dsp、单片机以及嵌入式微处理器区别
DSP

一、填空1. DSP的基本结构是采用____________结构,即程序和数据是分开的。
2.直流电机的控制主要采用的控制方式是____________。
3. DSP芯片的前缀“LF”说明片内有___________存储器;而以“LC”为前缀的芯片,片内有____________工艺的程序存储器。
4.寄存器ST1的CNF位决定B0的作用,当CNF=________时,映射到程序存储空间,CNF=__________时映射到数据存储空间。
5.当工作于______________计数模式时,通用定时器会产生一个非对称波形。
6.若系统时钟频率为40MHz,SCI的BRR值设置为4,则SCI的异步波特率为_________。
7.WD复位关键字寄存器(WDKEY),向WDKEY写入55h后紧接着写入_________则清楚WDCNTR寄存器。
8.自动排序器的两种工作模式分别是____ ____和_____ ____。
9.同传统的单片机中断处理方式类似,DSP中断的处理也有两种方法,分别是__________和____________。
10. DSP对外部存储器和外部功能器件的片选方法有两种:___________和____________。
答案:1、哈佛 2、电枢控制法 3、Flash、CMOS4、1、05、连续递增6、1067、AAh8、不中断的排序模式、启动/停止模式 9. 查询法、回调法10、片选法、译码选通法1.DSP与单片机、嵌入式微处理器的最大区别是能够________、_________地进行数字信号处理运算。
2. DSP的基本结构是采用____________结构,即程序和数据是分开的。
3. DSP的应用非常广泛,试举一个应用的例子_____ ___。
4. 数模转换过程可分为两个时段_____ ___和_____ ____5.如果m是一个特定的读写操作的所要求的时钟周期(CLKOUT)的数目,w是附件的等待状态的数目,那么操作将会花费___________个周期。
深入理解DSP、ARM、FPGA的区别与联系

深入了解DSP与ARM的区别与联系这些天正准备找工作的事,对于一些理论上的,或者说表面上的知识需要梳理下,所以有空整理了这篇简陋的比较,权当从另一个侧面理解下这两款主流处理器的特点了吧!DSP:DSP(digital singnal processor)是一种独特的微处理器,有自己的完整指令系统,是以数字信号来处理大量信息的器件。
一个数字信号处理器在一块不大的芯片内包括有控制单元、运算单元、各种寄存器以及一定数量的存储单元等等,在其外围还可以连接若干存储器,并可以与一定数量的外部设备互相通信,有软、硬件的全面功能,本身就是一个微型计算机。
DSP采用的是哈佛设计,即数据总线和地址总线分开,使程序和数据分别存储在两个分开的空间,允许取指令和执行指令完全重叠。
也就是说在执行上一条指令的同时就可取出下一条指令,并进行译码,这大大的提高了微处理器的速度。
另外还允许在程序空间和数据空间之间进行传输,因为增加了器件的灵活性。
其工作原理是接收模拟信号,转换为0或1的数字信号,再对数字信号进行修改、删除、强化,并在其他系统芯片中把数字数据解译回模拟数据或实际环境格式。
它不仅具有可编程性,而且其实时运行速度可达每秒数以千万条复杂指令程序,源源超过通用微处理器,是数字化电子世界中日益重要的电脑芯片。
它的强大数据处理能力和高运行速度,是最值得称道的两大特色。
DSP芯片,由于它运算能力很强,速度很快,体积很小,而且采用软件编程具有高度的灵活性,因此为从事各种复杂的应用提供了一条有效途径。
其主要应用是实时快速地实现各种数字信号处理算法。
