盐城市中考数学试题及答案(答案扫描)

合集下载

盐城市中考数学试题、答案解析版

盐城市中考数学试题、答案解析版

2021年市中考数学试题、答案〔解析版〕〔总分值:150分考试时间:120分钟〕一、选择题〔本大题共8小题,每题3分,总分值24分.在每题给出的四个选项中,恰有一项是符合题目要求的〕1.如图,数轴上点 A表示的数是〔〕A. 12.以下图形中,既是轴对称图形又是中心对称图形的是〔〕A B C D3.假设x 2有意义,那么x的取值围是〔〕A.x≥2B.x≥2C.x>2D.x>24.如图,点D、E分别是△ABC边BA、BC的中点,AC3,那么DE的长为〔〕B.4 D.332〔第4题〕〔第5题〕5.如图是由6个小正方体搭成的物体,该所示物体的主视图是〔〕A B C D6.以下运算正确的选项是〔〕A.a5a2a10B.a3aa2C.2a a2a2D.a23a57.正在建设中的北京大兴国际机场规划建设面积约1400000平方米的航站楼,数据1400000用科学记数法应表示为〔〕A.108B.107C.106D.141058.关于x的一元二次方程x2kx20〔k为实数〕根的情况是〔〕A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定二、填空题〔本大题共8小题,每题3分,共24分〕9.如图,直线a∥b, 1 50,那么2.〔第9题〕〔第11题〕10.分解因式:x21.如图,转盘中6个扇形的面积都相等.任意转动转盘1次,当转盘停止转动时,指针落在阴影局部的概率为.12.甲、乙两人在100米短跑训练中,某5次的平均成绩相等,甲的方差是s2,乙的方差是s2,这5次短跑训练成绩较稳定的是.〔填“甲〞或“乙〞〕13.设x1、x2是方程x23x20的两个根,那么x1x2x1gx2.14.?,那么EC.如图,点A、B、C、D、E在eO上,且AB为50〔第14题〕〔第15题〕〔第16题〕15.如图,在△ABC中,BC62,C45,AB 2AC,那么AC的长为.16.如图,在平面直角坐标系中,一次函数y2x1的图象分别交x、y轴于点A 、将直线AB B绕点B按顺时针方向旋转45,交x轴于点C,那么直线BC的函数表达式是.三、解答题〔本大题共有11小题,共102分,解答时应写出文字说明、推理过程或演算步骤〕17.〔此题总分值6分〕计算:|2|sin361024tan45.x>,1218.〔此题总分值6分〕解不等式组:≥12x3x.219.〔此题总分值8分〕如图,一次函数y x 1的图象交y轴于点A,与反比例函数y kx>0x的图象交于点Bm,2.1〕求反比例函数的表达式;(2〕求△AOB的面积.20.〔此题总分值8分〕在一个不透明的布袋中,有2个红球,1个白球,这些球除颜色外都相同.〔1〕搅匀后从中任意摸出1个球,摸到红球的概率是.〔2〕搅匀后先从中任意摸出1个球〔不放回〕,再从余下的球中任意摸出都摸到红球的概率.〔用树状图或表格列出所有等可能出现的结果〕1个球.求两次〔此题总分值8分〕如图,AD是△ABC的角平分线.1〕作线段AD的垂直平分线EF,分别交AB、AC于点E、F;〔用直尺和圆规作图,标明字母,保存作图痕迹,不写作法〕〔2〕连接DE、DF,四边形AEDF是形.〔直接写出答案〕22.〔此题总分值10分〕体育器材室有A、B两种型号的实心球,1只A型球与1只B型球的质量共7千克,3只A型球与1只B型球的质量共13千克.1〕每只A型球、B型球的质量分别是多少千克?2〕现有A型球、B型球的质量共17千克,那么A型球、B型球各有多少只?〔此题总分值10分〕某公司共有400名销售人员,为了解该公司销售人员某季度商品销售情况,随机抽取局部销售人员该季度的销售数量,并把所得数据整理后绘制成如下统计图表进行分析.频数分布表组别销售数量频数频率〔件〕A20≤x<403B40≤x<607C60≤x<8013aD80≤x<100m4E100≤x<120合计b1请根据以上信息,解决以下问题:〔1〕频数分布表中,a、b;2〕补全频数分布直方图;(3〕如果该季度销量不低于80件的销售人员将被评为“优秀员工〞,试估计该季度被评为“优秀员工〞的人数.24.〔此题总分值10分〕如图,在Rt△ABC中,ACB为直径的eO分别交AC、BC于点M、N,过点,CD是斜边AB上的中线,以CDN作NE AB,垂足为E.〔1〕假设eO的半径为5,AC6,求BN的长;2〔2〕求证:NE与eO相切.25.〔此题总分值10分〕如图①是一矩形纸片,按以下步骤进行操作:〔Ⅰ〕将矩形纸片沿DF 折叠,使点A落在CD边上点E处,如图②;〔Ⅱ〕在第一次折叠的根底上,过点C 再次折叠,使得点B落在边CD上点B处,如图③,两次折痕交于点O;〔Ⅲ〕展开纸片,分别连接OB、OE、OC、FD,如图④.图①图②图③图④【探究】1〕证明:△OBC≌△OED;〔2〕假设AB8,设BC为x,OB2为y,求y关于x的关系式.〔此题总分值12分〕【生活观察】甲、乙两人买菜,甲习惯买一定质量的菜,乙习惯买一定金额的菜,两人每次买菜的单价相同,例如:第一次:菜价3元/千克质量金额甲1千克3元乙1千克3元第二次:菜价2元/千克质量金额甲1千克元乙千克3元〔1〕完成上表;〔2〕计算甲两次买菜的均价和乙两次买菜的均价.〔均价总金额总质量〕【数学思考】设甲每次买质量为m千克的菜,乙每次买金额为n元的菜,两次的单价分别是a元/千克、b元/千克,用含有m、n、a、b的式子,分别表示出甲、乙两次买菜的均价x甲、x乙,比拟x甲、x乙的大小,并说明理由.【知识迁移】某船在相距为s的甲、乙两码头间往返航行一次.在没有水流时,船的速度为v,所需时间为t1;如果水流速度为p时〔p<v〕,船顺水航行速度为〔v p〕,逆水航行速度为〔v p〕,所需时间为t2.请借鉴上面的研究经验,比拟t1、t2的大小,并说明理由.27.〔此题分14分〕如下图,二次函数ykx2kx k2 12的图象与一次函数y的图象交于A、B两点,点B在点A的右侧,直线AB分别与x、y轴交于C、D两点,其中k<0.〔1〕求A、B两点的横坐标;〔2〕假设△OAB是以OA为腰的等腰三角形,求k的值;〔3〕二次函数图象的对称轴与x轴交于点E,是否存在实数k,使得ODC2BEC,假设存在,求出k的值;假设不存在,说明理由.2021年市中考数学答案解析一、选择题【答案】C【解析】由数轴可知,点A表示的数在0与2之间,应选 C.【考点】数轴的意义【答案】B【解析】选项A仅是轴对称图形;选项B既是轴对称图形,又是中心对称图形;选项C仅既不是中心对称图形;选项D既不是中心对称图形,也不是轴对称图形;应选B.【考点】轴对称图形,中心对称图形的意义【答案】A【解析】由题意,得x2≥0,解得x≥2,应选A.【考点】二次根式有意义的条件【答案】D【解析】Q点D、E分别是△ABC的边BA、BC的中点,AC3,DE 1AC3,应选22D.【考点】三角形的中位线定理【答案】C 【解析】从正面观察物体,看到3列,从左到右第1列有一层,第2列有两层,第三列有一层,故主视图有3列,从左到右第1列有一个正方形,第2列有2个正方形,第3列有1个正方形,应选 C.【考点】主视图的意义6.【答案】B【解析】a5a2a52a7,选项A不正确;a3aa31a2,选项B正确;2aa21a3a,选项C不正确;a23a23a6,选项D不正确,应选B.【考点】幂的运算法那么以及合并同类项法那么【答案】C【解析】1400000106,应选C.【考点】科学记数法的意义【答案】A【解析】Qb24ac k2 4 i (2) k28 0,关于x的一元二次方程x2kx 20有两个不相等的实数根,应选 A.【考点】一元二次方程的根的判别式二、填空题【答案】50【解析】Qa∥b,150,2150.【考点】平行线的性质【答案】(x1)(x1)【解析】x2 1 (x 1)(x1)11.【考点】运用平方差公式因式分解1【答案】2【解析】扇形中一共有6个形状相同的扇形,其中3个扇形含有阴影,P〔指针落在阴影部3 1分〕.6212. 【考点】等可能条件下的概率【答案】乙【解析】Q >2>2这5次短跑训练成绩较稳定的是乙.,即s 甲 s 乙,【考点】方差的意义【答案】1【解析】Qx 1,x 2是方程x 2 3x 20的两个根, x 1x 23,x 1x 2 2,x 1 x 2 x 1x 2 3 2 1.【考点】一元二次方程根与系数的关系【答案】155【解析】如下图,连接OA 、OB 、AE .? 为50 ,AOB50.BEA 1 AOB25.QAB2Q四边形ACDE 是eO的 接 四 边 形 ,C AED180, 即CDEB BEA 180.C DEB 180 BEA 180 25155【考点】圆的根本性质【答案】2【解析】如下图,过点A 作AD BC 于点D ,那么 ADC 90.在Rt △ACD 中,Q C 45,DAC 90C 904545.DACC .AD CD .设ADCDx ,在Rt △ACD 中,由勾股定理得 AC AD 2 CD 2 x 2x 4 2x .QAB2AC ,AB 22x 2x .在Rt △ACD 中,由勾股定理得 B D AB 2 AD 2 (2x)2 x 23x ,BC BD CD 3x x (31)x .QBC6 22 3 1,(31)x2(31) .解得x2. AC 2.16. 【考点】解三角形【答案】y 1x13【解析】在y2x 1中,当x 0时,y1;当y1 0时,x.21 , OA1 1.B(0,1),A,0,OB22如下图,过A 作AD AB 交BC 于点D ,过点D 作DEx 轴于点E .QAOB90,OABOBA90,EADOBA .在Rt △ABD 中,Q ABD 45, ADB 90 ABD 90 45 45.ABDADB .AB AD .在△OAB 与.△EDA 中,AOB A ED, OBAE AD, AB AD,△OAB ≌△EDA .AE OB 1,DE1OA.2OE OA AE1 1 3 .22D3,1.22设真线BC 的函数表达式为y kx b .把B0,1、D3 , 1代入,得2 21 b13kb.22解得k1 1,,b3直线BC 的函数装达式为 y 1x 1.3【考点】一次函数图像的旋转及解析式的求解三、解答题17.【答案】解:原式21212.【解析】解题的关键是掌握绝对值、零次籍、算术平方根、特殊角的三角函数等知识.先分别计算出绝对值、零次、算术平方根、特殊角的三角函数,然后再进行加减运算.【考点】实数的运算x>①12,18.【答案】解:≥1②2x3x.2由①得x>1,由②得x≥2,不等式组的解集为x>1.【解析】解题的关键是正确求解不等式组的解集,先分别解出不等式组中每个不等式的解集,再确定出各个解集的公共局部.【考点】一元一次不等式组的解法19.【答案】解:〔1〕把B m,2代入y x1,得2m1,解得m1.B1,2.把B1,2代入y k k2.,得2,kx12反比例函数表达式为y.x〔2〕在y x 1中,当x0时,y1,A0,1.OA 1.又QB1,2,如下图,过点B作BC y轴于点C,那么BC1,S△AOB 1OAgBC1111. 222【解析】解题的关键是掌握待定系数法.