC⊥CD,∵ ∠D=360∘−∠OBD−∠BOC−∠OCD =360∘−(60∘+75∘)−60∘−90∘=75∘,∵ ∠CBD=∠D,∵ CB=CD.(2)解:过点B作BE⊥AC于点E,∵ △OCB是等边三角形,∵ BC=OC=√2.∵ ∠ACB=45∘,∵ CE=BE=1.∵ BĈ=BĈ,∵ ∠EAB=12∠BOC=30∘.∵ tan∠EAB=BEAE =√33,∵ AE=√3.∵ AC=AE+CE=√3+1.【解答】(1)证明:如图,连结OB,则∠AOB=2∠ACB=2×45∘=90∘,∵ OA=OB,∵ ∠OAB=∠OBA=45∘.∵ ∠AOC=150∘,OA=OC,∵ ∠OCA=∠OAC=15∘,∵ ∠OCB=∠OCA+∠ACB=60∘,∵ △OBC是等边三角形.∵ ∠BOC=∠OBC=60∘,∵ ∠CBD=180∘−∠OBA−∠OBC=75∘.∵ CD是⊙O的切线,∵ OC⊥CD,∵ ∠D=360∘−∠OBD−∠BOC−∠OCD =360∘−(60∘+75∘)−60∘−90∘=75∘,∵ ∠CBD=∠D,∵ CB=CD.(2)解:过点B作BE⊥AC于点E,∵ △OCB是等边三角形,∵ BC=OC=√2.∵ ∠ACB=45∘,∵ CE=BE=1.∵ BĈ=BĈ,∵ ∠EAB=12∠BOC=30∘.∵ tan∠EAB=BEAE =√33,∵ AE=√3.∵ AC=AE+CE=√3+1.21/ 21。

人教版九年级数学上册第24章 圆单元测试及答案解析【新】

第二十四章圆单元测试一、单选题(共10题;共30分)1、如图,⊙O是△ABC的外接圆,已知∠ABO=50°,则∠ACB的大小为()A、40°B、30°C、45°D、50°2、下列说法:①平分弦的直径垂直于弦;②三点确定一个圆;③相等的圆心角所对的弧相等;④垂直于半径的直线是圆的切线;⑤三角形的内心到三条边的距离相等。