根据数字信号处理的要求,DSP芯片一般具有如下主要特点:(1)在一个指令周期内可完成一次乘法和一次加法;(2)程序和数据空间分开,可以同时访问指令和数据;(3)片内具有快速RAM,通常可通过独立的数据总线在两块中同时访问;(4)具有低开销或无开销循环及跳转的硬件支持;(5)快速的中断处理和硬件I/O支持;(6)具有在单周期内操作的多个硬件地址产生器;(7)可以并行执行多个操作;(8)支持流水线操作,使取指、译码和执行等操作可以重叠执行。
什么是DSP?DSP、单片机MCU、嵌入式微处理器的区别

什么是DSP?DSP、单⽚机MCU、嵌⼊式微处理器的区别DSP有两个意思,既可以指数字信号处理这门理论,此时它是Digital Signal Processing的缩写;也可以是Digital Signal Processor的缩写,表⽰数字信号处理器,有时也缩写为DSPs,以⽰与理论的区别。
本书中DSP仅⽤来代表数字信号处理器。
DSP属于嵌⼊式处理器。
在介绍DSP之前,先扼要地介绍⼀下嵌⼊式处理器。
简单的说,嵌⼊式处理器就是嵌⼊到应⽤对象系统中的专⽤处理器,相对于通⽤CPU(如x86系列)⽽⾔,⼀般对价格尺⼨、功耗等⽅⾯限制⽐较多嵌⼊式处理器⼤体可分为以下⼏类:1 嵌⼊式微处理器嵌⼊式微处理器可谓是通⽤计算机中CPU的微缩版。
相对于通⽤CPU,嵌⼊式微处理器具有体积⼩、功耗少、成本低的优点,当然在速度上也慢⼀些嵌⼊式微处理器在软件配置上常常可以运⾏嵌⼊式操作系统,应⽤于⽐较⾼档的领域。
典型的如32位的ARM、64位的MIPS。
2 嵌⼊式微控制器嵌⼊式微控制器的最⼤特点是单⽚化,常称为单⽚机。
顾名思义,单⽚机就是将众多的外围设备(简称外设,如A/D,IO等)集成到⼀块芯⽚中,从⽽⼤幅度降低了成本。
单⽚机⾮常适合控制领域,典型的如⼤名⿍⿍的51系列。
3 专⽤微处理器相对于上述⽐较通⽤的类型,专⽤微处理器是专门针对某⼀特定领域的微处理器。
如昂贵的视频游戏机微处理器等。
DSP本质上也属于专⽤微处理器DSP对系统结构和指令进⾏了优化设计,使其更适合于执⾏数字信号处理算法(如FFT,FIR等)。
DSP运⾏速度⾮常快,在数字信号处理的⽅⽅⾯⾯⼤显⾝⼿。
由于越来越⼴泛的领域需要⾼速数字信号处理,DSP也有越来越通⽤化的倾向,常常可以把DSP单独列成⼀类。
TI的DSP包括哪些系列?⾃1982年推出第⼀款DSP后,德州仪器公司(Texas Instrument简称TI)不断推陈出新、完善开发环境,以其雄厚的实⼒在业界得到50%左右的市场份额。
【详解】单片机、ARM、DSP、模块、CPU 之间的区别对比

【详解】单片机、ARM、DSP、模块、CPU之间的区别对比单片机01什么是单片机单片机已广泛称作微控制器(MCU),单片机是一块类似PC的芯片,它不是完成某一个逻辑功能的芯片,而是把一个计算机系统集成到一个芯片上;只是没PC强大,但它可以嵌入到其它设备中从而对其进行操控。
概括的讲:一块芯片就成了一台计算机单片机的多机应用系统可分为功能集散系统、并行多机处理及局部网络系统。
体积小、质量轻、价格便宜、为学习、应用和开发提供了便利条件。
同时,学习使用单片机是了解计算机原理与结构的最佳选择。
03应用单片机的使用领域已十分广泛,如智能仪表、实时工控、通讯设备、导航系统、家用电器等;ARM01什么是ARMARM是微处理器行业中一家知名企业,研发了RISC处理器、有关技能及软件。
ARM既能够认为是一个公司的名称,也能够认为是对一类微处理器的通称,本文主要指ARM架构面向低核算商场规划的第一款RISC微处理器。
ARM内核是一个嵌入式系统。
RISC架构的指令,寄存器和流水线特征使它非常适合于并02优点耗电少节能、高功能、16位/32位双指令集、价格低、协作伙伴多;嵌入式片上资源丰富;03应用应用领域大多为小家电,终端设备;DSP01什么是DSPDSP是一种独特的微处理器,是以数字信号来处理大量信息的器件,它不仅具有可编程性,而且运行速度可达每秒数以千万条复杂指令程序,远远超过通用微处理器,是数字化电子世界中日益重要的电脑芯片。