〔1〕先将点B的坐标代入一次函数关系式,求出横坐标m的值,再将点B的坐标代入反比例函数关系式,求出k的值,从而得到反比例函数关系式;2〕先求出点A的坐标,再过点B作△OAB的边OA上的高,由点A、B的坐标确定出OA长、及OA边上的高的长,最后求出△OAB的面积.【考点】反比例函数,一次函数以及待定系数法【答案】〔1〕解:Q布袋中有2个红球,1个白球,一共有3个球,P〔摸出一个球是红球〕2 . 3〔2〕给红球标号:红1,红2,用表格列出所有可能出现的结果如下:由表格可知,一共有6种可能出现的结果,它们是等可能的,其中两次都摸到红球的有2种,21P〔两次都摸到红球〕.63【解析】解题的关键是用列表法或树状图法列出所有的等可能事件.【考点】等可能条件下的概率21.【答案】解:〔1〕如图1,直线EF即为所求作的垂直平分线;〔2〕菱【解析】解题的关键是握根本的尺规作图和判定菱形的方法.1〕利用作垂直平分线的尺规作图方法作图即可;2〕先证明四边形AEDF是平行四边形,再根据邻边相等〔或对角线互相垂直〕判别出四边形AEDF为菱形.理由如下:如图2,连接ED,FD,QEF是AD的垂直平分线,AE ED,EAD EDA,又QAD是△ABC的角平分线,EAD FAD,EDA FAD,ED∥AF.四边形AEDF为菱形.【考点】尺规作图,菱形的判定22.【答案】解:〔1〕设每只A型球的质量为x千克,每只B型球的质量为y千克.x y7,根据题意,得3x y13,x3,解得y 4.答:每只A型球的质量为3千克,每只B型球的质量为4千克.〔2〕设A型球有a只,B型球有b只.根据题意,得3a4b17,174b a.3Qa0,174b>0.3解得b<17. 4由题意知a、b为正整数,b的正整数解为1,2,3,4.当b1时,a 174113〔不是整数,舍去〕;33当b2时,a17423〔符合题意〕;3当b3时,a17435〔不是整数,舍去〕;33当b4时,a17441〔不是整数,舍去〕.3350答:A型球有3只,B型球有2只.【解析】解题的关键是列出二元一次方程组和二元一次方程.〔1〕根据两个相等关系“1只A型球与1只B型球的质盘共7千克〞“3只A型球与1只B型球的质量共13千克〞列二元一次方程组求解;〔2〕根据相等关系“A型球、B型球的质量共17千克〞列二元一次方程,再求它的正整数解.【考点】二元一次方程组的应用,二元一次方程的应用【答案】〔1〕〔2〕如下图.〔3〕解:由频数分布表可知,该季度销量不低于80件的销售人员在D、E两组,这两组的频率分别为,0.08.估计该季度被评为“优秀员工〞的人数为400〔〕216〔人〕.答:估计该季度有216人被评为“优秀员工〞.【解析】解题的关键是识别出图表中相关联的数据.〔1〕根据“各组频率之和等于1〞得a1.根据“频数总数频率〞可知,假设选择A组,那么3b,解得b50.〔2〕根据“各组频数之和等于总数〞,又由〔1〕知总数为50,所以m50 3 7 13 423.据此可补全频数分布直方图.〔3〕由频数分布表可知,该季度销量不低于80件的销售人员在D、E两组,用这两组的频率之和乘以总人数即可求解.【考点】频数分布直方图,统计表,频率以及用样本估计总体【答案】〔1〕如图1所示,连接DM、DN.Q ACB 90,CD是斜边AB的中线,CD AD BD.QCD是eO的直径,DMC DNC 90.又QACB90,四边形CMDN是矩形..CM DN.QDMC90,DM AC.又QCD AD,CM 1AC163. 22DN3.QeO的半径为5,BDCD5.2在Rt△BDN中,由勾股定理得BN BD2ND252324.〔2〕如图2所示,连接ON、DN,由〔1〕知CD BD,CND 90,BN CN.又QOCOD,ON∥BD.又QNEDB,NEON.NE与eO相切.【解析】解题的关键是掌握团的根本性质以及切线的判定方法.〔1〕连接DM、DN.由CD是Rt△ABC斜边AB上的中线可得△ACD、△BCD是等腰三角形.由CD是直径及ACB90可得四边形CMDN是矩形,在△ACD中利用“三线合一〞得到CM长为AC的1,进面得到ND的长.由△BCD是等腰三角形及eO的半径为5可22得BD长,最后在Rt△BDN中利用勾股定理求得BN的长;〔2〕连接ON,先在等腰三角形BCD利用“三线合一〞证明点N为BC的中点,再在△BCD 中利用三角形的中位线定理证明ON∥BD,再结合条件NEAB证出ONNE,从而得到NE与eO相切.【考点】圆周角定理的推论,直角三角形斜边上中线的性质,勾股定理以及切线的判定【答案】〔1〕证明:连接EF.Q四边形ABCD是矩形,AD BC,ABC BCD ADE D AF 90.由折叠得DEF DAF,AD DE,DEF 90.又Q ADE D AF 90,四边形ADEF是矩形.又QAD DE,四边形ADEF是正方形.AD EF DE,FDE 45.QAD BC,BC DE.由折叠得BCO DCO 45.BCO DCO FDE.BC,DE在△OBC与△OED,BCO FDE,OC,OD△OBC△OED SAS.〔2〕解:如图2所示.连接EF、BE.Q四边形ABCD是矩形,.CDAB8.由〔1〕知,BC DE,QBC x,DE=x.CE8x.由〔1〕知△OBC△OED,OB OE,OED0BC.QOED0EC180,在四边形OBCE中,BCE90,BCE OBC OEC BOE360,BOE90.在Rt△OBE中,OB2OE2BE2.在Rt△BCE中,BC2EC2BE2.OB2OE2BC2CE2.QOB2y,y y x282 x.y x 2 8x 32,即y 关于x 的关系式为 y x 2 8x32.【解析】解题的关键是掌握折叠的性质以及正方形的性质.〔1〕连接EF .由折叠知BCODCOFDE45.所以OCOD .由第一次折叠知四边形 ADEF 是正方形,结合四边形 BCEF 是矩形得BCEFDE .26.利用“SAS 〞证得△OBC △OED .2〕连接BE .先由〔1〕中结论△OBC △OED 得到OBOE ,再在Rt △BCE 、Rt △BOE 分别利用勾股定理表示 BE 2列出等式,最后用含 x 、y 的代数式表示该等式中的线段长,从而得到y 与x 的关系式.【考点】翻折变换,全等三角形的判定与性质,正方形的判定以及勾股定理【答案】解:【生活观察】〔1〕2〔2〕甲两次买菜的均价为3 2〔元/千克〕;11乙两次买菜的均价为 3 31〔元/千克〕〕【数学思考】 x 甲≥x 乙 .理由是:am bm ab , x 乙n n2n2ab ,甲Qxm2 n nn(ba) abma bab甲乙ab 2ab (ab)2 4ab (ab)2 .xx2ab2(a b)2(a b)2Qa >0,b >0,a b≥0,(a b) 22(a≥0,b)即x 甲x 乙≥0.x 甲≥x 乙.t 1<t 2 s s 2s 【知识迁移】 .理由是:Qt 1v.v vt2v s s s(v p)s(v p)2sv. p vp(v p)(v p)v2p2t1t22s2sv2sv2p22sv22sp2vv2p2vv2p2vv2.p2 Qs>0,p>0,v0,v p,Q2sp20,即t1t2>0.2p2vvt1<t2.【解析】解题的关键是正确列出代数式,并掌握代数式大小比拟的方法.【生活观察】〔1〕由第二次的表格可知,菜价2元/千克,所以质量为1千克时,金额为2元;金额为3元时,质量为千克;〔2〕利用“均价总金额总质量〞求解.【数学思考】先用含a、b、m、n的代数式分别表示出x甲、x乙,再利用“作差法〞比拟大小.【知识迁移】先用含s、v、p的代数式分别表示出t1、t2,再利用“作差法〞比拟大小.【考点】列代数式,平均数,分式的计算以及分式的实际应用27.【答案】解:〔1〕将方程组y k(x22消去y,得kx12kxk21)2y kx k2k(x 1)(x 2)0.Qk0,x10或x20.x1或2.Q点B在点A的右侧,点A的横坐标为1,点B的横坐标为2.〔2〕在ykx k2中,当x1时,y kxk22;当x 2时,y kx k 2 k 1 2.A1,2,B2,k 2.当OA OB且B在x轴上方时,如图1所示,过点A作AM y轴于点M,过点B作BN x轴于点N,那么AMO BNO90.QA1,2,B2,k2,AM1,OM2,ON2,BNk2.OM ON.在Rt△OAM和Rt△OBN中,OA,Rt△OAM Rt△OBN.OBOM ON,AM BN.1k2.解得k1,满足k<0,k1符合题意.当OA OB且B在x轴下方时,如图2所示,过点A作AM y轴于点M,过点B作BN x轴.同理可得Rt△OAM Rt△OBN.BN AM1,k11,解得k3,满足k<0,k3符合题意.当OA OB时,如图3所示,过点A作AP y轴于点P,过点B作BQPQ交PA的延长线于点Q.QA〔12,〕,B2,k2,AP 1,OP2,Q〔2,2〕.AQ 2 11.AP AQ.在Rt△APO与Rt△AQB中,Rt△APO Rt△AQB.BQ OP 2.OA AB,AP AQ,QQ2,2,B2,k 2,BQ 2 k 2k.k 2,满足k<0,.k2符合题意.综上所述,k的值为1或2或3.〔3〕当点B在x轴上方时,如图4所示,过点B作BG x轴于点G,在线段EG取点H,使得BH EH.BEC E BH,BHC BEC E BH 2BEC.Q ODC 2BEC,BHC ODC.又Q OCD HCB,.△ODC:△BHC.HBC DOC 90.设EHBHm.由〔2〕知B2,k2,BG k 2.2由y〔kx1〕2知对称轴为直线x 1.E〔10,〕.EG211.HG1m.在Rt△BHG中,由勾股定理得BH2HG2BG2.m2(1m)2(k2)2m1k22k5.22HG1k22k3.22在y kx k2中,当y0k2时,x.kC k2,0,kGC k22k2.k kQ HBC BGC90,BHG HBG HBG GBC.又QHGBCGB90,△GHB:△GBC.GB2GHgGC.(k2)21k22k3g k2,即(k2)21k22k3g k2.22k22k QBH>0,〔否那么BEC0不符合题意〕,k2>0.k21k22k31.22k解得k3.Qk<0,k3.当点B在x轴下方时,如图5所示.同理可求BG〔k2〕,k2 GC,1k23kGH2k.22同理求证BG2GHgGC.[(k2)]21k22k3g k2.22k Qk 20,k21k22k3g1.22k47.解得k3Qk<0,k2<0,47k.3综上,k的值为3或47.3【解析】解题的关键是分类讨论以及构造二倍的角.〔1〕方程k(x1)22kx k2的根就是点A、B的横坐标;〔2〕分OA OB、OA AB两种情形求解,每种情形作x、y轴的平行线构造三角形,证明三角形全等,将OA OB〔或OA AB〕转化为“横平竖直〞的线段间关系,进而转化为点的坐标之间的关系,从而求得k的值;〔3〕先构造出BEC的2倍角,然后寻找BEC的2倍角与ODC所在三角形之间的关系,得到BEC的2倍角所在的三角形是直角三角形,进而过点B作x轴的垂线得到相似三角形,利用相似三角形的对应边成比例列方程求解.需要注意的是:要按点B在x轴上方和点B在x轴下方两种情形求解.【考点】二次函数的图像与性质,一次函数的图像与性质,等腰三角形,相似三角形的判定与性质以及数形结合思想。