其中不正确的有()个。

A、1B、2C、3D、43、如图,四边形ABCD内接于⊙O,已知∠ADC=140°,则∠AOC的大小是()A、80°B、100°C、60°D、40°4、已知Rt△ACB,∠ACB=90°,I为内心,CI交AB于D,BD=,AD=,则S△ACB=()A、12B、6C、3D、7.55、如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为()A、B、C、D、6、如图,⊙O的内接四边形ABCD两组对边的延长线分别交于点E,F,∠E=α,∠F=β,则∠A=()A、α+βB、C、180﹣α﹣βD、7、如图,在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是()A、2B、2+C、2D、2+8、如图,已知AB是⊙O的直径,∠CAB=50°,则∠D的度数为()A、20°B、40°C、50°D、70°9、已知A、B、C三点在⊙O上,且AB是⊙O内接正三角形的边长,AC是⊙O内接正方形的边长,则∠BAC的度数为()A、15°或105°B、75°或15°C、75°D、105°10、如图,在⊙O中,∠ABC=52°,则∠AOC等于()A、52°B、80°C、90°D、104°二、填空题(共8题;共25分)11、如图,⊙O是ABC的外接圆,OCB=40°,则A的度数等于________°.12、如图,已知半圆O的直径AB=4,沿它的一条弦折叠.若折叠后的圆弧与直径AB相切于点D,且AD:DB=3:1,则折痕EF的长________ .13、如图,若∠1=∠2,那么与 ________相等.(填一定、一定不、不一定)14、如图,AB是半圆O的直径,点C、D是半圆O的三等分点,若弦CD=2,则图中阴影部分的面积为________.15、已知扇形的圆心角为150°,它所对应的弧长20πcm,则此扇形的半径是________ cm,面积是________ cm2.16、如图,△ABC是⊙O的内接三角形,AD是⊙O的直径,∠ABC=50°,则∠CAD=________.17、若一个圆锥的侧面积是它底面积的2倍,则这个圆锥的侧面展开图的圆心角是________.18、已知一圆锥的底面半径为1cm,母线长为4cm,则它的侧面积为________cm2(结果保留π).三、解答题(共5题;共35分)19、已知:△ABC是边长为4的等边三角形,点O在边AB上,⊙O过点B且分别与边AB,BC相交于点D,E,EF⊥AC,垂足为F.(1)求证:直线EF是⊙O的切线;(2)当直线DF与⊙O相切时,求⊙O的半径.20、【阅读材料】已知,如图1,在面积为S的△ABC中,BC=a,AC=b,AB=c,内切圆O的半径为r,连接OA,OB,OC,△ABC被划分为三个小三角形.∵S=S△OBC+S△OAC+S△OAB=BC•r+AC•r+AB•r=ar+br+cr=(a+b+c)r.∴r= .(1)【类比推理】如图2,若面积为S的四边形ABCD存在内切圆(与各边都相切的圆),各边长分别为AB=a,BC=b,CD=c,AD=d,求四边形的内切圆半径r的值;(2)【理解应用】如图3,在Rt△ABC中,内切圆O的半径为r,⊙O与△ABC各边分别相切于D、E和F,已知AD=3,BD=2,求r的值.21、如图,公路MN与公路PQ在点P处交汇,且∠QPN=30°,点A处有一所中学,AP=160m.假设拖拉机行驶时,周围100m以内会受到噪音的影响,那么拖拉机在公路MN上沿PN方向行驶时,学校是否受到噪音影响?说明理由;如果受影响,且知拖拉机的速度为18km/h,那么学校受影响的时间是多少秒?22、如图,已知矩形ABCD的边AB=3cm、BC=4cm,以点A为圆心,4cm为半径作⊙A,则点B、C、D与⊙A怎样的位置关系.23、已知圆的半径为R,试求圆内接正三角形、正四边形、正六边形的边长之比.四、综合题(共1题;共10分)24、(2017•襄阳)如图,AB为⊙O的直径,C、D为⊙O上的两点,∠BAC=∠DAC,过点C做直线EF⊥AD,交AD的延长线于点E,连接BC.(1)求证:EF是⊙O的切线;(2)若DE=1,BC=2,求劣弧的长l.答案解析一、单选题1、【答案】 A【考点】圆周角定理【解析】【分析】根据等边对等角及圆周角定理求角即可.【解答】∵OA=OB∴∠OAB=∠OBA=50°∴∠AOB=80°∴∠ACB=40°.故选A.【点评】此题综合运用了等边对等角、三角形的内角和定理以及圆周角定理2、【答案】 D【考点】垂径定理,确定圆的条件,三角形的内切圆与内心【解析】【解答】①中被平分的弦是直径时,不一定垂直,故错误;②不在同一条直线上的三个点才能确定一个圆,故错误;③应强调在同圆或等圆中,否则错误;④中垂直于半径,还必须经过半径的外端的直线才是圆的切线,故错误;⑤三角形的内心是三角形三个角平分线的交点,所以到三条边的距离相等,故正确;综上所述,①、②、③、④错误。

人教版九年级数学上册第二十四章圆单元测试题及答案(ABC卷)

