人教版初三数学下册中考专题复习—计算

合集下载

人教版数学九年级中考复习训练专题二 计算求解题 附答案

人教版数学九年级中考复习训练专题二  计算求解题  附答案

专题二 计算求解题(必考)类型一 简便运算1. (2020唐山路北区三模)如图,是小明完成的一道作业题,请你参考小明的方法解答下面的问题:第1题图(1)计算:① 42020×(-0.25)2020;②(125)11×(-56)13×(12)12. (2)若2×4n ×16n =219,直接写出n 的值.2. 嘉琪研究了“十位数字相加等于10,个位数字相等”的两位数乘法的口算技巧:如34×74=2516.结果中的前两位数是用3×7+4得25,后两位数是用4×4=16,经过直接组合就可以得到正确结果2516.(1)请用上述方法直接计算45×65=________;56×56=________;(2)请用合适的数学知识解释上述方法的合理性.类型二 计算过程纠错1. 小杨对算式“(-24)×(18-13+14)+4÷(12-13)”进行计算时的过程如下: 解:原式=(-24)×18+(-24)×(-13)+(-24)×14+4÷(12-13)……① =-3+8-6+4×(2-3)……②=-1-4……③=-5④根据小杨的计算过程,回答下列问题:(1)小杨在进行第①步时,运用了__________律;(2)他在计算中出现了错误,其中你认为第________步出错了(只填写序号);(3)请你给出正确的解答过程.2. (2020石家庄模拟)已知多项式A =(x +2)2+x (1-x )-9.(1)化简多项式A 时,小明的结果与其他同学的不同,请你检查小明同学的解题过程,在标出①②③④的几项中出现错误的是________,并写出正确的解答过程;(2)小亮说:“只要给出x 2-2x +1的合理的值,即可求出多项式A 的值.”小明给出x 2-2x +1的值为4,请你求出此时A 的值.第2题图类型三 缺 项1. (2020邢台一模)嘉淇在解一道运算题时,发现一个数被污染,这道题是:计算:(-1)2020+÷(-4)×8. (1)若被污染的数为0,请计算(-1)2020+0÷(-4)×8;(2)若被污染的数是不等式组⎩⎪⎨⎪⎧2x +1>3,7-3x ≥1的整数解,求原式的值.2. (2020石家庄模拟)小丽同学准备化简:(3x 2-6x -8)-(x 2-2x □6),算式中“□”是“+,-,×,÷”中的某一种运算符号.(1)如果“□”是“×”,请你化简:(3x 2-6x -8)-(x 2-2x ×6);(2)若x 2-2x -3=0,求(3x 2-6x -8)-(x 2-2x -6)的值;(3)当x =1时,(3x 2-6x -8)-(x 2-2x □6)的结果是-4,请你通过计算说明“□”所代表的运算符号.类型四新定义1.仔细观察下列有理数的运算,回答问题.(+2)∅(+3)=+5,(-2)∅(-3)=+5,(+2)∅(-3)=-5,(-2)∅(+3)=-5,0∅(+3)=(+3)∅0=+3,0∅(-3)=(-3)∅0=+3.(1)“∅”的运算法则为:_______________________________________________________________;(2)计算:(-4)∅[0∅(-5)];(3)若(-2)∅a=a+3,求a的值.2. (2020邢台桥西区二模)如果a,b都是非零整数,且a=4b,那么就称a是“4倍数”.(1)30到35之间的“4倍数”是________,小明说:232-212是“4倍数”,嘉淇说:122-6×12+9也是“4倍数”,他们谁说的对?________.(2)设x是不为零的整数.①x(x+1)是________的倍数;②任意两个连续的“4倍数”的积可表示为________,它________(填“是”或“不是”)32的倍数.(3)设三个连续偶数的中间一个数是2n(n是整数),写出它们的平方和,并说明它们的平方和是“4倍数”.类型五与数轴结合1. (2020石家庄教学质量检测)如图①,点A,B,C是数轴上从左到右排列的三个点,分别对应的数为-5,b,4.某同学将刻度尺如图②放置,使刻度尺上的数字0对齐数轴上的点A,发现点B对齐刻度1.8 cm,点C对齐刻度5.4 cm.图①图②第1题图(1)在图①的数轴上,AC=________个单位长度;数轴上的一个单位长度对应刻度尺上的________cm;(2)求数轴上点B所对应的数b;(3)在图①的数轴上,点Q是线段AB上一点,满足AQ=2QB,求点Q所表示的数.2. (2020张家口一模)如图,在一条不完整的数轴上,从左到右的点A,B,C把数轴分成①、②、③、④四部分,点A,B,C对应的数分别是a,b,c,已知bc<0.(1)请说明原点在第几部分;(2)若AC=5,BC=3,b=-1,求a;(3)若点B到表示1的点的距离与点C到表示1的点的距离相等,且a-b-c=-3,求-a+3b-(b-2c)的值.第2题图3. (2020河北黑马卷)已知:在一条数轴上,从左到右依次排列n(n>1)个点,在数轴上取一点P,使点P到各点的距离之和最小.如图①,若数轴上依次有A1、A2两个点,则点P可以在A1A2之间的任意位置,距离之和为A1A2;图①图②第3题图如图②,若数轴上依次有A1、A2、A3三个点,则点P在A2的位置,距离之和为A1A2+A2A3;如图③,若数轴上依次有A1、A2、A3、A4四个点,则点P可以在A2A3之间的任意位置,距离之和为A1P+A2P+A3P+A4P;第3题图③探究若数轴上依次有A1、A2、A3、A4、A5五个点,判断点P所处的位置;归纳若数轴上依次有n个点,判断点P所处的位置;应用在一条直线上有依次排列的39个工位在工作,每个工位间隔1米,我们需要设置供应站P,使这39个工位到供应站P的距离总和最小,求供应站P的位置和最小距离之和.专题二 计算求解题类型一 简便运算1. 解:(1)①原式=(-4×0.25)2020=(-1)2020=1;②原式=(-125×56×12)11×12×(-56)2 =-12×2536=-2572; (2)n =3.2. 解:(1)2925;3136;类型二 计算过程纠错1. 解:(1)乘法分配:(2)②;(3)原式=(-24)×18+(-24)×(-13)+(-24)×14+4÷(12-13) =-3+8-6+4÷16=-1+24=23.2. 解:(1)①;正确的解答过程为:A =x 2+4x +4+x -x 2-9=5x -5;(2)∵x 2-2x +1=4,即(x -1)2=4,∴x -1=±2,则A =5x -5=5(x -1)=±10.类型三 缺 项1. 解:(1)(-1)2020+0÷(-4)×8=1+0=1;(2)解不等式组⎩⎪⎨⎪⎧2x +1>37-3x ≥1,得1<x ≤2,其整数解为2. 原式=(-1)2020+2÷(-4)×8=1-4=-3.2. 解:(1)(3x 2-6x -8)-(x 2-2x ×6)=3x 2-6x -8-(x 2-12x )=3x 2-6x -8-x 2+12x=2x 2+6x -8;(2)(3x 2-6x -8)-(x 2-2x -6)=3x 2-6x -8-x 2+2x +6=2x 2-4x -2,∵x 2-2x -3=0,∴x 2-2x =3∴2x 2-4x -2=2(x 2-2x )-2=2×3-2=4;(3)当x =1时,原式=(3-6-8)-(1-2□6)=-4,整理得-11-(1-2□6)=-4,1-2□6=-7,-2□6=-8,∴□处应为“-”.类型四 新定义1. 解:(1)运算时两数同号则绝对值相加,两数异号则为绝对值相加的相反数,0与任何数进行运算,结果为该数的绝对值;(2)(-4)∅[0∅(-5)]=(-4)∅(+5)=-9;(3)当a >0时,等式可化为(-2)-a =a +3,解得a =-52,与a >0矛盾,不合题意; 当a =0时,等式可化为2=a +3,解得a =-1,与a =0矛盾,不合题意;当a <0时,等式可化为2-a =a +3,解得a =-12,符合题意. 综上所述,a 的值为-12. 2. 解:(1)32;小明;(2)①2;②16x (x +1)或16x 2+16x ,是;(3)三个连续偶数为2n -2,2n ,2n +2,∴(2n -2)2+(2n )2+(2n +2)2=4n 2-8n +4+4n 2+4n 2+8n +4=12n 2+8=4(3n 2+2),∵n 为整数,∴4(3n 2+2)是“4倍数”.类型五 与数轴结合1. 解:(1)9;0.6;2. 解:(1)∵bc <0,∴b ,c 异号.∴原点在第③部分;(2)若AC =5,BC =3,则AB =2.∵b =-1,∴a =-1-2=-3;(3)设点B 到表示1的点的距离为m (m >0),则b =1-m ,c =1+m .∴b +c =2.∵a -b -c =-3,即a -(b +c )=-3,∴a =-1.∴-a +3b -(b -2c )=-a +3b -b +2c =-a +2b +2c =-a +2(b +c )=-(-1)+2×2=5.3. 解:探究 数轴上依次有A 1、A 2、A 3、A 4、A 5五个点,当点P 的位置在A 3处时,距离总和最小;归纳 当n 为偶数时,点P 在第n 2和第n 2+1个点之间的任意位置; 当n 为奇数时,点P 在第n +12个点的位置; 应用 设点P 在数轴上表示的数为x ,距离之和为M ,则M =||x -1+||x -2+…+||x -39, ∵39+12=20, ∴当x =20时,代数式M 取到最小值,∵每个工位间隔1米,∴M=19+18+…+0+1+2+…+19=(19+1)×19=380(米). 答:供应站P的位置在第20个工位,最小距离之和为380米.。