2024年江苏省盐城市中考数学试卷正式版含答案解析

2024年江苏省盐城市中考数学试卷正式版含答案解析

绝密★启用前2024年江苏省盐城市中考数学试卷学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,本试卷和答题卡一并交回。

第I卷(选择题)一、选择题:本题共8小题,每小题3分,共24分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.有理数2024的相反数是( )A. 2024B. −2024C. 12024D. −120242.下列四幅图片中的主体事物,在现实运动中属于翻折的是( )A. 工作中的雨刮器B. 移动中的黑板C. 折叠中的纸片D. 骑行中的自行车3.下列运算正确的是( )A. a6÷a2=a4B. 2a−a=2C. a3⋅a2=a6D. (a3)2=a54.盐城是江苏省第一产粮大市.2023年全市小麦总产量约2400000吨,数据2400000用科学记数法表示为( )A. 0.24×107B. 24×105C. 2.4×107D. 2.4×1065.正方体的每个面上都有一个汉字,如图是它的一种平面展开图,那么在原正方体中,与“盐”字所在面相对的面上的汉字是( )A. 湿B. 地C. 之D. 都6.小明将一块直角三角板摆放在直尺上,如图,若∠1=55∘,则∠2的度数为( )A. 25∘B. 35∘C. 45∘D. 55∘7.矩形相邻两边长分别为√ 2cm、√ 5cm,设其面积为Scm2,则S在哪两个连续整数之间( )A. 1和2B. 2和3C. 3和4D. 4和58.甲、乙两家公司2019∼2023年的利润统计图如下,比较这两家公司的利润增长情况( )A. 甲始终比乙快B. 甲先比乙慢,后比乙快C. 甲始终比乙慢D. 甲先比乙快,后比乙慢第II卷(非选择题)二、填空题:本题共8小题,每小题3分,共24分。

2022年江苏省盐城市中考数学试卷原卷附解析

2022年江苏省盐城市中考数学试卷原卷附解析

2022年江苏省盐城市中考数学试卷原卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.夜晚在亮有路灯的路上,若想没有影子,你应该站的位置是()A.路灯的左侧B.路灯的右侧C.路灯的下方D.以上都可以2.若α是锐角,且sinα=34,则()A.60°<a<90°B. 45°<α<60°C. 30°<α<45°D.0°<a<30°3.如图,AB切⊙O于B,割线ACD经过圆心O,若∠BCD=70°则∠A的度数为()A.20°B.50°C.40°D.80°4.给出下列四个事件:(1)打开电视,正在播广告;(2)任取一个负数,它的相反数是负数;(3)掷一枚均匀的骰子,骰子停止转动后偶数点朝上;(4)取长度分别为2,3,5的三条线段,以它们为边组成一个三角形.其中不确定事件是()A.(1)(2)B.(1)(3)C.(2)(3)D.(2)(4)5.如图,AB、CD 是⊙O的两条直径,∠1≠∠2,则图中相等的弧(半圆除外)共有()A.8对B.6 对C.4对D.2 对6.王京从点O出发.先向西走40米,再向南走30米,到达点M.如果点M的位置用(-40,-30)表示,从点M继续向东走50米,再向北走50米,到达点N,那么点N的坐标是()A.(-l0,10)B.(10,-l0)C.(10,-20)D.(10,20)7.如图,一只小狗在方砖上走来走去,则最终停在阴影方砖上的概率是()A.415B.13C.15D.2158.下面每组图形中的两个图形不是通过相似变换得到的是()9.c b a 、、是△ABC 的三边,且bc ac ab c b a ++=++222,那么△ABC 的形状是( ) A .直角三角形B .等腰三角形C .等腰直角三角形D .等边三角形10.将叶片图案旋转l80°后,得到的图形是( )11.如图所示,已知∠1=∠2,AD=CB ,AC ,BD 相交于点0,MN 经过点O ,则图中全等三角形的对数为( ) A .4对B .5对C .6对D .7对12.下列图形中.成轴对称图形的是 ( )13.“羊”字象征着美好和吉祥,下列图案都与“羊”字有关,其中轴对称图形的个数是 ( )A .1个B .2个C .3个D .4个二、填空题14.如图,⊙O 的半径为4cm ,直线l ⊥OA ,垂足为O ,则直线l 沿射线OA 方向平移________cm 时与⊙O 相切.15.如图是两棵小树在同一时刻的影子,请问它们的影子是在 灯光 光线下形成的.(填“太阳”或“灯光”)16.某青年棒球队14名队员的年龄如下表:1年龄(岁)192021221人数(人)3722则出现次数最多的年龄是.17.如图,在△ABC中,∠A=80°,BD=BE,CD=CF,则∠EDF .18.在存折中有 3000 元,取出 2600 元,又存入500 元后,如果不考虑利息,存折中还有元.19.聪明的小明借助谐音用阿拉伯数字戏说爸爸舅舅喝酒:81979,87629,97829,8806,9905,98819,54949(大意是:爸邀舅吃酒,爸吃六两酒,舅吃八两酒,爸爸动怒,舅舅动武,舅把爸衣揪,误事就是酒),请问这组数据中,数字9出现的频率是.三、解答题20.如图,AB为⊙O的直径,P为AB的延长线上一点,PT切⊙O于T,若PT=6,PB=3,求⊙O的直径.21.如图①,在矩形 ABCD 中,AB =20 cm,BC=4 cm,点 P从A 开始沿折线A B C D---以 4 cm/s 的速度移动,点Q从C开始沿 CD 边以 1 cm/s 的速度移动,如果点P、Q分别从A、C 同时出发,当其中一点到达 D 时,另一点也随之停止运动,设运动时间为 t(s).(1)t 为何值时,四边形 APQD 为矩形?(2)如图②,如果⊙P 和⊙Q 的半径都是2 cm,那么t为何值时,OP 与⊙Q外切?图1图222.武当山风景管理区,为提高游客到某景点的安全性,决定将到达该景点的步行台阶进行改善,把倾角由44减至32,已知原台阶AB 的长为5米(BC 所在地面为水平面). (1)改善后的台阶会加长多少?(精确到0.01米) (2)改善后的台阶多占多长一段地面?(精确到0.01米)23.如图,已知点 A .B 和直线l ,求作一圆,使它经过A 、B 两点,且圆心在直线l 上.24.在△ABC 中,P 是BC 上一动点,过点P 作PE ∥AC 交AB 于点E ,过点P 作PF ∥AB 交AC 于点F ,当点P 运动到什么位置时,四边形AEPF 是菱形?25.两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B C E ,,在同一条直线上,连结DC .(1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母);(2)证明:DC BE .26.如图所示是小孔成像原理的示意图,你能根据图中所标的尺寸求出在暗盒中所成像的 高度吗?说说其中的道理...lB A27.为了了解某校七年级学生的视力情况,抽测了一批同学的视力,检测结果如下表:视力情况差中良优合计人数(人)7203百分比(%)1410028.在一次美化校园的活动中,老师安排32人除草,20人植树.后来发现人手不够,就增派20人去支援,并且使除草的人数是植树人数的2倍.问:增派的20人中,支援除草的有多少人?29.下列表述中字母各表示什么?(1)正方形的面积为2a;(2)买 5 斤桔子需5a元钱;(3)七年级甲班有40 人,乙班人数为40x 人.30.文明于世的埃及字塔、形似方锥,大小各异,这些金字塔的高与底面边长的比都接近于黄金比,胡夫金字塔是埃及现存规模最大的金字塔,破喻为“世界古代七大奇观之一”,底面呈正方形,每边长约为230m.请估计该金字塔的高度(精确到1 m).【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.B3.B4.B5.C6.D7.B8.D9.D10.D11.C12.D13.B二、填空题 14. 415.灯光16.20岁17.50°18.90019.31三、解答题 20. 921.(1)当四边形 APQD 为矩形时,DQ=AP,20-t=4t,t=4(s)(2)∵r=2,∴当 PQ=4 时,⊙P 与⊙Q 外切,即四边形APQD 为矩形 20-t=4t,t=4(s).22.解:(1)如图,在Rt ABC △中,sin 445sin 44 3.473AC AB ==≈.在Rt ACD △中,3.4736.554sin 32sin 32AC AD ==≈, 6.5545 1.55AD AB ∴-=-≈.即改善后的台阶会加长1.55米. (2)如图,在Rt ABC △中,cos 445cos 44 3.597BC AB ==≈.在Rt ACD △中,3.4735.558tan 32tan 32AC CD ==≈,5.558 3.597 1.96BD CD BC ∴=-=-≈. 即改善后的台阶多占1.96米长的一段地面.23.画AB 的垂直平分线与直线l 的交点就是圆心,图略.24.P 运动到∠A 的平分线与BC 的交点25.(1)解:图2中ABE ACD △≌△. 证明如下:ABC △与AED △均为等腰直角三角形, AB AC ∴=,AE AD =,90BAC EAD ∠=∠=.BAC CAE EAD CAE ∴∠+∠=∠+∠,即BAE CAD ∠=∠,ABE ACD ∴△≌△.(2)证明:由(1)ABE ACD △≌△知45ACD ABE ∠=∠=,又45ACB ∠=,90BCD ACB ACD ∴∠=∠+∠=,DC BE ∴⊥.26.3 cm ,理由略27.表中依次填:20,50;40,40,628.设支援除草的有x 人,则支援植树的有(20—x )人, 由题意得322(40)x x +=- ,x=16,∴支援除草的有16 人.29.(1)a 表示正方形的边长 (2)a 表示桔子的单价 (3)x 表示乙班比甲班多x 人30.设该金字塔的高度为 x (m).由题意得230x =,1)x =,142x ≈ 答:该金字塔高度约为 142 m .。

盐城中考数学试题及答案

盐城中考数学试题及答案

盐城中考数学试题及答案第一部分选择题1.已知函数y=2x+3,该函数的图像经过点(1,5),则x=____。

A. 1B. 2C. 3D. 4答案:A2.已知平行四边形ABCD中,AB=6cm,BC=8cm,角A的度数为60°,则BD的长度为____。

A. 3cmB. 5cmC. 7cmD. 9cm答案:B3.三角形ABC中,AB=AC,角B=30°,则角A的度数为____。

A. 30°B. 60°C. 90°D. 120°答案:B4.化简√(18+2√32)的值是____。

A. √2B. √3C. 2√2D. 4√2答案:D5.已知等差数列{an}的公差为2,首项为3,若a5=9,则a10的值为____。

A. 13B. 15C. 17D. 19答案:C第二部分解答题1. 计算直角三角形中,一直角的两条腿分别为5cm和12cm,斜边的长度为多少?解:根据勾股定理,斜边的长度可以通过计算得出:斜边= √(5^2 + 12^2) = √(25 + 144) = √169 = 13cm因此,斜边的长度为13cm。

2. 已知函数y=f(x)的图像上任意一点M的坐标为(x, f(x)),且点A(1,4)在图像上。

若函数经过原点O,则函数的解析式为什么?解:由已知条件可得:f(1) = 4又因为函数经过原点O,即f(0) = 0由此可知,函数经过两个点A(1,4)和O(0,0),可以确定一条直线。