九年级数学第二十四章圆测试题(A )时间:45分钟 分数:100分一、选择题(每小题3分,共33分)1.若⊙O 所在平面内一点P 到⊙O 上的点的最大距离为10,最小距离为4则此圆的半径为( )A .14B .6C .14 或6D .7 或32.如图24—A —1,⊙O 的直径为10,圆心O 到弦AB 的距离OM 的长为3,则弦AB 的长是( )A .4B .6C .7D .8 3.已知点O 为△ABC 的外心,若∠A=80°,则∠BOC 的度数为( )A .40°B .80°C .160°D .120°4.如图24—A —2,△ABC 内接于⊙O ,若∠A=40°,则∠OBC 的度数为( ) A .20° B .40° C .50° D .70°5.如图24—A —3,小明同学设计了一个测量圆直径的工具,标有刻度的尺子OA 、OB 在O 点钉在一起,并使它们保持垂直,在测直径时,把O 点靠在圆周上,读得刻度OE=8个单位,OF=6个单位,则圆的直径为( ) A .12个单位 B .10个单位 C .1个单位 D .15个单位6.如图24—A —4,AB 为⊙O 的直径,点C 在⊙O 上,若∠B=60°,则∠A 等于( )A .80°B .50°C .40°D .30°7.如图24—A —5,P 为⊙O 外一点,PA 、PB 分别切⊙O 于A 、B ,CD 切⊙O 于点E ,分别交PA 、PB 于点C 、D ,若PA=5,则△PCD 的周长为( ) A .5 B .7 C .8 D .108.若粮仓顶部是圆锥形,且这个圆锥的底面直径为4m ,母线长为3m ,为防雨需在粮仓顶部铺上油毡,则这块油毡的面积是( )A .26m B .26m π C .212m D .212m π图24—A —5图24—A —1 图24—A —2 图24—A —3 图24—A —49.如图24—A —6,两个同心圆,大圆的弦AB 与小圆相切于点P ,大圆的弦CD 经过点P ,且CD=13,PC=4,则两圆组成的圆环的面积是( )A .16πB .36πC .52πD .81π10.已知在△ABC 中,AB=AC=13,BC=10,那么△ABC 的内切圆的半径为( ) A .310 B .512 C .2 D .3 11.如图24—A —7,两个半径都是4cm 的圆外切于点C ,一只蚂蚁由点A 开始依A 、B 、C 、D 、E 、F 、C 、G 、A 的顺序沿着圆周上的8段长度相等的路径绕行,蚂蚁在这8段路径上不断爬行,直到行走2006πcm 后才停下来,则蚂蚁停的那一个点为( ) A .D 点 B .E 点 C .F 点 D .G 点 二、填空题(每小题3分,共30分) 12.如图24—A —8,在⊙O 中,弦AB 等于⊙O 的半径,OC ⊥AB 交⊙O 于点C ,则∠AOC= 。

人教版数学九年级上册《第24章圆》全章测试(含答案)


13. 150°
14.
4
二. 填空题(每小题 4 分,共 6 道题)
9.如图,AB是⊙O 的直径,点 C 在⊙O 上,若 BOC 4o0 ,则∠C 的度数 A
等于
10.如图,已知 PA,PB分别切⊙O 于点 A、B, P 6o 0 , PA 8 ,那么弦 AB 的长是;请连接 OA、OB,则∠AOB= .
11. 圆的一条弦把圆周分成 1:4 两部分,则这条弦所对的圆周角大小为_________
_______________.
2
法)
四. 解答题(第 16-18题,每题 8 分;第 19题 10分) 16.如图,△ABC内接于⊙O,∠BAC=120°,AB=AC=4,求⊙O 的直径.
O
C
B
A
17. 如图, AB 是⊙O 的一条弦,OD AB ,垂足为C ,交⊙O 于点 D , 点 E 在⊙O 上.
E
O B
D
C
3
19.如图,已知:△ABC 内接于⊙O, AD 是⊙O 的切线,CO 的
ቤተ መጻሕፍቲ ባይዱ
D
A
延长线交 AD 于点 D .
(1)若∠B=2∠D,求∠D 的度数;
(2)在(1)的条件下,若 AC 4 3 ,求⊙O 的半径.
O
C B
一、选择题 1-8 BDCB CDDA; 二、填空题
参考答案
9. 20° 10.8;120°11.36°或 144° 12. 18 三、作图题 15、(1)略(2)4 16、 8 17、(1)26°(2)8 18、(1)略(2)3 19、(1)30°(2)4
三. 作图练习(第 1 问 4 分,第 2 问 6 分) 15. (1)左图中,AB是半圆的直径,点 C 在半圆外,请仅用无刻度的直尺