02优点强大数据处理能力和高运行速度03应用目前DSP应用主要应用图形与图像仪器仪表自动控制医疗家用电器信号处理通信语音等无线模块01什么是无线模块物联网中涉及到的模块大多数是无线通信模块,简称无线模块。
无线通信模块的原理是将电磁波信号发送或者接收且转换成我们能理解的信息。
无线通信模块的作用是将物于物之间联系起来,让各类物联网终端设备实现信息传输能力,也让各种智能设备有一个物联网的信息接口。
2023年关于cpu,mcu,dsp的区别是什么

2023年关于cpu,mcu,dsp的区别是什么cpu,mcu,dsp是什么要解释两者的区别,要先明白两者的相同之处:两者都有总线和外界联系,有自己的缓存体系,以及数字和逻辑运算单元。
一句话,两者都为了完成计算任务而设计。
两者的区别在于存在于片内的缓存体系和数字逻辑运算单元的结构差异:CPU虽然有多核,但总数没有超过两位数,每个核都有足够大的缓存和足够多的数字和逻辑运算单元,并辅助有很多加速分支判断甚至更复杂的逻辑判断的硬件;GPU的核数远超CPU,被称为众核(NVIDIA Fermi有512个核)。
每个核拥有的缓存大小相对小,数字逻辑运算单元也少而简单(GPU初始时在浮点计算上一直弱于CPU)。
从结果上导致CPU擅长处理具有复杂计算步骤和复杂数据依赖的'计算任务,如分布式计算,数据压缩,人工智能,物理模拟,以及其他很多很多计算任务等。
GPU由于历史原因,是为了视频游戏而产生的(至今其主要驱动力还是不断增长的视频游戏市场),在三维游戏中常常出现的一类操作是对海量数据进行相同的操作,如:对每一个顶点进行同样的坐标变换,对每一个顶点按照同样的光照模型计算颜色值。
GPU的众核架构非常适合把同样的指令流并行发送到众核上,采用不同的输入数据执行。
在 -左右,图形学之外的领域专家开始注意到GPU与众不同的计算能力,开始尝试把GPU用于通用计算(即GPGPU)。
之后NVIDIA发布了CUDA,AMD 和等公司也发布了OpenCL,GPU开始在通用计算领域得到广泛应用,包括:数值分析,海量数据处理(排序,Map- Reduce等),金融分析等等。
简而言之,当程序员为CPU编写程序时,他们倾向于利用复杂的逻辑结构优化算法从而减少计算任务的运行时间,即Latency。
当程序员为GPU编写程序时,则利用其处理海量数据的优势,通过提高总的数据吞吐量(Throughput)来掩盖Lantency。
目前,CPU和GPU的区别正在逐渐缩小,因为GPU也在处理不规则任务和线程间通信方面有了长足的进步。
单片机、DSP、PLC、CPLD、FPGA、嵌入式的区别

81632DSP:数字信号处理器,处理器采用哈弗结构,工作频率较高,能大幅度提高数字信号处理算法的执行效率。
MCU:微控制器,主要用于控制系统,工作频率一般来说比DSP低,硬件上具有多个IO 端口,同时也集成了多个外设,主要是便于在控制系统中的应用。
至于ARM处理器,个人认为是MCU的高级版本,ARM本身只是一个内核,目前已经有多个版本。
CPLD:复杂可编程逻辑器件FPGA:现场可编程门阵列后两者都是可编程器件,CPLD目前一半采用FLASH技术,而FPGA采用SRAM技术,这就决定了FPGA需要采用特定的配置技术。
同时FPGA的规模要比CPLD大得多,但CPLD应用起来相对要简单的多单片机单片机是集成了CPU ,ROM ,RAM 和I/ O 口的微型计算机。
它有很强的接口性能,非常适合于工业控制,因此又叫微控制器(MCU) 。
它与通用处理器不同,它是以工业测控对象、环境、接口等特点出发,向着增强控制功能,提高工业环境下的可靠性、灵活方便地构成应用计算机系统的界面接口的方向发展。
所以,单片机有着自己的特点。
品种齐全,型号多样自从INTEL 推出51 系列单片机,许多公司对它做出改进,发展成为增强型51 系列,而且新的单片机类型也不断涌现。
如MOTOROLA 和PHIL IPS 均有几十个系列,几百种产品。