设函数的解析式为y=f(x)=kx,其中k为常数。

代入点A得:4 = k * 1,解得k=4。

因此,函数的解析式为y=f(x)=4x。

3. 某饭店开业前三天的销售额分别为10万元、12万元和15万元。

若开业第四天的销售额为k万元,则四天的平均销售额是多少?解:四天的总销售额为10万元+12万元+15万元+k万元。

因为平均销售额等于总销售额除以天数,所以四天的平均销售额为:(10+12+15+k)/4 = (37+k)/4 万元。

江苏省盐城市2021年中考数学试题(解析版)

江苏省盐城市2021年中考数学试题(解析版)

盐城市二〇二一年初中毕业与升学考试数学试卷一、选择题1.2021-的绝对值是()A.12021 B.12021- C.2021- D.2021【答案】D【解析】【分析】根据绝对值的意义进行计算,再进行判断即可【详解】解:2021-的绝对值是2021;故选:D【点睛】本题考查了绝对值的意义,熟练掌握绝对值的性质是解题的关键2.计算:⋅2a a 的结果是()A.3a B.2a C.a D.22a 【答案】A【解析】【分析】利用同底幂乘法的运算法则计算可得【详解】+==2213a a a a ⋅故选:A【点睛】本题考查同底幂的乘法,同底幂的乘法法则和乘方的运算法则容易混淆,需要注意3.北京2022年冬奥会会徽如图所示,组成会徽的四个图案中是轴对称图形的是()A. B. C. D.【答案】D【解析】【分析】根据轴对称图形的定义判断即可【详解】A,B,C都不是轴对称图形,故不符合题意;D是轴对称图形,故选D.【点睛】本题考查了轴对称图形的定义,准确理解定义是解题的关键.4.如图是由4个小正方形体组合成的几何体,该几何体的主视图是()A.B.C.D.【答案】A【解析】【分析】根据从正面看得到的是主视图,由此可得答案.【详解】解:观察图形可知,该几何体的主视图是.故选:A .【点睛】本题考查了简单组合体的三视图,从正面看得到的是主视图.5.2020年12月30日盐城至南通高速铁路开通运营,盐通高铁总投资约2628000万元,将数据2628000用科学记数法表示为()A.70.262810⨯ B.62.62810⨯ C.526.2810⨯ D.3262810⨯【答案】B【解析】【分析】将小数点点在最左边第一个非零数字的后面确定a ,数出整数的整数位数,减去1确定n ,写成10n a ⨯即可【详解】∵2628000=62.62810⨯,故选B .【点睛】本题考查了绝对值大于10的大数的科学记数法,将小数点点在最左边第一个非零数字的后面确定a ,数出整数的整数位数,减去1确定n ,是解题的关键.6.将一副三角板按如图方式重叠,则1∠的度数为()A.45︒B.60︒C.75︒D.105︒【答案】C【解析】【分析】直接利用一副三角板的内角度数,再结合三角形外角的性质得出答案.【详解】解:如图所示:由题意可得,∠2=30°,∠3=45°则∠1=∠2+∠3=45°+30°=75°.故选:C .【点睛】此题主要考查了三角形的外角以及三角尺的特征,正确利用三角形外角的性质是解题关键.7.若12,x x 是一元二次方程2230x x --=的两个根,则12x x +的值是()A.2B.-2C.3D.-3【答案】A【解析】【分析】根据一元二次方程根与系数的关系解答即可.【详解】解:∵12,x x 是一元二次方程2230x x --=的两个根,∴12x x +=2.故选:A .【点睛】本题考查了一元二次方程根与系数的关系,属于基本题目,熟练掌握该知识是解题的关键.8.工人师傅常常利用角尺构造全等三角形的方法来平分一个角.如图,在AOB ∠的两边OA 、OB 上分别在取OC OD =,移动角尺,使角尺两边相同的刻度分别与点C 、D 重合,这时过角尺顶点M 的射线OM 就是AOB ∠的平分线.这里构造全等三角形的依据是()A.SASB.ASAC.AASD.SSS【答案】D【解析】【分析】根据全等三角形的判定条件判断即可.【详解】解:由题意可知,OC OD MC MD==在OCM ODM △和△中OC OD OM OM MC MD =⎧⎪=⎨⎪=⎩∴OCM ODM ≅△△(SSS )∴COM DOM∠=∠∴OM 就是AOB ∠的平分线故选:D【点睛】本题考查全等三角形的判定及性质、角平分线的判定、熟练掌握全等三角形的判定是关键.二、填空题9.一组数据2,0,2,1,6的众数为________.【答案】2【解析】【分析】根据众数的定义进行求解即可得.【详解】解:数据2,0,2,1,6中数据2出现次数最多,所以这组数据的众数是2.故答案为2.【点睛】本题考查了众数,熟练掌握众数的定义以及求解方法是解题的关键.10.分解因式:a 2+2a +1=_____.【答案】(a +1)2【解析】【分析】直接利用完全平方公式分解.【详解】a 2+2a +1=(a +1)2.故答案为()21+a .【点睛】此题考查了因式分解—运用公式法,熟练掌握完全平方公式是解本题的关键.11.若一个多边形的每一个外角都等于40°,则这个多边形的边数是_____.【答案】9【解析】【详解】解:360÷40=9,即这个多边形的边数是912.如图,在⊙O 内接四边形ABCD 中,若100ABC ∠=︒,则ADC ∠=________︒.【答案】80【解析】【分析】根据圆内接四边形的性质计算出18080ADC ABC ∠∠=︒-=︒即可.【详解】解:∵ABCD 是⊙O 的内接四边形,∠ABC =100°,∴∠ABC +∠ADC =180°,∴180********ADC ABC ∠∠=︒-=︒-︒=︒.故答案为80.【点睛】本题考查了圆内接四边形的性质、解题的关键是熟练掌握圆内接四边形的性质.13.如图,在Rt ABC 中,CD 为斜边AB 上的中线,若2CD =,则AB =________.【答案】4【解析】【分析】根据直角三角形斜边中线等于斜边的一半即可解决问题;【详解】解:如图,∵△ABC 是直角三角形,CD 是斜边中线,∴CD 12=AB ,∵CD =2,∴AB =4,故答案为4.【点睛】本题考查直角三角形的性质,解题的关键是记住直角三角形斜边上的中线等于斜边的一半.14.一圆锥的底面半径为2,母线长为3,则这个圆锥的侧面积为_______.【答案】6π【解析】【分析】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.【详解】解:该圆锥的侧面积=12×2π×2×3=6π.故答案为6π.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.15.劳动教育己纳入人才培养全过程,某学校加大投入,建设校园农场,该农场一种作物的产量两年内从300千克增加到363千克.设平均每年增产的百分率为x ,则可列方程为________.【答案】2300(1)363x +=【解析】【分析】此题是平均增长率问题,一般用增长后的量=增长前的量×(1+增长率),结合本题,如果设平均每年增产的百分率为x ,根据“粮食产量在两年内从300千克增加到363千克”,即可得出方程.【详解】解:设平均每年增产的百分率为x ;第一年粮食的产量为:300(1+x );第二年粮食的产量为:300(1+x )(1+x )=300(1+x )2;依题意,可列方程:300(1+x )2=363;故答案为:300(1+x )2=363.【点睛】本题考查了由实际问题抽象出一元二次方程中求平均变化率的方法.若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为a (1±x )2=b .16.如图,在矩形ABCD 中,3AB =,4=AD ,E 、F 分别是边BC 、CD 上一点,EF AE ⊥,将ECF △沿EF 翻折得EC F '△,连接AC ',当BE =________时,AEC ' 是以AE 为腰的等腰三角形.【答案】78或43【解析】【分析】对AEC ' 是以AE 为腰的等腰三角形分类讨论,当=AE EC '时,设BE x =,可得到4EC x =-,再根据折叠可得到=4EC EC x '=-,然后在Rt △ABE 中利用勾股定理列方程计算即可;当=AE AC '时,过A 作AH 垂直于EC '于点H ,然后根据折叠可得到=C EF FEC '∠∠,在结合EF AE ⊥,利用互余性质可得到BEA AEH =∠∠,然后证得△ABE ≌△AHE ,进而得到BE HE =,然后再利用等腰三角形三线合一性质得到EH C H '=,然后在根据数量关系得到14=33BE BC =.【详解】解:当=AE EC '时,设BE x =,则4EC x =-,∵ECF △沿EF 翻折得EC F '△,∴=4EC EC x '=-,在Rt △ABE 中由勾股定理可得:222AE BE AB =+即222(4)3x x -=+,解得:7=8x ;当=AE AC '时,如图所示,过A 作AH 垂直于EC '于点H ,∵AH ⊥EC ',=AE AC ',∴EH C H '=,∵EF AE ⊥,∴=90C EF AEC ''+︒∠∠,90BEA FEC +=︒∠∠∵ECF △沿EF 翻折得EC F '△,∴=C EF FEC '∠∠,∴BEA AEH =∠∠,在△ABE 和△AHE 中B AHE AEB AEH AE AE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△AHE (AAS ),∴BE HE =,∴=BE HE HC '=,∴12BE EC '=∵EC EC '=,∴12BE EC =,∴14=33BE BC =,综上所述,7483BE =或,故答案为:7483或【点睛】本题主要考查等腰三角形性质,勾股定理和折叠性质,解题的关键是分类讨论等腰三角形的腰,然后结合勾股定理计算即可.三、解答题17.计算:1011)3-⎛⎫+-- ⎪⎝⎭.【答案】2.【解析】【分析】根据负整数指数幂、0指数幂的运算法则及算术平方根的定义计算即可得答案.【详解】1011)3-⎛⎫+-- ⎪⎝⎭312=+-2=.【点睛】本题考查实数的运算,熟练掌握负整数指数幂、0指数幂的运算法则及算术平方根的定义是解题关键.18.解不等式组:311424x x x x -≥+⎧⎨-<+⎩【答案】1x 2≤<【解析】【分析】解一元一次不等式组,先求出不等式组中每一个不等式的解集,再找到解集的公共部分.【详解】311424x x x x -≥+⎧⎨-<+⎩①②解:解不等式①得:1≥x 解不等式②得:2x <在数轴上表示不等式①、②的解集(如图)∴不等式组的解集为12x ≤<.【点睛】本题考查了解一元一次不等式组,熟练解一元一次不等式是解题的关键,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解).19.先化简,再求值:21111m m m-⎛⎫+ ⎪-⎝⎭ ,其中2m =.【答案】1m +,3【解析】【分析】先通分,再约分,将分式化成最简分式,再代入数值即可.【详解】解:原式11(1)(1)1m m m m m -+-+=⋅-(1)(1) 1m m m m m-+=⋅-1m =+.∵2m =∴原式213=+=.【点睛】本题考查分式的化简求值、分式的通分、约分,正确的因式分解将分式化简成最简分式是关键.20.已知抛物线2(1)y a x h =-+经过点(0,3)-和(3,0).(1)求a 、h 的值;(2)将该抛物线向上平移2个单位长度,再向右平移1个单位长度,得到新的抛物线,直接写出新的抛物线相应的函数表达式.【答案】(1)1a =,4h =-;(2)242y x x =-+【解析】【分析】(1)将点(0,3)-和(3,0),代入解析式求解即可;(2)将2(1)4y x =--,按题目要求平移即可.【详解】(1)将点(0,3)-和(3,0)代入抛物线2(1)y a x h =-+得:22(01)3(31)0a h a h ⎧-+=-⎨-+=⎩解得:14a h =⎧⎨=-⎩∴1a =,4h =-(2) 原函数的表达式为:2(1)4y x =--,向上平移2个单位长度,再向右平移1个单位长度,得:∴平移后的新函数表达式为:22(11)42=42y x x x =---+-+即242y x x =-+【点睛】本题考查了待定系数法确定解析式,顶点式的函数平移,口诀:“左加右减,上加下减”,正确的计算和牢记口诀是解题的关键.21.如图,点A 是数轴上表示实数a 的点.(1)用直尺和圆规在数轴上作出表示实数的的点P ;(保留作图痕迹,不写作法)(2a 的大小,并说明理由.【答案】(1)见解析;(2)a >,见解析【解析】【分析】(1,再利用圆规画圆弧即可得到点P .(2)在数轴上比较,越靠右边的数越大.【详解】解:(1)如图所示,点P 即为所求.(2)如图所示,点A 在点P 的右侧,所以a >【点睛】本题考查无理数与数轴上一一对应的关系、勾股定理、尺规作图法、熟练掌握无理数在数轴上的表示是关键.22.圆周率π是无限不循环小数.历史上,祖冲之、刘徽、韦达、欧拉等数学家都对π有过深入的研究.目前,超级计算机已计算出π的小数部分超过31.4万亿位.有学者发现,随着π小数部分位数的增加,0~9这10个数字出现的频率趋于稳定,接近相同.(1)从π的小数部分随机取出一个数字,估计数字是6的概率为________;(2)某校进行校园文化建设,拟从以上4位科学家的画像中随机选用2幅,求其中有一幅是祖冲之的概率.(用画树状图或列表方法求解)【答案】(1)110;(2)见解析,12【解析】【分析】(1)这个事件中有10种等可能性,其中是6的有一种可能性,根据概率公式计算即可;(2)画出树状图计算即可.【详解】(1)∵这个事件中有10种等可能性,其中是6的有一种可能性,∴数字是6的概率为110,故答案为:110;(2)解:画树状图如图所示:∵共有12种等可能的结果,其中有一幅是祖冲之的画像有6种情况.∴P (其中有一幅是祖冲之)61122==.【点睛】本题考查了概率公式计算,画树状图或列表法计算概率,熟练掌握概率计算公式,准确画出树状图或列表是解题的关键.23.如图,D 、E 、F 分别是ABC 各边的中点,连接DE 、EF 、AE .(1)求证:四边形ADEF 为平行四边形;(2)加上条件后,能使得四边形ADEF 为菱形,请从①90BAC ∠=︒;②AE 平分BAC ∠;③AB AC =,这三个条件中选择条件填空(写序号),并加以证明.