人教版九年级上册数学 第24章:圆 单元检测试题(附答案)

(2)如图2,在⊙O中:
∵AC=CD,
∴OC⊥AD(垂径定理)
∴AD=2KD,∠HCK=∠DCK
又∵∠DKC=∠OHC=90°
∴△OCH∽△DCK

∴ =9.6
∴AD=2KD=19.2.
(3)如图3
作FM⊥AC于M,作DN⊥AC于N,显然四边形AGEF为平行四边形,设平行四边形AGEF的面积为y、EM=x、DN=a(a为常量),
A.三点确定一个圆B.圆的切线垂直于过切点的半径
C.平分弦的直径垂直于弦,并且平分弦所对的两条弧D.长度相等的弧是等弧
4.如图, 是 的直径,弦 交 于点 , , , ,则 的长为( )
A. B. C. D.12
5.如图,点A、B、C是⊙O上的点,且∠ACB=40°,阴影部分的面积为8π,则此扇形的半径为()
19.如图, 、 、 、 是 上四点,且 ,求证: .
20.如图,在 中, 是 的直径, 是 的弦, 的中点 在直径 上.已知 , .
(1)求 的半径;(2)连接 ,过圆心 向 作垂线,垂足为 ,求 的长.
参考答案
一、选择1.B2.D3.B4.C5.D6.A7.D8.C9.B10.B
二、填空11.213.12. . 14.5015.60°
人教版九年级上册数学
第二十四章圆单元测试题
一、单选题
1.如图, 在以 为直径的半圆 上, 是 的内心, , 的延长线分别交半圆 于点 , , ,则 的长为().
A.5B. C. D.5
2.如图, 是 的直径,点 、 在 上, , ,则 ()
A.70°B.60°C.50°D.40°
3.下列说法正确的是()
A.1个B.2个C.3个D.4个
二、填空题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版九年级数学上册第二十四章圆单元测试(含答案) 一、单选题 1.下列命题:①直径相等的两个圆是等圆;②等弧是长度相等的弧;③圆中最长的弦是

通过圆心的弦; ④一条弦把圆分为两条弧,这两条弧不可能是等弧.其中真命题是 ( ) A.①③ B.①③④ C.①②③ D.②④ 2.如图,AB是⊙O的直径,弦CD⊥AB,垂足为P.若CD=AP=8,则⊙O的直径为( )

A.10 B.8 C.5 D.3 3.如图,石拱桥的桥顶到水面的距离CD为8m,桥拱半径OC为5m,则水面AB宽为( )

A.4m B.5m C.6m D.8m 4.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知4EFCD,

则球的半径长是( )

A.2 B.2.5 C.3 D.4 5.如图,C、D为半圆上三等分点,则下列说法:①AD=CD=BC;②∠AOD=∠DOC=∠BOC;③AD=CD=OC;④△AOD沿OD翻折与△COD重合.正确的有( )

A.4个 B.3个 C.2个 D.1个 6.下列各角中,是圆心角的是( ) A. B. C. D. 7.如图,点A、B、C、D在⊙O上,∠AOC=120°,点B是弧AC的中点,则∠D的度数是( )

A.60° B.35° C.30.5° D.30° 8.如图,一块直角三角板ABC的斜边AB与量角器的直径恰好重合,点D对应的刻度是60°,

则∠ACD的度数为( )

A.60° B.30° C.120° D.45° 9.已知⊙O的半径是4,OP=3,则点P与⊙O的位置关系是( ) A.点P在圆内 B.点P在圆上 C.点P在圆外 D.不能确定 10.如图,AB是⊙O 的直径,BC是⊙O 的切线,若OC=AB,则∠C的度数为( )