CPU 从8 ,16 ,32 到64 位,多采用RISC 技术,片上I/O 非常丰富,有的单片机集成有A/ D ,“看门狗”,PWM ,显示驱动,函数发生器,键盘控制等,它们的价格也高低不等,这样极大地满足了开发者的选择自由。
低电压和低功耗随着超大规模集成电路的发展,NMOS 工艺单片机被CMOS代替,并开始向HMOS 过渡。
供电电压由5V 降到3V ,2V 甚至到1V ,工作电流由mA 降至μA ,这在便携式产品中大有用武之地。
DSP 芯片DSP 又叫数字信号处理器。
顾名思义,DSP 主要用于数字信号处理领域,非常适合高密度,重复运算及大数据容量的信号处理。
DSP复习题

《DSP 复习题》一题名词解释20哈佛结构,流水线,MIPS,MAC,MOPS,MFLOPS,DARAM(双访问存储器)二题填空题25●DSP的选择应从数据格式,数据宽度,运算速度,存储器的安排,开发的难易程度,支持多处理器,功耗和电源管理以及器件的封装几个方面来考虑。
●CAN的通信距离最远可达10KM(传输速度为5Kbps);最高通信速度可达1Mbps(传输距离40m)。
●TMS320F2812中串行外设接口SPI是一个高速的同步串行输入输出接口,其可编程的传输数据长度为 1~16位,工作于全双工时需要4个引脚参与数据传送,它们分别是 SPISIMO,SPISOMI,SPISTE,SPICLK ,并且具有两种工作方式,分别为主模式和从模式●串行总线与并行总线相比,具有较少的控制和数据线的优点,因而得到广泛应用。
串行接口可分为三种,分别为单总线、双总线和多总线接口。
SPI属于多总线接口。
●哈佛结构可以获得更高的数据处理速度。
TMS320F2812 采用了增强哈佛结构总线数目一共有6条,它们分别是PAB,DRAB,DWAB,PRDB,DRDB,DWDB三题简答题251、TMS320F2812的片内外设中,比如SCI,SPI和McBSP,大量采用FIFO用于串行数据传输。
试述什么是FIFO,其又有什么特点?(见笔记)2、试画出基本DSP系统的构成图,并加以说明。
(P2页)3、试画出DSP应用系统的设计流程图,并加以说明(P3页)4、简述什么是DSP(数字信号处理器),其有什么特点?(P5)5、试说明TI公司DSP芯片分类及其各自的特点和应用范围。
(P6)6、简述TMS320F2812 的SCI通信接口的特点;7、简述TMS320F2812 的SPI通信接口的特点;接受和发送可同时操作(可通过软件屏蔽调发送功能)通过中断(Interrupt)或查询方式(Poll Algorithms)实现发送和接收操作12个SPI模块控制寄存器(其中3个是FIFO,每个寄存器16位,低字节有效,高字16X16发送/接受FIFO,同时可延时发送(0~256个SPICLK 时钟)9、结合图说明TMS320F2812 锁相环工作原理。
嵌入式处理器的分类

行DSP算法,因而能够对离散时间信号进行极快的处理计算,提高了编 译效率和执行速度。
11
3. 嵌入式DSP(Distal Signal Processor)
• 在数字滤波、FFT、频谱分析等方面,嵌入式 DSP获得了大规模的应用。
• SOC最大的特点就是成功实现了软、硬件无缝结合,直接在处理器片内嵌入式操作系统 的代码模块,满足了单片系统要求的高密度、高速度、高性能、小体积、低电压和低 功耗等指标。
14
4.嵌入式片上系统(System on Chip)
• 目前比较典型的几款SoC产品包括Simens的TriCore、Philips的Smart XA、Motorola 的M-Core、某此ARM系列器件、Echelon和Motorola联合研制的Neuron芯片等。
• Introduced in1874 • 8-bit architecture • Still used in some
micorcontroller applications!