【答案】(1)见解析;(2)②或③,见解析【解析】【分析】(1)先证明//EF AB ,根据平行的传递性证明EF //AD ,即可证明四边形ADEF 为平行四边形.(2)选②AE 平分BAC ∠,先证明DAE FAE ∠=∠,由四边形ADEF 是平行四边形ADEF ,得出AF EF =,即可证明平行四边形ADEF 是菱形.选③AB AC =,由//DE AC 且12DE AC =,AB AC =得出EF DE =,即可证明平行四边形ADEF 是菱形.【详解】(1)证明:已知D 、E 是AB 、BC 中点∴//DE AC又∵E 、F 是BC 、AC 的中点∴//EF AB∵//DE AF∴EF //AD∴四边形ADEF 为平行四边形(2)证明:选②AE 平分BAC∠∵AE 平分BAC∠∴DAE FAE∠=∠又∵平行四边形ADEF∴//EF DA∴=∠∠FAE AEF∴AF EF=∴平行四边形ADEF 是菱形选③AB AC=∵//EF AB 且12EF AB =//DE AC 且12DE AC =又∵AB AC =∴EF DE=∴平行四边形ADEF 为菱形故答案为:②或③【点睛】本题考查菱形的判定、平行四边形的性质及判定,熟练进行角的转换是关键,熟悉菱形的判定是重点.24.如图,O 为线段PB 上一点,以O 为圆心OB 长为半径的⊙O 交PB 于点A ,点C 在⊙O 上,连接PC ,满足2PC PA PB =⋅.(1)求证:PC 是⊙O 的切线;(2)若3AB PA =,求AC BC 的值.【答案】(1)见解析;(2)12【解析】【分析】(1)连接OC ,把2PC PA PB =⋅转化为比例式,利用三角形相似证明90PCO ∠=︒即可;(2)利用勾股定理和相似三角形的性质求解即可.【详解】(1)证明:连接OC∵2PC PA PB=⋅∴PC PB PA PC=,又∵∠P =∠P ,∴PAC PCB∽∴PAC PCB =∠∠,PCA PBC∠=∠∵PCO PCB OCB∠=∠-∠∴PCO PAC OCB∠=∠-∠又∵OC OB=∴OCB OBC∠=∠∴PCO PAC ABC ACB∠=∠-∠=∠已知C 是O 上的点,AB 是直径,∴90ACB ∠=︒,∴90PCO ∠=︒∴AC PO ⊥,∴PC 是圆的切线;(2)设AP a =,则3AB a =, 1.5r a=∴ 1.5OC a=在Rt △PCO 中∵ 2.5OP a =, 1.5OC a =,∴2PC a=已知PAC PCB ∽,AC PA BC PC =∴12AC BC =.【点睛】本题考查了切线的判定,三角形相似的判定和性质,勾股定理,熟练掌握切线的判定方法,灵活运用三角形相似的判定证明相似,运用勾股定理计算是解题的关键.25.某种落地灯如图1所示,AB 为立杆,其高为84cm ;BC 为支杆,它可绕点B 旋转,其中BC 长为54cm ;DE 为悬杆,滑动悬杆可调节CD 的长度.支杆BC 与悬杆DE 之间的夹角BCD ∠为60︒.(1)如图2,当支杆BC 与地面垂直,且CD 的长为50cm 时,求灯泡悬挂点D 距离地面的高度;(2)在图2所示的状态下,将支杆BC 绕点B 顺时针旋转20︒,同时调节CD 的长(如图3),此时测得灯泡悬挂点D 到地面的距离为90cm ,求CD 的长.(结果精确到1cm ,参考数据:sin 200.34︒≈,cos 200.94︒≈,tan 200.36︒≈,sin 400.64︒≈,cos 400.77︒≈,tan 400.84︒≈)【答案】(1)点D 距离地面113厘米;(2)CD 长为58厘米【解析】【分析】(1)过点D 作DF BC ⊥交BC 于F ,利用60°三角函数可求FC ,根据线段和差FA AB BC CF =+-求即可;(2)过点C 作CG 垂直于地面于点G ,过点B 作BN CG ⊥交CG 于点N ,过点D 作DM CG ⊥交CG 于点M ,可证四边形ABGN 为矩形,利用三角函数先求cos20CN BC =⨯︒50.76(cm)≈,利用MG 与CN 的重叠部分求6(cm)MN =,然后求出CM ,利用三角函数即可求出CD .【详解】解:(1)过点D 作DF BC ⊥交BC 于F ,∵60FCD ∠=︒,90CFD ∠=︒∴cos60FC CD =⨯︒,1502=⨯,25(cm)=,∴845425113(cm)FA AB BC CF =+-=+-=,答:点D 距离地面113厘米;(2)过点C 作CG 垂直于地面于点G ,过点B 作BN CG ⊥交CG 于点N ,过点D 作DM CG ⊥交CG 于点M ,∴∠BAG =∠AGN =∠BNG =90°,∴四边形ABGN 为矩形,∴AB =GN =84(cm),∵54(cm)BC =,将支杆BC 绕点B 顺时针旋转20︒,∴∠BCN =20°,∠MCD =∠BCD -∠BCN =40°,∴cos20CN BC =⨯︒,540.94=⨯,50.76(cm)=,∴CG =CN +NG =50.76+84=134.76(cm),∴50.7690134.766(cm)MN CN MG CG =+-=+-=,∵6(cm)MN =,∴44.76(cm)CM CN MN =-=,∵44.76(cm)CM =,∴cos40CD CM =÷︒,44.760.77=÷,58(cm)≈,答:CD 长为58厘米.【点睛】本题考查解直角三角形应用,矩形的判定与性质,掌握锐角三角函数的定义,矩形判定与性质是解题关键.26.为了防控新冠疫情,某地区积极推广疫苗接种工作,卫生防疫部门对该地区八周以来的相关数据进行收集整理,绘制得到如下图表:该地区每周接种疫苗人数统计表周次第1周第2周第3周第4周第5周第6周第7周第8周接种人数(万人)710121825293742该地区全民接种疫苗情况扇形统计图A :建议接种疫苗已接种人群B :建议接种疫苗尚未接种人群C :暂不建议接种疫苗人群根据统计表中的数据,建立以周次为横坐标,接种人数为纵坐标的平面直角坐标系,并根据以上统计表中的数据描出对应的点,发现从第3周开始这些点大致分布在一条直线附近,现过其中两点(3,12)、(8,42)作一条直线(如图所示,该直线的函数表达式为66y x =-),那么这条直线可近似反映该地区接种人数的变化趋势.请根据以上信息,解答下列问题:(1)这八周中每周接种人数的平均数为________万人:该地区的总人口约为________万人;(2)若从第9周开始,每周的接种人数仍符合上述变化趋势.①估计第9周的接种人数约为________万人;②专家表示:疫苗接种率至少达60%,才能实现全民免疫.那么,从推广疫苗接种工作开始,最早到第几周,该地区可达到实现全民免疫的标准?(3)实际上,受疫苗供应等客观因素,从第9周开始接种人数将会逐周减少(0)a a >万人,为了尽快提高接种率,一旦周接种人数低于20万人时,卫生防疫部门将会采取措施,使得之后每周的接种能力一直维持在20万人.如果 1.8a =,那么该地区的建议接种人群最早将于第几周全部完成接种?【答案】(1)22.5,800;(2)①48;②最早到13周实现全面免疫;(3)25周时全部完成接种【解析】【分析】(1)根据前8周总数除以8即可得平均数,8周总数除以所占百分比即可;(2)①将9x =代入66y x =-即可;②设最早到第x 周,根据题意列不等式求解;(3)设第x 周接种人数y 不低于20万人,列不等式求解即可【详解】(1)1(710121825293742)8+++++++=22.5,18022.5%800÷=故答案为:22.5,800.(2)①把9x =代入66,y x =-54648.y ∴=-=故答案为:48②∵疫苗接种率至少达到60%∴接种总人数至少为80060%480⨯=万设最早到第x 周,达到实现全民免疫的标准则由题意得接种总人数为180(696)(6106)(66)x +⨯-+⨯-+⋅⋅⋅+-∴180(696)(6106)(66)480x +⨯-+⨯-+⋅⋅⋅⋅⋅+-≥化简得(7)(8)100x x +-≥当13x =时,(137)(138)205100+-=⨯=∴最早到13周实现全面免疫(3)由题意得,第9周接种人数为42 1.840.2-=万以此类推,设第x 周接种人数y 不低于20万人,即42 1.8(8) 1.856.4y x x =--=-+∴ 1.856.420x -+≥,即1829x ≤∴当20x =周时,不低于20万人;当21x =周时,低于20万人;从第9周开始当周接种人数为y , 1.856.4,(920)20(21)x x y x -+≤≤⎧=⎨≥⎩∴当21x ≥时总接种人数为:18056.4 1.8956.4 1.81056.4 1.82020(20)800(121%)x +-⨯+-⨯+⋅⋅⋅+-⨯+-≥⨯-解之得24.42x ≥∴当x 为25周时全部完成接种.【点睛】本题考查的是扇形统计图的综合运用,平均数的概念,一次函数的性质,列不等式解决实际问题,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.27.学习了图形的旋转之后,小明知道,将点P 绕着某定点A 顺时针旋转一定的角度α,能得到一个新的点P '.经过进一步探究,小明发现,当上述点P 在某函数图像上运动时,点P '也随之运动,并且点P '的运动轨迹能形成一个新的图形.试根据下列各题中所给的定点A 的坐标和角度α的大小来解决相关问题.【初步感知】如图1,设(1,1)A ,90α=︒,点P 是一次函数y kx b =+图像上的动点,已知该一次函数的图像经过点1(1,1)P -.(1)点1P 旋转后,得到的点1P'的坐标为________;(2)若点P '的运动轨迹经过点2(2,1)P ',求原一次函数的表达式.【深入感悟】(3)如图2,设(0,0)A ,45α=︒,点P 反比例函数1(0)y x x=-<的图像上的动点,过点P '作二、四象限角平分线的垂线,垂足为M ,求OMP ' 的面积.【灵活运用】(4)如图3,设A (1,3)-,60α=︒,点P 是二次函数21372y x =++图像上的动点,已知点(2,0)B 、(3,0)C ,试探究BCP '△的面积是否有最小值?若有,求出该最小值;若没有,请说明理由.【答案】(1)(1,3);(2)1322y x =+;(3)12;(4)存在最小值,118【解析】【分析】(1)根据旋转的定义得112AP AP '==,观察点1P '和(1,1)A 在同一直线上即可直接得出结果.(2)根据题意得出2P 的坐标,再利用待定系数法求出原一次函数表达式即可.(3)先根据1(0)y x y x x =-⎧⎪⎨=-<⎪⎩计算出交点坐标,再分类讨论①当1x ≤-时,先证明()PQA P MA AAS ' ≌再计算OMP ' 面积.②当-10x <<时,证()PHO OP M AAS ' ≌,再计算122P MO PHO k S S '=== 即可.(4)先证明OAB 为等边三角形,再证明()C AO CAB SAS ' ≌,根据在Rt C GB ' 中,9030C GB C B C '''∠=︒-∠=︒,写出1,22C ⎛⎫' ⎪ ⎪⎝⎭,从而得出OC '的函数表达式,当直线l 与抛物线相切时取最小值,得出112y =+,由'B C T B C P S S '''= 计算得出BCP '△的面积最小值.【详解】(1)由题意可得:112AP AP '==∴1P '的坐标为(1,3)故答案为:(1,3);(2)∵2(2,1)P ',由题意得2P 坐标为(1,2)∵1(1,1)P -,2(1,2)P在原一次函数上,∴设原一次函数解析式为y kx b=+则12k b k b -+=⎧⎨+=⎩∴1232k b ⎧=⎪⎪⎨⎪=⎪⎩∴原一次函数表达式为1322y x =+;(3)设双曲线与二、四象限平分线交于N 点,则1(0)y x y x x =-⎧⎪⎨=-<⎪⎩解得(1,1)N -①当1x ≤-时作PQ x ⊥轴于Q∵45QAM POP '∠=∠=︒∴PAQ P AN'∠=∠∵PM AM⊥∴90P MA PQA '∠=∠=︒∴在PQA △和P MA ' 中PQA P MA PAQ P AM AP AP ∠=∠⎧⎪∠=∠'='⎨'⎪⎩∴()PQA P MA AAS ' ≌122P MA PQA k S S '=== 即12OMP S '=;②当-10x <<时作PH ⊥于y 轴于点H∵45POP NOY '∠=∠=︒∴PON P OY'∠=∠∴90MP O MOY P OY''∠=︒-∠-∠45P OY'=︒-∠∴POH POP P OY''∠=∠-∠45P OY'=︒-∠∴POH OMP '∠=∠在POH 和OP M ' 中PHO OMP POH MP O PO P O ∠=∠⎧⎪∠=∠'='⎨'⎪⎩∴()PHO OP M AAS ' ≌∴122P MO PHO kS S '===;(4)连接AB ,AC ,将B ,C 绕A 逆时针旋转60︒得B ',C ',作AH x ⊥轴于H∵A ,(2,0)B ∴1OH BH ==∴2OA AB OB ===∴OAB 为等边三角形,此时B '与O 重合,即(0,0)B '连接C O ',∵60CAC BAO ∠=∠='︒∴CAB C AB ''∠=∠∴在C AO ' 和CAB △中C A CA C AO CAB BA OA =⎧⎪∠=∠'⎨='⎪⎩∴()C AO CAB SAS ' ≌∴1C O CB '==,120C OA CBA ∠'=∠=︒∴作C G y '⊥轴于G在Rt C GB ' 中,9030C GB C B C '''∠=︒-∠=︒∴1sin 2C G OC C BG '''=⋅∠=∴32OG =,即13,22C ⎛⎫' ⎪ ⎪⎝⎭,此时OC '的函数表达式为:y =设过P 且与B C ''平行的直线l解析式为y b=+∵B PBC C P S S '''= ∴当直线l 与抛物线相切时取最小值则2172y b y x ⎧=+⎪⎨=++⎪⎩2172b x +=++∴21702x b ++-=当0∆=时,得112b =∴112y =+设l 与y 轴交于T 点∵'B C T B C PS S '''= ∴12B C P S B T CG '''=⨯⨯ 1111222=⨯⨯118=的交点问题,函数的最小值的问题,灵活进行角的转换是关键.。