精品课件:人教版九年级下册数学中考复习专题一:数与式(1)

精品课件:人教版九年级下册数学中考复习专题一:数与式(1)

例题学习
1.2008年5月27日,北京2008年奥运会火炬接力传递 活动在南京境内举行,火炬传递路线全程为12900m, 将12900用科学记数法表示应为( B ) A.0.129×104 B.1.29×104 C.12.9×103 D.129×102 2.填空: 4 6 . 3 10 (1)–0.00063用科学计数法表示为 ;
除以一个不为0的数,等于乘以它的倒数。
(5)实数的乘方:
的乘方,记作
n n个相同因数a相乘,即 a a a 叫做a
a
n

乘方的性质:
正数的任何次幂都是正数;
负数的奇次幂是负数,负数的偶次幂是正数;
0的任何正整数次幂都等于0。
(6)实数的开方:
根据平方根,算术平方根、立方根的定义,直接
当成有理数。
2 .数轴:规定了原点,正方向,单位长度 的直线叫数轴。 3 .相反数:实数 a 的相反数是 a,0的相 反数是0。
(1)a,b互为相反数 a+b=0。
(2)在数轴上表示相反数的两点关于原点对 称。
例题学习
1.实数在数轴上对应点的位置如图所示,则必 有( D ) A. a b 0 B. a b 0 C. ab 0
注意:
a
0 a
a
(a 0)
(a 0)
(a 0)
5 .倒数:乘积为1的两个数互为倒 数,0没有倒数. 即ab=1
a、b互为倒数。
例题学习
1.填空:
(1) 3 2 的绝对值是 2 3 ; (2)已知 x 1 3,则x的值为 4或–2 ;
3 1 的倒数与 的相反数的和等于 –1; (3) 4 3