6
1.嵌入式微控制器(MicroController)
• 与嵌入式微处理器相比,微控制器的最大特点是单 片化,体积大大减少,从而使功耗和成本降低,可 靠性提高。
嵌入式处理器的分类
2
学习内容
1. 嵌入式微控制器(MCU) 2. 嵌入式微处理器(MPU) 3. 嵌入式DSP处理器(DSP) 4. 嵌入式片上系统(SOC)
3
嵌入式处理器的分类
嵌入式处理器
嵌入理器 (DSP)
嵌入式片上系统 (SoC)
4
1.嵌入式微控制器(MicroController)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
DSP 、单片机以及嵌入式微处理器都是嵌入式家族的一员。
最大区别是DSP 能够高速、实时地进行数字信号处理运算。
数字信号处理运算的特点是乘/加及反复相乘
求和(乘积累加)。
为了能快速地进行数字信号处理的运算,(1)DSP设置了硬件乘法/累加器,(2)能在单个指令周期内完成乘/加运算。
(3)为满足FFT、卷积等数字信号处理的特殊要求,目前DSP大多在指令系统中设置了“循环寻址”及“位倒序”寻址指令和其他特殊指令,使得寻址、排序的速度大大提高。
DSP完成1024复点FFT的运算,所需时间仅为微秒量级。
高速数据的传输能力是DSP高速实时处理的关键之一。
新型的DSP设置了单独的DMA总线及其控制器,在不影响或基本不影响DSP处理速度的情况下,作并行的数据传送,传送速率可达每秒百兆字节。
DSP内部有流水线,它在指令并行、功能单元并行、多总线、时钟频率提高等方面不断创新和改进。
因此,DSP与单片机、嵌入式微处理器相比,在内部功能单元并行、多DSP核并行、速度快、功耗小、完成各种DSP算法方面尤为突出。
单片机也称微控制器或嵌入式控制器,它是为中、低成本控制领域而设计和开发的。
单片机的位控能力强,I/O接口种类繁多,片内外设和控制功能丰富、价格低、使用方便,但与DSP相比,处理速度较慢。
DSP具有的高速并行结构及指令、多总线,单片机却没有。
DSP处理的算法的复杂度和大的数据处理流量更是单片机不可企及的。
嵌入式微处理器的基础是通用计算机中的CPU(微处理器)。
是嵌入式系统的核心。
为满足嵌入式应用的特殊要求,嵌入式微处理器虽然在功能上和标准微处理器基本是一样的,但在工作温度、抗电磁干扰、可靠性等方面一般都做了各种增强。
与工业控制计算机相比,嵌入式微处理器具有体积小、质量轻、成本低、可靠性高的优点,但是在电路板上必须包括ROM、RAM、总线接口、各种外设等器件,从而降低了系统的可靠性,技术保密性也较差。
在应用设计中,嵌入式微处理器及其存储器、总线、外设等安装在专门设计的一块电路板上,只保留和嵌入式应用有关的母板功能,可大幅度减小系统的体积和功耗。
目前,较流行的是基于ARM7、ARM9系列内核的嵌入式微处理器。
嵌入式微处理器与DSP的一个很大区别,就是嵌入式处理器的地址线要比DSP
的数目多,所能扩展的存储器空间要比DSP的存储器空间大的多,所以可配置实时多任务操作系统(RTOS)。
RTOS是针对不同处理器优化设计的高效率、可靠性和可信性很高的实时多任务内核,它将CPU时间、中断、I/O、定时器等资源都包装起来,留给用户一个标准的应用程序接口(API),并根据各个任务的优先级,合理地在不同任务之间分配CPU时间。
RTOS是嵌入式应用软件的基础和开发平台。
常用的RTOS:Linux(为几百KB)和VxWorks(几MB)。
由于嵌入式实时多任务操作系统具有的高度灵活性,可很容易地对它进行定制或作适当开发,来满足实际应用需要。
例如,移动计算平台、信息家电(机顶盒、数字电视)、媒体手机、工业控制和商业领域(例如,智能工控设备、ATM机等)、电子商务平台,甚至军事应用,吸引力巨大。
所以,目前嵌入式微处理器的应用是继单片机、DSP之后的又一大应用热门。
但是,由于嵌入式微处理器通常不能高效地完成许多基本的数字处理运算,例如,乘法累加、矢量旋转、三角函数等。
它的
体系结构对特殊类型的数据结构只能提供通用的寻址操作,而DSP则有专门的简捷寻址机构和辅助硬件来快速完成。
所以嵌入式微处理器不适合高速、实时的数字信号处理运算。