2023年江苏省盐城市中考数学试卷附解析

2023年江苏省盐城市中考数学试卷附解析

2023年江苏省盐城市中考数学试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.其市气象局预报称:明天本市的降水概率为70%,这句话指的是( ) A . 明天本市70%的时间下雨,30%的时间不下雨 B . 明天本市70%的地区下雨,30%的地区不下雨 C . 明天本市一定下雨D . 明天本市下雨的可能性是70%2.如图,AC 、BC 是两个半圆的直径,∠ACP=30°,若AB=10㎝,则PQ 的值为( ) A .5㎝ B .35 C .6D .8㎝函数y kx b =+的图象如图所示,则2y kx b =+的图象可能是( )3.已知A .B .C .D . 4.某物体的三视图是如图所示的三个图形,那么该物体的形状是( )A .长方体B .圆锥体C .正方体D .圆柱体5. 如图,AB ∥CD ,∠1=110°, ∠ECD =70°,∠E 等于( ) A .30°B . 40°C . 50°D . 60°1QP6.小数表示2610-⨯结果为( ) A . 0.06B . -0.006C .-0.06D .0.0067.如图所示的几张图中,相似图形是( )A .①和②B .①和③C .①和④D .②和③8.如图所示,把三个相同的宽为l cm 、长为2 cm 的长方形拼成一个长为3 cm 、宽为2 cm 的长方形ABGH ,分别以B ,C 两点为圆心,2 cm 长为半径画弧AE 和弧DG ,则阴影部分的面积是( )A .34πcm 2 B .32πcm 2 C .2cm 2 D .(4)2π-cm 29.如图.在△ABC 中,AB AC ,AB 的中垂线DE 交AC 于点D ,交AB 于点E ,如果BC=10,△BDC 的周长为22,那么△ABC 的周长是( ) A .24B .30C .32D .34二、填空题10.已知⊙O 1与⊙O 2的半径分别为2cm 和3cm ,当⊙O 1与⊙O 2外切时,圆心距O 1O 2=____ cm .θ=,则θ= .11.若θ为三角形的一个锐角,且2sin312.已知Rt△ABC中,∠C=90°,∠A=60°,BC=5,BD是中线,则BD= .13.如图,在梯形ABCD中,AD∥BC,AB=CD,AC⊥BD,AD=6,BC=8,则梯形的高为.14.一个多边形的每个外角都相等,且比它们的内角小l40°,这个多边形的边数为,它有条对角线.15.将三粒质地均匀的分别标有 1、2、3、4、5、6的正六面体骰子同时掷出,出现的数字分别为a、b、c,则a、b、c正好都相同的概率是 .解答题16.如图,在△ABC中,AD是高,E是AB上一点,AD与CE相交于点P,已知∠APE=50°,∠AEP=80°,则∠B= .17.浙江省教育网开通了网上教学,某校九年级(8)班班主任为了了解学生上网学习时间,对本班40名学生某天上网学习时间进行了调查,将数据(取整数)整理后,绘制出如图所示频率分布直方图,已知从左到右各个小组的频率分别是0.15,0.25,0.35,0.20, 0.05,则根据直方图所提供的信息,这一天上网学习时间在100~119 min之间的学生人数是人.三、解答题18.如图,梯形ABCD中,AB∥CD,且AB=2CD,E,F分别是AB,BC•的中点,EF与BD 相交于点M. (1)求证:△EDM∽△FBM;(2)若DB=9,求BM.19.已知抛物线2y x bx c =++的图象向右平移3个单位,再向下平移 2 个单位得到抛物线2(3)1y x =-+,求b 、c 的值.20.今青少年视力水平的下降已引起全社会的关注,为了了解某中学毕业年级300名学生的视力情况,从中抽取了一部分学生的视力,进行数据整理后如下表: (1)在这个问题中总体是 ; (2)填写频数分布表中未完成的部分;(3)若视力为4.9,5.0,5.1均属正常,不需矫正,试估计该校毕业年级学生视力正常的人数约为多少?21.如图,AD ,BE 是△ABC 的高,F 是DE 中点,G 是AB 的中点.求证:GF ⊥DE .B 组22.通过证明结论的 不成立,从而得出 成立,这种证明方法叫做反证法,它的关键是找出由假设所产生的,与 、 、 、 之间的矛盾.分组 频数 频率 3.95~4.252 0.046 0.124.55~4.85 234.85~5.155.15~5.45 10.02 合计1.0023.试判断命题:“若一条直线上的两点到另一条直线的距离相等,则这两条直线平行”的真假,并说明理由.24.将如图所示的几何体分类,并说明理由.(1)立方体 (2)圆柱 (3)长方体 4)球 (5)圆锥 (6)三棱锥25.如图,如果∠1 是它的补角的5倍,∠2的余角是∠2的2倍,那么AB∥CD吗?为什么?26.705班在召开期末总结表彰会前,班主任安排班长史小青去商店购买奖品,下面是史小青与售货员的对话:史小青:阿姨,你好!售货员:同学你好,想买点什么?史小青:我只有100元,请帮助我安排买10支钢笔和15本笔记本.售货员:好,每支钢笔比每本笔记本贵2元,退你5元,请清点好,再见!根据这段对话,你能算出钢笔和笔记本的单价各是多少吗?27.图②、③、④、⑤分别由图①变换而成的,请你分析它们的形成过程.28.如图,将△ABC先向上平移5格得到△A′B′C′,再以直线MN为对称轴,将△A′B′C′作轴对称变换,得到△A″B″C″,作出△A′B′C′和△A″B″C″.29.已知,如图所示,点B,E,C,F在同一条直线上,AB=DE,AC=DF,BE=CF.试判断∠B与∠DEC是否相等,并说明理由.30.小彬解方程21152x x a-++=时,方程左边1 没有乘以 10,由此求得方程的解为 x=4. 试求 a的值,并正确地求出方程的解.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.B3.C4.D5.B6.A7.C8.C9.D二、填空题10.511.60°12.335 13. 714.18,13515.13616. 40°17.14三、解答题 18.(1)略(2)3.19.由题意,平移前解析式为22(33)123y x x =-+++=+,∴b= 0 , c= 320.⑴某中学毕业年级300名学生视力的全体情况;⑵频率分布表的第一列应填4.25~4.55;第二列从上到下依次为:18,50;第三列从上到下依次为:0.46,0.36;⑶108名.21.连结EG ,DG .证EG=DG22.反面,结论,已知,定义,公理,定理23.假命题,如图所示,AB ⊥BD 于B ,CD ⊥BD 于D ,AB=CD ,但AC 不平行BD24.答案不唯一,如:(1)按平面分:立方体、长方体、三棱锥;(2)按曲面分:圆柱、球、圆锥25.AB∥CD.理由:设∠l的度数为x,则x=5×(180°-x),解得x=150°.同理,∠2的度数为30°∵∠l+∠2=150°+30°=180°,∴AB∥CD26.5元和3元.27.由图①经过连续四次绕圆心顺时针旋转90°得到28.略29.∠B=∠DEC,理由略30.x=1a=-,13。