计算专题——分式综合 2023年九年级数学中考复习

计算专题——分式综合  2023年九年级数学中考复习

计算专题——分式综合 九年级数学中考复习1.阅读下列材料学习“分式方程及其解法”的过程中,老师提出一个问题:若关于x 的分式方程14ax =-的解为正数,求a 的取值范围.经过独立思考与分析后,小明和小聪开始交流解题思路,小明说:解这个关于x 的方程,得到方程的解为4x a =+,由题目可得40a +>,所以4a >-,问题解决.小聪说:你考虑的不全面,还必须0a ≠才行. (1)请回答: 的说法是正确的,正确的理由是 . 完成下列问题: (2)已知关于x 的方程233m xx x-=--的解为非负数,求m 的取值范围; (3)若关于x 的方程322133x nx x x --+=---无解,求n 的值.2.阅读下列材料:关于x 的方程11x c x c +=+的解是1211,(x c x x c==,2x 表示未知数x 的两个实数解,下同);22x c x c +=+的解是122,x c x c ==;33x c x c +=+的解是123,x c x c==. 请观察上述方程与解的特征,比较关于x 的方程(0)m mx c m x c+=+≠与它们的关系,猜想它的解是 .由上述的观察、比较、猜想,可以得出结论:如果方程的左边是未知数与其倒数的倍数的和,方程右边的形式与左边完全相同,只是把其中的未知数换成了某个常数,那么这样的方程可以直接得解.请用这个结论解关于x 的方程: (1)1265x x +=; (2)2211x a x a +=+--; (3)2131462a a x x a+++=-.3.我们把形如(mnx m n m x+=+,n 不为零),且两个解分别为1x m =,2x n =的方程称为“十字分式方程”. 例如65x x +=为十字分式方程,可化为2323x x ⨯+=+,12x ∴=,23x =. 再如78x x +=-为十字分式方程,可化为(1)(7)(1)(7)x x-⨯-+=-+-. 11x ∴=-,27x =-.应用上面的结论解答下列问题: (1)若107x x+=-为十字分式方程,则1x = ,2x = . (2)若十字分式方程45x x -=-的两个解分别为1x a =,2x b =,求1b aa b++的值. (3)若关于x 的十字分式方程232321k k x k x --=--的两个解分别为1x ,212(3,)x k x x >>,求124x x +的值.4.新定义:对非负实数x “四舍五入”到个位数的值记为x <> 即:当n 为非负整数时,如果1122n x n -+,则x n <>=. 反之,当n 为非负整数时,如果x n <>=,则1122n x n -<+ 例如:00.480<>=<>=,0.64 1.491<>=<>=,22<>=, 3.5 4.124<>=<>=,⋯ 试解决下列问题: 填空:①π<>= (π为圆周率);②如果13x <->=,则实数x 的取值范围为 ;③若关于x 的不等式组24130x x a x -⎧-⎪⎨⎪<>->⎩的整数解恰有4个,求a 的取值范围;④关于x 的分式方程112221m x x x -<>+=--有正整数解,求m 的取值范围; ⑤求满足65x x <>=的所有非负实数x 的值.5.定义:若分式M 与分式N 的和等于它们的积,即M +N =MN ,则称分式M 与分式N 互为“关联分式”.如21x x +与21x x -,因为()222422111(1)11x x x x x x x x x x x +==⋅+-+-+-所以21xx +与21xx -互为“关联分式”,其中一个分式是另外一个分式的“关联分式”. (1)分式221a + 分式221a -的“关联分式”(填“是”或“不是”); (2)求分式()02aab a b≠-的“关联分式”; (3)若分式224ab a b -是分式22aa b+的“关联分式”,ab ≠0,求分式222a b ab -的值.6.阅读材料:对于非零实数a ,b ,若关于x 的分式()()x a x b x--的值为零,则解得1x a =,2x b =.又因为2()()()()x a x b x a b x ab abx a b x x x---++==+-+,所以关于x 的方程()ab x a b x +=+,的解为1x a =,2x b =.(1)理解应用:方程22233x x +=+的解为:1x = ,2x = ;(2)知识迁移:若关于x 的方程35x x+=的解为1x a =,2x b =,求22a b +的值;(3)拓展提升:若关于x 的方程41k x x =--的解为1x ,2x ,且121x x =,求k 的值.7.由完全平方公式222()2a b a ab b -=-+可知,222()2a b a b ab +=-+,而2()0a b -,所以,对所有的实数a ,b 都有:222a b ab +,且只有当a b =时,才有等号成立:222a b ab +=. 应用上面的结论解答下列问题:(1)计算21()x x-= ,由此可知221x x + 2(填不等号);(2)已知m ,n 为不相等的两正数,试比较:(1%)(1%)m n ++与(1%)(1%)22m n m n++++的大小;(3)试求分式24224x x x -+的最大值.8.如果两个分式M 与N 的和为常数k ,且k 正整数,则称M 与N 互为“和整分式”,常数k 称为“和整值”.如分式1x M x =+,11N x =+,111x M N x ++==+,则M 与N 互为“和整分式”,“和整值” 1k =.(1)已知分式72x A x -=-,22696x x B x x ++=+-,判断A 与B 是否互为“和整分式”,若不是,请说明理由;若是,请求出“和整值” k ; (2)已知分式342x C x -=-,24G D x =-,C 与D 互为“和整分式”,且“和整值” 3k =,若x 为正整数,分式D 的值为正整数t .①求G 所代表的代数式; ②求x 的值;(3)在(2)的条件下,已知分式353x P x -=-,33mx Q x-=-,且P Q t +=,若该关于x 的方程无解,求实数m 的值.9.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如21,11x x x x -+-这样的分式就是假分式;再如:232,11xx x ++这样的分式就是真分式类似的,假分式也可以化为带分式(即:整式与真分式的和的形式).如:1(1)221111x x x x x -+-==-+++;再如:2211(1)(1)1111111x x x x x x x x x -++-+===++----. 解决下列问题:(1)下列分式中属于“真分式”的有 ;(填序号)①2x ;②211x x -+;③211x x x -+-(2)将假分式22x x +化为带分式的形式;(3)如果211x x -+的值为整数,求x 的整数值.10.对于形如kx m x+=的分式方程,若k ab =,m a b =+,容易检验1x a =,2x b =是分式方程ab x a b x +=+的解,所以称该分式方程为“易解方程”.例如:23x x+=可化为1212x x ⨯+=+,容易检验11x =,22x =是方程的解,∴23x x +=是“易解方程”:又如65x x +=-可化为(2)(3)23x x --+=--,容易检验13x =-,22x =-是方程的解,∴65x x+=-也是“易解方程”.根据上面的学习解答下列问题: (1)判断56x x+=-是不是“易解方程”,若是“易解方程”,求该方程的解1x ,212()x x x <;若不是,说明理由.(2)若1x m =,2x n =是“易解方程” 34x x -=的两个解,求11m n+的值; (3)设n 为自然数,若关于x 的“易解方程” 223352n nx n x ++=+-的两个解分别为1x ,212()x x x <,求211x x -的值.答案版: 1【解答】解:(1)分式方程的解不能是增根,即不能使分式的分母为0,∴小聪说得对,分式的分母不能为0;(2)233m xx x-=--, 233m xx x +=--, 2(3)m x x +=-, 6x m =+,解为非负数,60m ∴+,即6m -,又30x -≠,63m ∴+≠,即3m ≠-,6m ∴-且3m ≠-;(3)322133x nx x x --+=---, 322(3)x nx x -+-=--, (1)2n x -=,原方程无解, 10n ∴-=或3x =,①当10n -=时,解得1n =; ②当3x =时,解得53n =; 综上所述:当1n =或53n =时原方程无解. 2. 【解答】解:11x c x c +=+的解是121,x c x c==; 22x c x c +=+的解是122,x c x c ==; 33x c x c +=+的解是123,x c x c==; ∴(0)m m x c m x c +=+≠的解是1x c =,2mx c=,故答案为:1x c =,2m x c=; (1)1265x x +=, 1155x x ∴+=+, 15x ∴=,215x =; (2)2211x a x a +=+--, 221111x a x a ∴-+=-+--, 11x a ∴-=-或211x a -=- 1x a ∴=,211a x a +=-; (3)2131462a a x x a +++=-, 2131223a a x x a ++∴+=-, 112323x a x a∴+=++-,112323x a x a∴-+=+-, 23x a ∴-=或123x a-=, 132a x +∴=,2312a x a +=.3.【解答】(1)解:方程107x x+=-是十字分式方程,可化为: (2)(5)(2)(5)x x-⨯-+=-+-, 12x ∴=-,25x =-,故答案为:2-,5-. (2)解:十字分式方程45x x-=-的两个解分别为:1x a =,2x b =, 4ab ∴=-,5a b +=-,∴1b a a b++ 221b a ab+=+,2()21a b ab ab +-=+, 2()21a b ab +=-+, 2(5)14-=--, 294=-. (3)解:方程232321k k x k x --=--是十字分式方程,可化为: (23)1(23)1k k x k k x --+=+--, 当3k >时,2330k k k --=->, 关于x 的十字分式方程232321k k x k x --=--的两个解分别为:1x ,212(3,)x k x x >>,1123x k ∴-=-,21x k -=, 122x k ∴=-,21x k =+ ,∴124224222(1)2111x k k k x k k k +-+++====+++. 4. 【解答】解:①由题意可得:3n <>=; 故答案为:3, ②13x <->=, 2.51 3.5x ∴-<, 3.5 4.5x ∴<; 故答案为:3.5 4.5x <; ③解不等式组得:1x a -<<>, 由不等式组整数解恰有4个得,23a <<>, 故2.5 3.5a <; ④解方程得22x m =-<>, 2m -<>是整数,x 是正整数,21m ∴-<>=或2, 21m -<>=时,2x =是增根,舍去. 22m ∴-<>=, 0m ∴<>=, 00.5m ∴<. ⑤0x ,65x 为整数,设65x k =,k 为整数, 则56x k =, 56k k ∴<>=, 151262k k k ∴-+,0k , 03k ∴, 0k ∴=,1,2,3 则0x =,56,53,52. 5. 【解答】解:(1)+ = = = =, ∴分式是分式的“关联分式”;故答案为:是;(2)设分式的“关联分式”为N,则有,∴,∴,∵ab≠0,∴,∴分式的“关联分式”为;(3)∵分式是分式的“关联分式”,∴∵ab≠0,∴b2=8a2∴,∴.6.【解答】解:(1)abx a bx+=+的解为1x a=,2x b=,∴222233xxx x+=+=+的解为3x=或23x=,故答案为:3,23;(2)35xx+=,5a b∴+=,3ab=,222()225619a b a b ab∴+=+-=-=;(3)41k xx=--可化为2(1)40x k x k-+++=,121x x=,41k∴+=,3k∴=-.7. 【解答】解:(1)4222121()x x x x x -+-=, 2212x x ∴+, 故答案为:42221x x x -+,; (2)(1%)(1%)1%%%%m n m n m n ++=+++⋅, 2(1%)(1%)12%(%)2222m n m n m n m n ++++++=+⋅+,2222()()24242m n m mn n m n mn mn +--=++-=, 又m n ≠, (1%)(1%)(1%)(1%)22m n m n m n ++∴++<++; (3)当0x =时,242024x x x =-+, 当0x ≠时,242222211442422x x x x x x x ==-+-++-,()22242242,x x x x x +==当时等号成立, ∴2421124422x x x =-+-, ∴224212,242x x x x =-+当时的最大值为. 8. 【解答】解:(1)72x A x -=-,22696x x B x x ++=+-, ∴2227697(3)732(2)2262(3)(2)222x x x x x x x x A B x x x x x x x x x -++-+-+-+=+=+=+==-+--+----.A ∴与B 是互为“和整分式”,“和整值” 2k =; (2)①342xC x -=-,24GD x =-, ∴2(34)(2)328(2)(2)(2)(2)(2)(2)x x G x x G C D x x x x x x -++-++=+=-+-+-+, C 与D 互为“和整分式”,且“和整值” 3k =, 223283(2)(2)312x x G x x x ∴+-+=-+=-, 2231232824G x x x x ∴=---+=--;②22(2)24(2)(2)2G x D x x x x -+===--+--,且分式D 的值为正整数t .x 为正整数, 21x ∴-=-或22x -=-, 1(0x x ∴==舍去); (3)由题意可得:2212t D ==-=-, ∴353233x mx P Q x x --+=+=--, ∴35323x mx x --+=-, (3)226m x x ∴--=-, 整理得:(1)4m x -=-, 方程无解, 10m ∴-=或方程有增根3x =, 解得:1m =, 当10m -≠,方程有增根3x =, ∴431m -=-, 解得:73m =, 综上:m 的值为:1或73. 9. 【解答】解:(1)由题意可得:①是“真分式”;②③都是“假分式”. 故答案为:①; (2)2244(2)(2)4422222x x x x x x x x x -++-+===-+++++; (3)212(1)332111x x x x x -+-==-+++, 211x x -+的值为整数, ∴31x +的值为整数, 3∴是(1)x +的倍数, x ∴的整数值为4-、2-、0、2. 10.【解答】解:(1)56x x +=-是“易解方程”,理由: 56x x +=-可化为(5)(1)51x x --+=--, 51-<-, ∴56x x +=-是“易解方程”. ∴方程的解为15x =-,21x =-; (2)1x m =,2x n =是“易解方程” 34x x -=的两个解,3mn ∴-=,4m n =+, 则114433n m m n mn ++===--; (3)设2y x =-,方程可化为(23)23n n y n n y ++=++,2232332n n x n x +-+=+-是“易解方程”, n ∴和23n +是这个方程的解, n 为自然数, 23n n ∴<+, ∴必有12x n -=,2223x n -=+, 12x n ∴=+,225x n =+, ∴21125122x n x n -+-==+.。