而更适合“嵌入”到系统中,完成高速的“通用”计算与复杂
的控制用途。
DSP、单片机以及嵌入式微处理器三者各有所长,技术的发展使得DSP、单片机、嵌入式微处理器相互借鉴对方的优点,互相取长补短。
现在,部分单片机内部都有硬件乘法器,单片机内部
也有了DSP内部才有的流水线作业(但规模小些)借鉴PC机的优点,DSP内部也有了一定规模的高速缓存。
吸收Intel的嵌入式系统芯片和系统软件的优点。
有的DSP内部集成了高速运行的DSP内核及控制功能丰富的嵌入式处理器内核。
例如,内部集成有TI公司的C54xCPU内核和ARM公司的ARM7TDMIE内核的DSP,既具有高速的数据处理能力,又有各种类型的外设接口和位控能力,大大拓宽了DSP在控制领域的应用范围。
DSP在注重高速的同时,也在发展低价位控制芯片。
美国Cygnal公司的C8051F020 8位单片机,内部采用流水线结构,大部分指令的完成时间为1或2个时钟周期,峰值处理能力为25MIPS。
片上集成有8通道A/D、2路D/A、两路电压比较器,内置温度传感器、定时器、可编程数字交叉开关和64个通用I/O口、电源监测、看门狗、多种类型的串行总线(两个UART、SPI)等。
DSP的基本结构及主要特征DSP是一种具有特殊结构的微处理器,为了达到快速进行数字信号处理的目的,DSP的总线结构大都采用了程序和数据分开的形式,并具有流水线操作的功能,单周期完成乘法的硬件乘法器以及一套适合数字信号处理运算的指令集。
DSP的基本结构及主要特征如下。
1.程序和数据分开的哈佛结构就是将程序和数据存储在两个不同的存储空间中。
程序存储器空间和数据存储器空间分别独立编址。
传统的冯.诺依曼结构是程序存储器和数据存储器共用一个公共的存储空间和单一的地址和数据总线,依靠指令计数器中提供的地址来区分是指令、数据还是地址。
取指令和取数据都访问同一存储器空间,数据的吞吐率低。
在哈佛结构中,由于程序存储器和数据存储器分开,即每个存储器空间独立编址、独立访问,并具有独立的程序总线和数据总线,取指令和执行指令能
完全重叠进行。
现在的DSP普遍采用改进的哈佛结构,其结构、特点如下:(1)允许数据存放在程序存储器中,并被算术指令运算指令直接使用,增强了灵活性。
(2)指令存储在高速缓冲器(Cache)中,当执行本指令时,不需要再从存储器中读取指令,节省一个机器周期的时间。
2.流水线操作由于DSP芯片采用多组总线结构,允许CPU同时进行指令和数据的访问。
因此,可执行流水线操作。
执行一条指令,要经过取指、译码、取数、执行运算,需要若干个指令周期才能完成。
流水线技术是将各个步骤重叠起来进行。
即第一条指令取指、译码时,第二条指令取指;第一条指令取数时,第二条指令译码,第三条指令取指,依次类推。
例如,LF240x就可以实现4级流水线操作(图)。
3. 专门的硬件乘法器和乘加指令MAC在数字信号处理的算法中,大量的运算是乘法和累加,乘法和累加要占用绝大部分的处理时间。
例如,数字滤波、卷积、相关、向量和矩阵运算中,有大量的乘法和累加运算。
个人计算机:计算乘法需要多个周期用软件实现,DSP:设置了硬件乘法器以及乘加指令MAC,在单周期内取两个操作数一次完成乘加运算。
4. 特殊的指令指令系统中,专为实现数字信号处理的算法设置了专门的特殊指令。
例如:DMOV指令,把指令的数据复制到该地址加1的地址中,原单元的内容不变,即数据移位,相当于数字信号处理中的延迟,例如x(n)的延迟为x(n-1)。
另一特殊指令LTD,在一个指令周期可完成LT、DMOV和APAC三条指令的内容。
此外,指令系统中设置了“循环寻址”及“位倒序寻址”指令和其他特殊指令,使得寻址、排序的速度大大提高,从而能方便、快速地实现FFT算法。
5.丰富的片内存储器件和灵活的寻址方式片内集成Flash和双口RAM,通过片内总线访问这些存储空间,因此不存在总线竞争和速度匹配问题,从而大大提高了数据的读/写速度。
6. 独立的直接存储器访问(DMA)总线及其控制器DSP为DMA 单独设置了完全独立的总线和控制器
7. 高速的指令运行周期采用上述措施,DSP指令周期可为几十ns至几ns,甚至1ns以下。