A.15° B.30° C.45° D.60° 11.如图,在平行四边形ABCD中,∠A=2∠B,⊙C的半径为3,则图中阴影部分的面积是

( ) A.π B.2π C.3π D.6π 12.如图,已知在⊙O中,AB=4 , AF=6,AC是直径,AC⊥BD于F,图中阴影部分的面积是( )

A. B. C. D. 13.如图,在Rt△ABC中,∠ABC=90°,AB=23,BC=2,以AB的中点为圆心,OA的长为

半径作半圆交AC于点D,则图中阴影部分的面积为( )

A.5342 B.5342 C.23 D.432 二、填空题 14.已知扇形的弧长为2,圆心角为60°,则它的半径为________.

15.如图,在⊙O中,已知∠AOB=120°,则∠ACB=________. 16.如图,在O中,直径4AB,弦CDAB于E,若30A,则CD____ 17.如图,在O中,120AOB,P为劣弧AB上的一点,则APB的度数是_______. 三、解答题 18.如图,在△ABC中,已知∠ACB=130°,∠BAC=20°,BC=2,以点C为圆心,CB为半径的

圆交AB于点D,求弦BD的长

19.如图,在 Rt△ABC 中,∠C=90°,以 BC 为直径的⊙O 交 AB 于点 D,过点 D 作∠

ADE=∠A,交 AC 于点 E. (1)求证:DE 是⊙O 的切线; (2)若34BCAC ,求 DE 的长. 20.如图,AB为⊙O的直径,C为⊙O上一点,D为BC的中点.过点D作直线AC的垂线, 人教版九年级上册第24章数学圆单元测试卷(含答案)(3)

一、填空题(每题3分,共30分) 1.如图1所示AB是⊙O的弦,OC⊥AB于C,若OA=2cm,OC=1cm,则AB长为______.•

图1 图2 图3 2.如图2所示,⊙O的直径CD过弦EF中点G,∠EOD=40°,则∠DCF=______. 3.如图3所示,点M,N分别是正八边形相邻两边AB,BC上的点,且AM=BN,则∠MON=_________________度. 4.如果半径分别为2和3的两个圆外切,那么这两个圆的圆心距是_______. 5.如图4所示,宽为2cm的刻度尺在圆上移动,当刻度尺的一边与圆相切时,另一边与圆两个交点处的读数恰好为“2”和“8”(单位:cm)•则该圆的半径为______cm.

图4 图5 图6 6.如图5所示,⊙A的圆心坐标为(0,4),若⊙A的半径为3,则直线y=x与⊙A•的位置关系是________. 7.如图6所示,O是△ABC的内心,∠BOC=100°,则∠A=______. 8.圆锥底面圆的半径为5cm,母线长为8cm,则它的侧面积为________.(用含的式子表示) 9.已知圆锥的底面半径为40cm,•母线长为90cm,•则它的侧面展开图的圆心角为_______. 10.矩形ABCD中,AB=5,BC=12,如果分别以A,C为圆心的两圆相切,点D在⊙C内,点B在⊙C外,那么⊙A的半径r的取值范围为________. 二、选择题(每题4分,共40分) 11.如图7所示,AB是直径,点E是AB中点,弦CD∥AB且平分OE,连AD,∠BAD度数为( ) A.45° B.30° C.15° D.10°

图7 图8 图9 12.下列命题中,真命题是( ) A.圆周角等于圆心角的一半 B.等弧所对的圆周角相等 C.垂直于半径的直线是圆的切线 D.过弦的中点的直线必经过圆心 13.(易错题)半径分别为5和8的两个圆的圆心距为d,若3关系一定是( ) A.相交 B.相切 C.内切或相交 D.外切或相交 14.过⊙O内一点M的最长弦长为10cm,最短弦长为8cm,那么OM长为( ) A.3cm B.6cm C.41cm D.9cm 15.半径相等的圆的内接正三角形,正方形边长之比为( ) A.1:2 B.:2 C.3:2 D.1:2 16.如图8,已知⊙O的直径AB与弦AC的夹角为35°,过C点的切线PC与AB•的延长线交于点P,则∠P等于( ) A.15° B.20° C.25° D.30° 17.如图9所示,在直角坐标系中,A点坐标为(-3,-2),⊙A的半径为1,P为x•轴上一动点,PQ切⊙A于点Q,则当PQ最小时,P点的坐标为( ) A.(-4,0) B.(-2,0) C.(-4,0)或(-2,0) D.(-3,0) 18.在半径为3的圆中,150°的圆心角所对的弧长是( ) A.154 B.152 C.54 D.52 19.如图10所示,AE切⊙D于点E,AC=CD=DB=10,则线段AE的长为( ) A.102 B.15 C.103 D.20