新人教版九年级数学下册知识点总结

新人教版九年级数学下册知识点总结

新人教版九年级数学下册知识点总结一、代数运算1.1 代数式的加减法•同类项的加减法•类似于消元法的方法1.2 代数式的乘法•求和乘积公式的应用•二项式定理及其应用1.3 代数式的除法•解代数式的除法•解代数式的分式1.4 方程与方程组•一次方程与一元一次方程组•二次方程的实数解与复数解•对数与指数方程1.5 不等式•一元一次不等式•一元二次不等式•绝对值不等式二、函数初步2.1 函数的概念•种类和性质•同一函数的多种表达式2.2 函数的图像•根据函数式绘制图像•通过给定图像识别函数2.3 函数的初步性质•奇偶性•单调性•函数的最值、零点和交点2.4 一次函数•一次函数的定义和性质•一次函数的图像2.5 二次函数•二次函数的定义和性质•二次函数的图像、顶点、轴、对称性和解析式三、几何初步3.1 相似与全等•相似的判定和性质•全等的判定和性质3.2 三角形•三角形的基本性质•三角形的分类和判定3.3 平面图形的面积与体积•基本图形面积的计算•三棱锥、三棱柱、正棱锥、正棱柱、正方体、正六棱体的侧面积和体积3.4 内角和与逆定理•顶角平分线定理•中线定理•垂线定理3.5 圆•圆的周长•圆的面积•切线与割线四、统计初步4.1 数据汇总与整理•频率表的制作•条形图和折线图的绘制4.2 统计量•平均数、中位数、众数的概念•均值与平均数•离差与标准差4.3 概率•随机事件、样本空间与事件的概念•概率的概念和公式•寻找概率的方法五、解析几何初步5.1 直线的方程•一般式、截距式、斜截式等•方向角和斜率的概念5.2 圆的方程•标准式和一般式•圆的半径、直径等5.3 平面直角坐标系•坐标系的引入•坐标系的应用5.4 向量初步•向量的概念和运算•向量与坐标和距离的关系以上为新人教版九年级数学下册的知识点总结,本文档仅供参考和复习使用,请谨慎参考。

人教版 初中数学中考一轮复习---整式和整式的加减运算(含解析)