江苏省盐城市2024年中考数学试题(含答案)

江苏省盐城市2024年中考数学试题(含答案)

2024年扬州市中考数学试题一、选择题(本题有8小题,每小题3分,共24分)1.-3的肯定值是【】A.3 B.-3 C.-3 D.1 32.下列图形中,既是轴对称图形,又是中心对称图形的是【】A.平行四边形B.等边三角形C.等腰梯形D.正方形3.今年我市参与中考的人数大约有41300人,将41300用科学记数法表示为【】A.413×102B.41.3×103C.4.13×104D.0.413×103 4.已知⊙O1、⊙O2的半径分别为3cm、5cm,且它们的圆心距为8cm,则⊙O1与⊙O2的位置关系是【】A.外切B.相交C.内切D.内含5.如图是由几个相同的小立方块搭成的几何体的三视图,则这几个几何体的小立方块的个数是【】A.4个B.5个C.6个D.7个6.将抛物线y=x2+1先向左平移2个单位,再向下平移3个单位,那么所得抛物线的函数关系式是【】A.y=(x+2)2+2 B.y=(x+2)2-2C.y=(x-2)2+2 D.y=(x-2)2-27.某校在开展“爱心捐助”的活动中,初三一班六名同学捐款的数额分别为:8,10,10,4,8,10(单位:元),这组数据的众数是【】A.10 B.9 C.8 D.48.大于1的正整数m的三次幂可“分裂”成若干个连续奇数的和,如23=3+5,33=7+9+11,43=13+15+17+19,…若m3分裂后,其中有一个奇数是2024,则m的值是【】A.43 B.44 C.45 D.46二、填空题(本大题共10小题,每小题3分,共30分)9.扬州市某天的最高气温是6℃,最低气温是-2℃,那么当天的日温差是.10.一个锐角是38度,则它的余角是度.11.已知2a-3b2=5,则10-2a+3b2的值是.12.已知梯形的中位线长是4cm,下底长是5cm,则它的上底长是cm.13.在平面直角坐标系中,点P(m,m-2)在第一象限内,则m的取值范围是.14.如图,P A、PB是⊙O的切线,切点分别为A、B两点,点C在⊙O上,假如∠ACB=70°,那么∠P的度数是.15.如图,将矩形ABCD沿CE折叠,点B恰好落在边AD的F处.若ABBC=23,则tan∠DCF的值是.16.如图,线段AB的长为2,C为AB上一个动点,分别以AC、BC为斜边在AB的同侧作两个等腰直角三角形△ACD和△BCE,那么DE长的最小值是.17.已知一个圆锥的母线长为10cm,将侧面绽开后所得扇形的圆心角是144°,则这个圆锥的底面圆的半径是cm.18.如图,双曲线y=kx经过Rt△OMN斜边上的点A,与直角边MN相交于点B,已知OA=2AN,△OAB的面积为5,则k的值是.三、解答题(本大题共有10小题,共96分)19.(1)计算:9-(-1)2+(-2024)0;(2)因式分解:m3n-9mn.20.先化简:1-a-1a÷a2-1a2+2a,再选取一个合适的a值代入计算.21.扬州市中小学全面开展“体艺2+1”活动,某校依据学校实际,确定开设A:篮球,B:乒乓球,C:声乐,D:塑身操等四中活动项目,为了解学生最喜爱哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制了两幅不完整的统计图.请回答下列问题:(1)这次被调查的学生共有人.(2)请你将统计图1补充完整.(3)统计图2中D项目对应的扇形的圆心角是度.(4)已知该校学生2400人,请依据调查结果估计该校最喜爱乒乓球的学生人数.22.一个不透亮的布袋里装有4个大小,质地都相同的乒乓球,球面上分别标有数字1,-2,3,-4,小明先从布袋中随机摸出一个球(不放回去),再从剩下的3个球中随机摸出其次个乒乓球.(1)共有种可能的结果.(2)请用画树状图或列表的方法求两次摸出的乒乓球的数字之积为偶数的概率.23.如图,在四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD,垂足为E.求证:BE=DE.24.为了改善生态环境,防止水土流失,某村安排在荒坡上种480棵树,由于青年志愿者的支援,每日比原安排多种13,结果提前4天完成任务,原安排每天种多少棵树?25.如图,一艘巡逻艇航行至海面B处时,得知正北方向上距B处20海里的C处有一渔船发生故障,就马上指挥港口A处的救援艇前往C处营救.已知C处位于A处的北偏东45°的方向上,港口A位于B的北偏西30°的方向上.求A、C之间的距离(结果精确到0.1海里,参考数据:2≈1.41,3≈1.73).26.如图,AB是⊙O的直径,C是⊙O上一点,AD垂直于过点C的切线,垂足为D.(1)求证:AC平分BAD;(2)若AC=25,CD=2,求⊙O的直径.27.已知抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当△P AC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,干脆写出全部符合条件的点M的坐标;若不存在,请说明理由.28.如图1,在平面直角坐标系中,矩形OABC的顶点O在坐标原点,顶点A、C分别在x轴、y 轴的正半轴上,且OA=2,OC=1,矩形对角线AC、OB相交于E,过点E的直线与边OA、BC分别相交于点G、H.(1)①干脆写出点E的坐标:;②求证:AG=CH.(2)如图2,以O为圆心,OC为半径的圆弧交OA与D,若直线GH与弧CD所在的圆相切于矩形内一点F,求直线GH的函数关系式.(3)在(2)的结论下,梯形ABHG的内部有一点P,当⊙P与HG、GA、AB都相切时,求⊙P的半径.参考答案一、选择题(本题有8小题,每小题3分,共24分)1.(2024•扬州)-3的肯定值是( )A.3B.-3 C.-3 D.考点:肯定值。

最新江苏省盐城市中考数学真题试卷附解析

最新江苏省盐城市中考数学真题试卷附解析

江苏省盐城市中考数学真题试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,已知点 P 是△ABC 的边 AB 上一点,且满足△APC ∽△ACB ,则下列的比例式:① AP AC PC CB =;②AC AB AP AC=;③PC AC PB AP =;④AC PC AB PB =.其中正确的比例式的序号是( ) A . ①② B .③④ C .①②③ D . ②③④2.已知四边形ABCD 中,90A B C ===∠∠∠,如果添加一个条件,即可推出该四边形是正方形,那么这个条件可以是( )A .∠D=90°B .AB=CDC .AD=BCD .BC=CD3.如图,AB ,CD 相交于点0,则下列条件中能得到AC ∥BD 且AC=BD 的是( )A .∠A=∠B ,∠C=∠DB .OA=BC .OC=ODD .∠A=∠B ,OA=OB4.如图是小敏同学6次数学测验的成绩统计表,则该同学6次成绩的中位数是( )A . 60分B . 70分C .75分D . 80分 5.分式221m m m m -+-约分后的结果是( ) A 1m m n -+ B .1(1)m m m --+ C .1m m - D .1(1)m m m -+ 6.20人一行外出旅游住旅社,因特妹原因,服务员安排房间时每间比原来多住 1 人,结 果比原来少用了一个房间. 若原来每间住 x 人,则x 应满足的关系式为( ) A .202011x x -=+ B .202011x x -=- C .202011x x -=- D .202011x x -=+ 90 85 80 75 70 65 60 55 分数7.如图所示,△ABC 和△A ′B ′C ′关于直线l 对称,那么下列结论中正确的有( ) ①△ABC ≌△A ′B ′C ′;②∠BAC=∠A ′B ′C ′;③l 垂直平分CC ′;④直线BC 和B ′C ′的交点不一定在l 上.A .4个B .3个C .2个D .1个8.下列计算结果为负数的是( )A .3-B .3--||C .2(3)-D .3(3)-- 9.火车票上的车次号有两个意义:(1)数字越小表示车速越快,如 1~98次为特快列车,101~198次直快列车,301~398次为普快列车,401~498次为普客列车;(2)奇数与偶数表示不同的行驶方向,例如:奇数表示从北京开出,偶数表示开往北京. 根据以上规定,杭州开往北京的某一直快列车的车次号可能是( )A . 20B .119C .120D .319二、填空题10.若反比例函数1y x=-的图象上有两点A (1,y 1),B (2,y 2),则y 1______ y 2(填“>”或“=”或“<”). 11.在“We like maths .”这个句子的所有字母中,字母“e ”出现的频率约为 (结果保留2个有效数字).12. 完成下列配方过程.(1)26x x ++( )=2(3)x +;(2)2x - +916=23()4x -; (3)25x x -+ =2(___)x -(4)222x x -+ =2(__)x -.13.关于x 的方程22(23)103a x ax ---=是一元二次方程,则a 的取值范围是 . 14. 从1至9这9个自然数中任取一个,是2的倍数或是3的倍数的概率是________15.如图,∠A=36°,∠DBC=36°,∠C=72°,则图中的等腰三角形分别是 .16.如图所示,△ABC 是等腰直角三角形,AD ⊥BC ,则△ABD 可以看做是由△ACD 绕 点逆时针旋转 得到的. 17.在括号内填上适当的代数式,使等式成立. (1)()b a a a +=-;(2)322323()y x x y y x --=-;(3)216()324ab a a=;(4)39()()x x x y x y +=+ 解答题18.用四舍五入法,保留l 个有效数字,则取80600的近似值为 ,保留2个有效数 字的近似值为 .19.如果 -22 元表示亏损 22 元,那么 45 元表示 .20.若关于x 的方程39x =与4x k +=有相同的解,则代数式212kk -的值为 .三、解答题21.如图,已知直角梯形 AECD 和直角梯形A ′B ′C ′D ′中,∠A=∠A ′=∠B=∠B ′= 90°, ∠D= ∠D ′ ,AB : A ′B ′= BC : B ′C ′,求证:梯形ABCD ∽梯形A ′B ′C ′D ′.22.如图,在△ABC 中,DE ∥FG ∥BC ,DE 、FG 将△ABC 的面积三等分,若 BC = 12 cm ,求 FG 的长.23.在一块边长为1m 的正方形铁板上截出一个面积为800cm 2的矩形铁板,使长比宽多20cm ,问矩形铁板的长和宽各为多长?24.一个台阶如图,阶梯每一层的高为 15 cm ,宽为 25 cm ,长为 60 cm.一只蚂蚁从 A 点爬到B 点最短路程是多少?25.解不等式5122(43)x x --≤,并把它的解集在数轴上表示出来.26.某班组织一次数学测试,全班学生分为两组,这两组成绩(单位:分)的分布情况如下图所示. (1)全班学生数学成绩的众数是 分.全班学生数学成绩为众数的有 人,全班学生数学成绩的中位数是 分;(2)分别计算这两个小组超过全班数学成绩中位数的人数占全班人数的百分比.1 2 3 0 1- 2- 3-27.先化简,再求值:22()a b a ba b b a ab++÷--,其中31a=,31b=.28.先化筒,再求值:2(32)(32)5(1)(21)x x x x x+-----,其中13x=-.29.在“跳蚤市场”活动中初一(1)班的销售额为n元,初一(2)班的销售额是初一(1)班的的2倍少28元,初一(3)班的销售额比初一(1)班的一半多42元,问三个班一共销售商品多少元?30.浙江省的民营企业在市场经济的运作下,迅速壮大起来.从下面一个企业提供的数据之中,我们就能感觉到中国经济迅猛发展的趋势:1997年产值110万,l999年产值200万,2001年产值500万,2002年产值900万,2003年产值1700万.请你设计一张统计表,简明地表达这一段文字的信息.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.D3.D4.C5.C6.A7.B8.B9.C二、填空题10.11.0.1812.(1)9;(2)32x ;(3)254,52;(4)13.23a ≠14. 32 15. △ABD ,△CBD,△ABC16.D ,90°17.(1)a b --;(2)32x y -;(3)2b ;(4)23()x y +18.8×lO 4,8.1×1O 419.盈利 45 元20.1349-三、解答题21.连结 AC 、A ′C ′.在△ABC 和△A ′B ′C ′ 中,AB BC A B B C ='''',∠B=∠B ′,∴△ABC ∽△A ′B ′C ′,∴∠1=∠5 ,∠3 =∠7. AC AB A C A B =''''.在△ADC 和△A ′D ′C ′中,∠2=90°-∠1 ,∠6=90°-∠5 ,∴∠2=∠6, 又∠D=∠D ′,∴△ADC ∽△A ′D ′C ′. ∴AD AC DC A D A C D C =-='''''',∠4=∠8,∴AB BC DC AD A B B C D C A D ===''''''''又∵∠BCD=∠B ′C ′D ′,∴梯形ABCD ∽梯形A ′B ′C ′D ′.22.∵DE ∥FG ∥BC ,∴△ADE ∽△AFG ∽△ABC. 又∵23AFG ABC S S ∆∆=,∴23FG BC =,∴46FG =㎝.23.长 40 cm ,宽 20 cm24.100 cm25.解:去括号,得51286x x --≤.移项,得58612x x --+≤.合并,得36x -≤.系数化为1,得2x -≥.不等式的解集在数轴上表示如下:(1)95,20,92.5; (2)第一组超过全班数学成绩中位数的人数占全班人数的百分比为111100%24%50+⨯=,第二组超过全班数学成绩中位数的人数占全班人数的百分比为94100%26%50+⨯=. 27.ab ,228.95x -,-829.(3.5n+14)元30.略 12301-2-3-26.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