20.如图11所示,在同心圆中,两圆半径分别是2和1,∠AOB=120°,•则阴影部分的面积为( ) A.4 B.2 C.34 D. 三、解答题(共50分) 21.(8分)如图所示,CE是⊙O的直径,弦AB⊥CE于D,若CD=2,AB=6,求⊙O•半径的长.

22.(8分)如图所示,AB是⊙O的直径,BC切⊙O于B,AC交⊙O于P,E是BC•边上的中点,连结PE,PE与⊙O相切吗?若相切,请加以证明,若不相切,请说明理由. 23.(12分)已知:如图所示,直线PA交⊙O于A,E两点,PA的垂线DC切⊙O于点C,过A点作⊙O的直径AB. (1)求证:AC平分∠DAB;(2)若AC=4,DA=2,求⊙O的直径.

24.(12分)“五一”节,小雯和同学一起到游乐场玩大型摩天轮,•摩天轮的半径为20m,匀速转动一周需要12min,小雯所坐最底部的车厢(离地面0.5m). (1)经过2min后小雯到达点Q如图所示,此时他离地面的高度是多少. (2)在摩天轮滚动的过程中,小雯将有多长时间连续保持在离地面不低于30.5m的空中.

25.(10分)如图所示,⊙O半径为2,弦BD=23,A为弧BD的中点,E为弦AC的中点,且在BD上,求四边形ABCD的面积.

人教版九年级上册第24章数学圆单元测试卷(含答案)(6) 一、选择题(每题3分,共30分) 1.下列说法中不正确的是( ) A.圆是轴对称图形 B.三点确定一个圆 C.半径相等的两个圆是等圆 D.每个圆都有无数条对称轴 2.若⊙O的面积为25π,在同一平面内有一个点P,且点P到圆心O的距离为

4.9,则点P与⊙O的位置关系为( ) A.点P在⊙O外 B.点P在⊙O上 C.点P在⊙O内 D.无法确定 3.如图,⊙O是△ABC的外接圆,∠BOC=120°,则∠BAC的度数是( ) A.70° B.60° C.50° D.30°

(第3题) (第4题) (第5题) (第6题) 4.如图所示,⊙O的半径为13,弦AB的长度是24,ON⊥AB,垂足为点N,则

ON=( ) A.5 B.7 C.9 D.11 5.如图,在Rt△ABC中,∠C=90°,AC=4,BC=7,点D在边BC上,CD=3,

⊙A的半径长为3,⊙D与⊙A相交,且点B在⊙D外,那么⊙D的半径长r的取值范围是( ) A.1<r<4 B.2<r<4 C.1<r<8 D.2<r<8

6.如图,四边形ABCD内接于⊙O,F是CD︵上一点,且DF︵=BC︵,连接CF并延长

交AD的延长线于点E,连接AC.若∠ABC=105°,∠BAC=25°,则∠E的度数为( ) A.45° B.50° C.55° D.60°

7.如图,⊙O与矩形ABCD的边相切于点E,F,G,点P是EFG︵上一点,则∠P的度数是( ) A.45° B.60° C.30° D.无法确定 8.如图,在△ABC中,∠ACB=90°,∠ABC=30°,AB=2.将△ABC绕直角顶点C

相关文档
最新文档