人教版 初中数学中考一轮复习---整式和整式的加减运算(含解析)

整式与整式的加减运算例1: 因式分解:22mx my -. 例2: 已知:,2-=b ,.求代数式:24a b c +-的值. 例3: 先化简,再求值:(1+a )(1﹣a )+(a ﹣2)2,其中a=﹣3.例4: 先化简,再求值:,其中x =A 组1、指出下列各单项式的系数和次数:23223,5,,37a x y ab a bc π- 2. 判断下列各式哪些是单项式: ①2ab x ②a ③25ab -④x y +⑤0.85-⑥12x +⑦2x⑧0 3. 对于多项式2221x yz xy xz -+-- (1)最高次数项的系数是 ; (2)是 次 项式; (3)常数项是 。

3=a 21=c 2(2)(21)(21)4(1)x x x x x +++--+4.已知多项式221345xy x y --,试按下列要求将其重新排列。

(1)按字母x 作降幂排列;(2)按字母y 作升幂排列。

点拨:在按照定义的要求情况下,注意各项前的符号。

5. 把下列各式填在相应的大括号里7x -,13x ,4ab ,23a ,35x -,y ,st,13x +,77x y +,212x x ++,11m m -+,38a x ,1-。

单项式集合{ } 多项式集合{ } 整式集合 { }6、三个连续的奇数中,最小的一个是23n -,那么最大的一个是 。

7、当2x =-时,代数式-221x x +-= ,221x x -+= 。

8、写出一个关于x 的二次三项式,使得它的二次项系数为-5,则这个二次三项式为 。

9、如果3y -+2(24)x -=0,那么2x y -=___。

10、多项式221x x -+的各项分别是( ) A 、22,,1x x B 、22,,1x x - C 、22,,1x x -- D 、22,,1x x --- 11、计算:35_____x x -=; 12、()22______326271x x x x +--=--+13、买一个足球需要m 元,买一个篮球需要n 元,则买4个足球、7个篮球共需要( )元。

初中数学中考计算题复习(最全)-含答案

初中数学中考计算题复习(最全)-含答案

一.解答题(共30小题)1.计算题:①;②解方程:.2.计算:+(π﹣2013)0.3.计算:|1﹣|﹣2cos30°+(﹣)0×(﹣1)2013.4.计算:﹣.5.计算:.6..7.计算:.8.计算:.9.计算:.10.计算:.11.计算:.12..13.计算:.14.计算:﹣(π﹣3.14)0+|﹣3|+(﹣1)2013+tan45°.15.计算:.16.计算或化简:(1)计算2﹣1﹣tan60°+(π﹣2013)0+|﹣|.(2)(a﹣2)2+4(a﹣1)﹣(a+2)(a﹣2)17.计算:(1)(﹣1)2013﹣|﹣7|+×0+()﹣1;(2).18.计算:.(1)19.(2)解方程:.20.计算:(1)tan45°+sin230°﹣cos30°•tan60°+cos245°;(2).21.(1)|﹣3|+16÷(﹣2)3+(2013﹣)0﹣tan60°(1)计算:.22.(2)求不等式组的整数解.(1)计算:23.(2)先化简,再求值:(﹣)÷,其中x=+1.24.(1)计算:tan30°25.计算:(1)(2)先化简,再求值:÷+,其中x=2+1.26.(1)计算:;(2)解方程:.27.计算:.28.计算:.29.计算:(1+)2013﹣2(1+)2012﹣4(1+)2011.30.计算:.1.化简求值:,选择一个你喜欢且有意义的数代入求值.2.先化简,再求值,然后选取一个使原式有意义的x值代入求值.3.先化简再求值:选一个使原代数式有意义的数代入中求值.4.先化简,再求值:,请选择一个你喜欢的数代入求值.5.(2010•红河州)先化简再求值:.选一个使原代数式有意义的数代入求值.6.先化简,再求值:(1﹣)÷,选择一个你喜欢的数代入求值.7.先化简,再求值:(﹣1)÷,选择自己喜欢的一个x求值.8.先化简再求值:化简,然后在0,1,2,3中选一个你认为合适的值,代入求值.9.化简求值(1)先化简,再求值,选择你喜欢的一个数代入求值.10.化简求值题:(1)先化简,再求值:,其中x=3.(2)先化简,再求值:,请选一个你喜欢且使式子有意义的数字代入求值.(3)先化简,再求值:,其中x=2.(4)先化简,再求值:,其中x=﹣1.11.(2006•巴中)化简求值:,其中a=.12.(2010•临沂)先化简,再求值:()÷,其中a=2.13.先化简:,再选一个恰当的x值代入求值.14.化简求值:(﹣1)÷,其中x=2.15.(2010•綦江县)先化简,再求值,,其中x=+1.16.(2009•随州)先化简,再求值:,其中x=+1.17.先化简,再求值:÷,其中x=tan45°.18.(2002•曲靖)化简,求值:(x+2)÷(x﹣),其中x=﹣1.19.先化简,再求值:(1+)÷,其中x=﹣3.20.先化简,再求值:,其中a=2.21.先化简,再求值÷(x﹣),其中x=2.22.先化简,再求值:,其中.23.先化简,再求值:(﹣1)÷,其中x—.25.(2011•新疆)先化简,再求值:(+1)÷,其中x=2.26.先化简,再求值:,其中x=2.27.(2011•南充)先化简,再求值:(﹣2),其中x=2.28.先化简,再求值:,其中a=﹣2.29.(2011•武汉)先化简,再求值:÷(x ﹣),其中x=3.30.化简并求值:•,其中x=21.. 2。

初中数学计算题复习大全附答案【中考必备】

初中数学计算题复习大全附答案【中考必备】

..初中数学计算题大全(一)计算下列各题1 .36)21(60tan 1)2(100+-----π 2. 431417)539(524----3.)4(31)5.01(14-÷⨯+-- 4.5.++ 6.7112238. (1)03220113)21(++-- (2)23991012322⨯-⨯10.11.(1)- (2)÷(3)1---+42338-()232812564.0-⨯⨯⎪⎭⎫ ⎝⎛-÷⎪⎭⎫⎝⎛-+601651274312.418123+-13.⎛ ⎝14..x x x x 3)1246(÷- 15.61)2131()3(2÷-+-;16.20)21()25(2936318-+-+-+-17.(1))3127(12+- (2)()()6618332÷-+-18.()24335274158.0--+⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛---1911()|2|4-- 20.())120131124π-⎛⎫---+ ⎪⎝⎭。

21.. 22.112812623-+23.2+参考答案1.解=1-|1-3|-2+23 =1+1-3-2+23 =3【解析】略2.5【解析】原式=14-9=53.87-【解析】解:)4(31)5.01(14-÷⨯+--⎪⎭⎫⎝⎛-⨯⨯--=4131231811+-=87-=先算乘方,再算乘除,最后算加减,有括号的先算括号里面的。