盐城市二OO 七年高中阶段教育招生统一考试
数 学 试 卷
(考试时间:120分钟 试卷满分:150分 考试形式:闭卷)
本试卷分试卷I (选择题)和试卷II (非选择题)两部分。

试卷I 为第1页至第2页,试卷II 为第3页至第10页。

考试结束后,将试卷I 、试卷II 和答题卡一并交回。

试卷I (选择题,共30分)
注意事项:1、答题前务必将姓名、准考证号、科目款在答题卡上。

2、选出答案后,请用2B 铅笔将对应题目的答案标号涂黑,答在试卷上无效。

一、选择题(本大题共10小题,每小题3分,计30分)
1.()2
3-运算的结果是
A .-6
B .6
C .-9
D .9
2.下列图案属于轴对称图形的是
A .
B .
C .
D .
(第2题图)
3.如图,这是一幅电热水壶的主视图,则它的俯视图是
(第3题图)
A .
B .
C .
D .
4.如图,点A 、B 、C 在⊙O 上,∠ABC =60°,则∠A0C
的度数为
A .30°
B .60°
C .100°
D .120°
5.估计30的值 (第4题图)
A .在3到4之间
B .在4到5之间
C .在5到6之间
D .在6到7之间
A
O
B
C
6.如图,已知棋子“卒”的坐标为(-2,3),
棋子“马”的坐标为(1,3),则棋子“炮”的坐标为
A.(3,2)B.(3,1)
C.(2,2)D.(-2,2)
7.人民商场对上周女装的销售情况进行了统计,
如下表所示:(第6题图)
经理决定本周进女装时多进一些红色的,可用来解释这一现象的统计知识是
A.平均数B.中位数C.众数D.方差
8.利用计算器求sin30°时,依次按键则计算器上显示的结果是
A.0.5 B.0.707 C.0.866 D.1
9.如图所示,把一个正方形对折两次后沿虚线剪下,展开后所得的图形是
右折沿虚线剪开展开
(第9题图)
A.B.C.D.
10.如图,乌鸦口渴到处找水喝,它看到了一个装有水的瓶子,但水位较低,且瓶口又小,乌鸦喝不着水,沉思一会后,聪明的乌鸦衔来一个个小石子放入瓶中,水位上升后,乌鸦喝到了水。

在这则乌鸦喝水的故事中,设从乌鸦看到瓶的那刻起向后的时间为x,瓶中水位的高度为y,下列图象中最符合故事情景的是
(第10题图)
试卷II (非选择题,共120分)
注意事项: 1.试卷请用黑色、蓝色钢笔或圆珠笔直接作答。

2.答题前将密封线内的项目填写清楚。

二、填空题(本大题共8小题,每小题3分,计24分)
11.分解因式:2
x -9= 。

12.使式子2 x 有意义的x 的取值范围是。

13.地球上陆地面积约为149 000 000 km 2
,用科学记数法
可以表示为 km 2(保留三个有效数字)
14.菱形的两条对角线长分别是6和8,则菱形的边长为。

(第15题图) 15.如图,⊙O 的半径为5,PA 切⊙O 于点A ,∠APO 则切线长PA 为 。

16.某一时刻,身高为165cm 的小丽影长是55cm ,
此时,小玲在同一地 点测得旗杆的影长为5m , 则该旗杆的高度为 m 。

17.根据如图所示的程序计算,
若输入x 的值为1, 则输出y 的值为 。

18.如图,用火柴棒按以下方式搭小鱼,搭1条小鱼用8根火柴棒,
搭2条小鱼用14根,……,则搭n 条小鱼需要 根 火柴棒。

(用含n 的代数式表示)
(第18题图)
三、解答题(本大题共4小题,每小题8分,计32分)
19.(本题8分) 计算:()
1
31243-⎪⎭

⎝⎛--+--
20.(本题8分)
解不等式组⎪⎩⎪
⎨⎧+-+≤-x x x x 12
25623,并把其解集在数轴上表示出来。

21.(本题8分)
如图,点C 、E 、B 、F 在同一直线上,AC ∥DF ,AC =DF ,BC =EF ,△ABC 与△DEF 全等吗?证明你的结论。

A B F
E C D
如图,有两个可以自由转动的均匀转盘A 、B ,都被分成3等份,每份内均有数字,小明和小亮用这两个转盘做游戏,游戏规则如下:分别转动转盘A 和B ,两个转盘停止后,将两个指针所指份内的数字相加(如果指针恰好停在等分线上,那么重转一次,直到指针指向某一份为止),若和为偶数,则小明获胜;如果和为奇数,那么小亮获胜。

把下列树状图补充完整,并求小明获胜的概率。

解:树状图为:
开始
A 盘 1
B 盘 4 5 7
数字之和 5 6 8 (第22题图)
四、解答题(本大题共6小题,计64分)
23.(本题9分)
如图所示,小华设计了一个探究杠杆平衡条件的实验:在一根匀质的木杆中点O 左侧固定位置B 处悬挂重物A ,在中点O 右侧用一个弹簧秤向下拉,改变弹簧秤与点O 的距离 (1)把上表中x ,y 的各组对应值作为点的坐标,在坐标系中 描出相应的点,用平滑曲线连接这些点并观察所得的图象,
猜测y (N )与x (cm )之间的函数关系,并求出函数关系式; (第23题图) (2)当弹簧秤的示数为24N 时,弹簧秤与O 点的距离是多少cm ?
随着弹簧秤与O 点的距离不断减小,弹簧秤上的示数将发生怎样的变化?
为了解中学生的视力情况,某市有关部门采用抽样调查的方法从全市10万名中学生中抽查了部分学生的视力,分成以下四类进行统计:
A.视力在4.2及以下B.视力在4.3~4.5之间
C.视力在4.6~4.9之间D.视力在5.0及以上
图一、二是根据调查结果绘制的两幅不完整的统计图,请根据统计图提供的信息,解答下列问题:
(1)这次抽查中,一共抽查了名中学生;
(2)“类型D”在扇形图中所占的圆心角是度;
(3)在统计图一中将“类型B”的部分补充完整;
(4)视力在5.0以下(不含5.0)均为不良,请估计全市视力不良的中学生人数。

某校八年级学生小丽、小强和小红到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作,已知该水果的进价为8元/千克,下面是他们在活动结束后的对话。

小丽:如果以10元/千克的价格销售,那么每天可售出300千克。

小强:如果以13元/千克的价格销售,那么每天可获取利润750元。

小红:通过调查验证,我发现每天的销售量y(千克)与销售单价x(元)之间存在一次函数关系。

(1)求y(千克)与x(元)(x>0)的函数关系式;
(2)设该超市销售这种水果每天获取的利润为W元,那么当销售单价为何值时,每天可获得的利润最大?最大利润是多少元?【利润=销售量×(销售单价-进价)】
如图,已知抛物线与x轴交于A、B两点(点A在左边),且过点D(5,-3),顶点为M,直线MD交x轴于点F。

(1)求a的值;
(2)以AB为直径画⊙P,问:点D在⊙P上吗?为什么?
(3)直线MD与⊙P存在怎样的位置关系?请说明理由。

(第26题图)
27.(本题12分)
操作:如图①,点O 为线段MN 的中点,直线PQ 与MN 相交于点O ,请利用图①画出一对以点O 为对称中心的全等三角形。

图① 根据上述操作得到的经验完成下列探究活动:
探究一:如图②,在四边形ABCD 中,AB ∥DC ,E 为BC 边的中点,∠BAE =∠EAF ,AF 与DC 的延长线相交于点F 。

试探究线段AB 与AF 、CF 之间的等量关系,并证明你的结论;
探究二:如图③,DE 、BC 相交于点E ,BA 交DE 于点A ,且BE :EC =1:2,
∠BAE =∠EDF ,CF ∥AB 。

若AB =5,CF =1,求DF 的长度。

P N
M
Q
O
28.(本题13分)
如图,矩形EFGH 的边EF =6cm ,EH =3cm
中,BC =10cm ,AB =5cm ,sin ∠ABC =
5
3
,点E 、F 、B 、C 在同一直线上,且FB =1cm ,矩形从F 点开始以1cm/s 的速度沿直线FC 向右运动,当边GF 所在直线到达D 点时即停止。

(1)在矩形运动过程中,何时矩形的一边恰好通过 的边AB 或CD 的中点?
(2)若矩形运动的同时,点Q 从点C 出发沿C -D -A -B 的路线,以
2
1
cm/s 的速
度运动,矩形停止时点Q 也即停止运动,则点Q 在矩形一边上运动的时间为多少s ?
(3)在矩形运动过程中,当矩形与平行四边形重叠部分为五边形时,求出重叠部分面积S (2
cm )与运动时间t (s )之间的函数关系式,并写出时间t 的范围。

是否存在某一时刻,使得重叠部分的面积S =16.52
cm ?若存在,求出时间t ,若不存在,说明理由。

(第28题图)
E
F B C。

相关文档
最新文档