注意:41-底数是4,有小数又有分数时,一般都化成分数再进行计算。

4.==.【解析】略5.3 6.4【解析】主要考查实数的运算,考查基本知识和基本的计算能力,题目简单,但易出错,计算需细心。

1、+ +=232=3+-252=42⨯⨯ 722【解析】试题分析:先化简,再合并同类二次根式即可计算出结果.11223432223232332考点: 二次根式的运算.8.(1)32(2)9200 【解析】(1)原式=4+27+1 =32(2)原式=23(1012-992) (1分)=23(101+99)(101-99)(2分)=232200⨯⨯=9200 (1分) 利用幂的性质求值。

新人教版初中数学[中考总复习:数与式综合复习--知识点整理及重点题型梳理](基础)

新人教版初中数学[中考总复习:数与式综合复习--知识点整理及重点题型梳理](基础)

新人教版初中数学中考总复习重难点突破知识点梳理及重点题型巩固练习中考总复习:数与式综合复习—知识讲解(基础)【考纲要求】(1) 借助数轴理解相反数和绝对值的意义,会求有理数的倒数、相反数与绝对值.理解有理数的运算律,并能运用运算律简化运算;(2)了解平方根、算术平方根、立方根的概念,了解无理数和实数的概念,知道实数与数轴上的点一一对应;会用根号表示数的平方根、立方根.了解二次根式的概念及其加、减、乘、除运算法则,会用它们进行有关实数的简单四则运算;(3)了解整式、分式的概念,会进行简单的整式加、减运算;会进行简单的整式乘法运算.会利用分式的基本性质进行约分和通分,会进行简单的分式加、减、乘、除运算.【知识网络】【考点梳理】考点一、实数的有关概念、性质1.实数及其分类实数可以按照下面的方法分类:实数还可以按照下面的方法分类:要点诠释:整数和分数统称有理数.无限不循环小数叫做无理数.有理数和无理数统称实数.2.数轴规定了原点、正方向和单位长度的直线叫做数轴.每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数.实数和数轴上的点是一一对应的关系.要点诠释:实数和数轴上的点的这种一一对应的关系是数学中把数和形结合起来的重要基础.3.相反数实数a和-a叫做互为相反数.零的相反数是零.一般地,数轴上表示互为相反数的两个点,分别在原点的两旁,并且离原点的距离相等.要点诠释:两个互为相反数的数的运算特征是它们的和等于零,即如果a和b互为相反数,那么a+b=0;反过来,如果a+b=0,那么a和b互为相反数.4.绝对值一个实数的绝对值就是数轴上表示这个数的点与原点的距离.一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;零的绝对值是零,即如果a>0,那么|a|=a;如果a<0,那么|a|=-a;如果a=0,那么|a|=0.要点诠释:从绝对值的定义可以知道,一个实数的绝对值是一个非负数.5.实数大小的比较在数轴上表示两个数的点,右边的点所表示的数较大.6.有理数的运算(1)运算法则(略).(2)运算律:加法交换律 a+b=b+a;加法结合律 (a+b)+c =a+(b+c); 乘法交换律 ab =ba ;乘法结合律 (ab)c =a(bc); 分 配 律 a(b+c)=ab+ac .(3)运算顺序:在加、减、乘、除、乘方、开方这六种运算中,加、减是第一级运算,乘、除是第二级运算,乘方、开方是第三级运算.在没有括号的算式中,首先进行第三级运算,然后进行第二级运算,最后进行第一级运算,也就是先算乘方、开方,再算乘、除,最后算加、减. 算式里如果有括号,先进行括号内的运算. 如果只有同一级运算,从左到右依次运算. 7.平方根如果x 2=a ,那么x 就叫做a 的平方根(也叫做二次方根). 要点诠释:正数的平方根有两个,它们互为相反数;零的平方根是零;负数没有平方根. 8.算术平方根正数a 的正的平方根,叫做a 的算术平方根.零的算术平方根是零. 要点诠释:从算术平方根的概念可以知道,算术平方根是非负数. 9.近似数及有效数字近似地表示某一个量准确值的数,叫做这个量准确值的近似数.一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.这时,从左边第一个不是0的数字起,到精确到的数位止,所有的数字都叫这个数的有效数字. 10.科学记数法把一个数记成±a ×10n的形式(其中n 是整数,a 是大于或等于1而小于10的数),称为用科学记数法表示这个数.考点二、二次根式、分式的相关概念及性质 1.二次根式的概念≥0) 的式子叫做二次根式.2.最简二次根式和同类二次根式的概念最简二次根式是指满足下列条件的二次根式: (1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式. 要点诠释:把分母中的根号化去,分式的值不变,叫做分母有理化.两个含有二次根式的代数式相乘,若它们的积不含二次根式,则这两个代数式互为有理化因式. 常用的二次根式的有理化因式:(1(2)a a +-互为有理化因式;一般地a a +-(3. 3.二次根式的主要性质(1)0(0)a a ≥≥; (2)()2(0)a a a =≥;(3)2(0)||(0)a a a a a a ≥⎧==⎨-<⎩;(4)积的算术平方根的性质:(00)ab a b a b =⋅≥≥,;(5)商的算术平方根的性质:(00)a aa b b b=≥>,. 4. 二次根式的运算(1)二次根式的加减二次根式相加减,先把各个二次根式化成最简二次根式,再把同类二次根式分别合并. (2)二次根式的乘除二次根式相乘除,把被开方数相乘除,根指数不变.要点诠释:二次根式的混合运算:1.明确运算顺序,先算乘方,再算乘除,最后算加减,有括号先算括号里面的;2.在二次根式的混合运算中,原来学过的运算律、运算法则及乘法公式仍然适用;3.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能收到事半功倍的效果. 5.代数式的有关概念(1)代数式:用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子,叫做代数式.用数值代替代数式里的字母,计算后所得的结果,叫做代数式的值.代数式的分类:(2)有理式:只含有加、减、乘、除、乘方运算(包含数字开方运算)的代数式,叫做有理式. (3)整式:没有除法运算或者虽有除法运算但除式里不含字母的有理式叫做整式. 整式包括单项式和多项式.(4)分式:除式中含有字母的有理式,叫做分式.分式的分母取值如果为零,分式没有意义. 6.整式的运算(1)整式的加减:整式的加减运算,实际上就是合并同类项.在运算时,如果遇到括号,根据去括号法则,先去括号,再合并同类项.(2)整式的乘法:①正整数幂的运算性质:m n m n a a a +=;()m n mn a a =;()m mm ab a b =;m n m n a a a -÷=(a ≠0,m >n).其中m 、n 都是正整数.②整式的乘法:单项式乘单项式,用它们的系数的积作为积的系数,对于相同字母,用它们的指数的和作为积里这个字母的指数,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式. 单项式乘多项式,用单项式去乘多项式的每一项,再把所得的积相加.多项式乘多项式,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.③乘法公式:22()()a b a b a b +-=-; 222()2a b a ab b ±=±+.④零和负整数指数:在mnm na a a-÷=(a ≠0,m ,n 都是正整数)中,当m =n 时,规定01a =;当m <n 时,如m-n =-p(p 是正整数),规定1pp a a-=. 7.因式分解(1)因式分解的概念把一个多项式化成几个整式的积的形式,叫做多项式的因式分解. 在因式分解时,应注意:①在指定数(有理数、实数)的范围内进行因式分解,一定要分解到不能再分解为止,题目中没有指定数的范围,一般是指在有理数范围内分解.②因式分解以后,如果有相同的因式,应写成幂的形式,并且要把各个因式化简. (2)因式分解的方法①提公因式法:ma+mb+mc =m(a+b+c).②运用公式法:22()()a b a b a b -=+-;2222()a ab b a b ±+=±;③十字相乘法:2()x a b x ab +++()()x a x b =++.(3)因式分解的步骤①多项式的各项有公因式时,应先提取公因式; ②考虑所给多项式是否能用公式法分解. 要点诠释:因式分解时应注意:①在指定数(有理数、实数)的范围内进行因式分解,一定要分解到不能再分解为止,若题目中没有指定数的范围,一般是指在有理数范围内因式分解;②因式分解后,如果有相同因式,应写成幂的形式,并且要把各个因式化简,同时每个因式的首项不含负号;③多项式的因式分解是多项式乘法的逆变形. 8.分式(1)分式的概念 形如AB的式子叫做分式,其中A 和B 均为整式,B 中含有字母,注意B 的值不能为零. (2)分式的基本性质分式的分子与分母都乘(或除以)同一个不等于零的整式,分式的值不变.A A MB B M ⨯=⨯,A A MB B M÷=÷.(其中M 是不等于零的整式) (3)分式的运算 ①加减法:a b a b c c c ±±=,a c ad bcb d bd ±±=. ②乘法:ac acb d bd=. ③除法:a c a d adb d bc bc÷==. ④乘方:nn n a a b b⎛⎫= ⎪⎝⎭(n 为正整数).要点诠释:解分式方程的注意事项:(1)去分母化成整式方程时不要与通分运算混淆;(2)解完分式方程必须进行检验,验根的方法是将所得的根带入到最简公分母中,看它是否为0,如果为0,即为增根,不为0,就是原方程的解.列分式方程解应用题的基本步骤: (1)审——仔细审题,找出等量关系; (2)设——合理设未知数; (3)列——根据等量关系列出方程; (4)解——解出方程; (5)验——检验增根; (6)答——答题.【典型例题】类型一、实数的有关概念及运算1.实数2-,0.3,172,π-中,无理数的个数是( ) A .2 B .3 C .4 D .5【思路点拨】常见的无理数有以下几种形式:(1)字母型:如π是无理数,24ππ、等都是无理数,而不是分数; (2)构造型:如2.10100100010000…(每两个1之间依次多一个0)就是一个无限不循环的小数;(33256、、,…都是一些开方开不尽的数;(4)三角函数型:sin35°、tan27°、cos29°等.【答案】A ;【解析】本题主要考查无理数的概念.无理数是指无限不循环小数,2,π-都是无限不循环小数, 故共有2个无理数.【总结升华】无理数通常有以下几类:①开方开不尽的数;②含π的数;③看似循环但实际不循环的小数;④三角函数型:sin35°、tan27°、cos29°等.抓住这几类无理数特征,则可以轻松解决有关无理数的相关试题. 举一反三:【课程名称:数与式综合复习 402392 :例1—2】【变式】如图,数轴上A 、B 两点表示的数分别为-1和3,点B 关于点A 的对称点为C ,则点C 所表示的数为( ).A .32--B .-31-C .32+-D .31+【答案】A.2.计算:(1)23220.2549403⎡⎤⎛⎫-⨯-÷-⨯-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦; (2)85(2)25-⨯ .【思路点拨】注意在第(1)题中,32-与3(2)-的不同运算顺序和4499÷⨯的运算顺序. 【答案与解析】(1)23220.2549403⎡⎤⎛⎫-⨯-÷-⨯-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦480.2549409⎛⎫=-⨯-÷⨯- ⎪⎝⎭9249402(8140)4⎛⎫=--⨯⨯-=--- ⎪⎝⎭24143=--=-.(2)85(2)25-⨯444442525(425)25100252500000000=⨯⨯=⨯⨯=⨯=.【总结升华】在进行有理数运算时,要注意运算的顺序,要有灵活运用运算律、运算法则和相反数、倒数、0、1的运算特性的意识,寻求简捷的运算途径.举一反三: 【变式】2517( 2.4)58612⎛⎫-+-+⨯- ⎪⎝⎭;【答案】2517( 2.4)58612⎛⎫-+-+⨯- ⎪⎝⎭21.50.4 1.4 1.5 1.42.95=--+-=--=- .3. 若x-3+x-y+1=0,计算322x y+xy +4y .【思路点拨】几个非负数相加和为0,则这几个非负数必定同时为0,进而求出x 、y 的值. 【答案与解析】依题意得30,10,x x y -=⎧⎨-+=⎩解得3,4,x y =⎧⎨=⎩∴3222224x y+xy +y(x +xy+)y(x+)(x+)(3)410.44222y y y y y ====+⨯=【总结升华】2a ,(a 0)a a ≥,这三个非负数中任意几个相加得0,则每一个都得0.举一反三:【变式】已知|1|80a b ++-=,则a b -= .【答案】本题考查绝对值与算数平方根的非负性,两个非负数的和为0,所以这两数都为0.因为|1|80a b ++-=,所以a=-1,b=8. a b -=﹣9.类型二、分式的有关运算4.对于分式211x x -+,当x 取何值时,(1)分式有意义? (2)分式的值等于零?【思路点拨】当分母等于零时,分式没有意义,此外,分式都有意义;当分子等于零,并且分母不等于零时,分式的值等于零. 【答案与解析】(1)由分母x+1=0,得x =-1.∴ 当x ≠-1时,分式211x x -+有意义.(2)由分子210x -=,得1x =或1x =-. 而当x =-1时,分母x+1=0; 当x =1时,分母10x +=.∴ 当x =l 时,分式211x x -+的值等于零.【总结升华】讨论分式有无意义时,一定要对原分式进行讨论,而不能讨论化简后的分式.类型三、二次根式的运算5.(2014春•平泉县校级期中)已知a=,求﹣的值.【思路点拨】先利用因式分解原式进行化简,再进行约分和利用二次根式的性质计算,由于a==4﹣2,则a ﹣4<0,所以原式可化简为a ﹣3+,然后把a 的值代入计算即可. 【答案与解析】 解:原式=﹣=a ﹣3﹣, ∵a==4﹣2, ∴a ﹣4<0, ∴原式=a ﹣3+=a ﹣3+, =4﹣2﹣3+=2﹣.【总结升华】本题考查了二次根式的化简求值:一定要先化简再代入求值.二次根式运算的最后,注意结果要化到最简二次根式,二次根式的乘除运算要与加减运算区分,避免互相干扰.也考查了分式的混合运算.举一反三:【变式】计算:2(1848)(212)(23)+---;【答案】2(1848)(212)(23)+---(3243)(223)(2263)=+---+646662452623=+---+=-.6.当x 为何值时,下列式子有意义? (1)32x -; (2)125xx -+. 【思路点拨】第(1)题中,根号外的负号与根号是否有意义无关;第(2)题中,因为与分式有关,因此要综合考虑x 的取值范围.【答案与解析】(1)320x -≥,即32x ≤. ∴ 当32x ≤时,32x --有意义. (2)120x -≥,且x+5≠0,∴ 当12x ≤,且x ≠-5时,125x x -+有意义.【总结升华】要使偶次根式有意义,被开方数为非负数;分式有意义分母不为0.举一反三:【课程名称:数与式综合复习 402392 :例1—2】 【变式】下列说法中,正确的是( )A .3的平方根是3B .5的算术平方根是5C .-7的平方根是7-±D .a 的算术平方根是a【答案】B.类型四、数与式的综合运用7.(2014秋•崂山区校级期末)用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺地面:(1)观察图形,填写下表:图形 (1) (2) (3)… 黑色瓷砖的块数 4 7… 黑白两种瓷砖的总块数 15 25… (2)依上推测,第n 个图形中黑色瓷砖的块数为 ;黑白两种瓷砖的总块数为 (都用含n 的代数式表示)(3)白色瓷砖的块数可能比黑色瓷砖的块数多2015块吗?若能,求出是第几个图形;若不能,请说明理由.【思路点拨】找规律题至少要推算出三个式子的值,再去寻求规律,考察了认真观察、分析、归纳、由特殊到一般,由具体到抽象的能力. 【答案与解析】解:(1)填表如下:图形 (1) (2) (3)… 黑色瓷砖的块数 4 7 10… 黑白两种瓷砖的总块数 15 25 35 …(2)第n 个图形中黑色瓷砖的块数为3n+1;黑白两种瓷砖的总块数为10n+5; (3)能,理由如下:10n+5﹣(3n+1)﹣(3n+1)=2015,精品文档 用心整理资料来源于网络 仅供免费交流使用 解得:n=503答:第503个图形.【总结升华】本题考查数形结合、整理信息,将图形转化为数据,猜想规律、探求结论.抓住其中的黑色瓷砖数目的变化规律,结合图形,观察其变化规律.举一反三:【变式】如图所示的是一块长、宽、高分别为7cm ,5cm 和3cm 的长方体木块,一只蚂蚁要从长方体木块的一个顶点A 处,沿着长方体的表面爬到和顶点A 相对的顶点B 处吃食物,那么它要爬行的最短路径的长是多少?22(57)3153++=(cm).【答案】路径①的长为路径②的长为22(37)5125++=22(35)7113++=(cm). 113。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
展示、评价
选取部分学生的完成情况进行展示,如还有问题的再次纠正,并给与评价。
检验学生的学习情况,肯定学生学习成果,提高学生学习兴趣。
课堂小结
这节课的学习涉及到初中学习的各种运算和常见的计算类题型,学习之后,有哪些Байду номын сангаас获呢?(3-5名同学谈谈)你课前的问题解决了吗?
想一想:在完成计算类题目时有哪些需注意地方呢?如:1、解分式方程要验根;2、准确记忆特殊值和运算;3、重视简单;4、规范书写等。
归纳所学,形成经验和技能。
课后巩固
1、已知a、b互为相反数,并且 ,则 .
2、先化简,再求值: ,其中 .
3、计算:︳-3 ︱- - - +(3-π)0
4、解方程组 ,并求 的值.
5、解方程: = .
进一步巩固所学




这节课充分体现了学生的主体地位,让学生经过典型例题的解决系统的巩固复习初中学习的各种运算,引导学生体验数学的学习方法。但是,在时间的安排上欠适合,因学生计算速度跟不上,导致内容的完成需要延时。应再精简例题,把部分题放到课后让学生去探究,重在学习方法的体验。
让学生发现自己的问题,带着问题有针对的学习效果更好。
理论复习
随机挑选学生回答下列问题:
1、我们学过的运算概括起来有哪些?运算顺序是什么?(加减乘除乘方开方;整式的运算、分式的运算;特殊计算:相反数、绝对值、负指数、特殊值三角函数等)(需带值的先带值如带特殊三角函数值、有括号的先算括号、其次乘方开方、然后乘除、最后加减)
2、你能说出三种以上的运算法则吗?
熟悉相关理论知识,为解决具体问题打好基础。
问题展示
1、计算:| |
2、先化简,再求值. ,其中x=3。
3、解分式方程: 。
4、解方程组:
5、解不等式组 并把解集在数轴上表示出来。
6、已知|a﹣1|+ =0,求方裎 +bx=1的解.
列举的问题涉及初中数学的各种运算和常出现的题型,让学生熟悉各种题型及运算。
情感态度与价值观:提升学生总结、反思的意识,感受学习经验在学习中应用,体会成功喜悦。
重点
运算顺序和法则的灵活应用。
难点
发现并纠正计算中的易错点、准确计算。
教学准备
PPT课件
教学过程
教学环节
教学内容
设计意图
问题调查
请学生说出自己在计算中常出现的问题:比如1、简单的计算反而出错(粗心);2、混淆运算法则;3、书写时心手不一致;4、记不住一些不常见的计算如负指数幂。……
教案
课题:中考专题复习—计算
授课教师:谭绍成
教材版本:人教版
授课年级:九年级第二学期
课程内容:代数计算、分式计算、解方程等
课题
中考专题复习—计算
课型
复习课




知识与技能:巩固和进一步熟悉初中数学的运算顺序及法则,提升学生的计算速度和计算准确性。
过程与方法:经过典型例题学习、限时独立完成练习、与同伴交流、相互纠错等过程,解决学生在计算中易错点、难点,并有针对的复习巩固。
独立思考
给学生5分钟时间,认真阅读题目,思考、预设每道题的解题方法。
让学生熟悉题目,认识自己的不足。
合作、交流、解决、展示、纠错、评价
把学生4-8位分成小组,小组内交流讨论,写出每道题的解题过程,每道题选取2-3个小组的成果进行展示、纠错、评价。教师展示解题过程。
让学生在交流讨论中学习,肯定成果、改进不足、形成正确结论,积累经验、学会学习。
巩固、提升
1、计算: 2、先化简,再求代数式 的值,其中x=tan600-tan450
3、解不等式组 ,并写出不等式组的整数解.
4、已知 那么x-y的值是()
A. 1 B.―1 C. 0 D. 2
5、若不等式组 的解集是 ,求 的值
6、解方程: - = 2.
巩固并提升本节课的学习,提高学生解决问题的能力。
相关文档
最新文档