过程控制控实验报告

合集下载

北京科技大学过程控制实验报告

北京科技大学过程控制实验报告

实验报告课程名称:过程控制系统实验项目名称:被控对象特性测试实验日期与时间: 2022.07 指导教师:班级:姓名:学号:成绩:一、实验目的要求1.了解控制对象特性的基本形式。

2.掌握实验测试对象特性的方法,并求取对象特性参数二、实验内容本节实验内容主要完成测试对象特性,包含以下两部分内容:1.被控对象特性的实验测定本实验采用飞升曲线法(阶跃向应曲线法)测取对象的动特性。

飞升曲线是指输入为阶跃信号时的输出量变化的曲线。

实验时,系统处于开环状态,被控对象在某一状态下稳定一段时间后,输入一阶跃信号,使被控对象达到另一个稳定状态,得到被控对象的飞升曲线。

在实验时应注意以下的一些问题:1)测试前系统应处于正常工作状态,也就是说系统应该是平衡的。

采取一切措施防止其他干扰的发生,否则将影响实验结果。

2)在测试工作中要特别注意工作点与阶跃幅度的选取。

作为测试对象特性的工作点,应该选择正常工作状态,也就是在额定负荷及正常的其他干扰下,因为整个控制过程将在此工作点附近进行。

阶跃作用的取值范围为其额定值的 5-10%。

如果取值太小,由于测量误差及其它干扰的影响,会使实验结果不够准确。

如果取值过大,则非线性影响将扭曲实验结果。

不能获得应有的反应曲线,同时还将使生产长期处于不正常的工作状态,特别是有进入危险区域的可能性,这是生产所不能允许的。

3)实验时,必须特别注意的是,应准确地记录加入阶跃作用的计时起点,注意被调量离开起始点时的情况,以便计算对象滞后的大小,这对以后整定控制器参数具有重要的意义。

4)每次实验应在相同的条件下进行两次以上,如果能够重合才算合格。

为了校验线性,宜作正负两种阶跃进行比较。

也可作不同阶跃量的实验。

2.飞升曲线数据处理在飞升曲线测得以后,可以用多种方法来计算出所测对象的微分方程式,数据处理方法有面积法、图解法、近似法等。

面积法较复杂,计算工作量较大。

近似法误差较大,图解法较方便,误差比近似法小。

过程控制实验的实训报告

过程控制实验的实训报告

一、实训目的通过本次过程控制实验实训,使我对过程控制的基本原理、系统组成、控制策略以及实际应用等方面有一个全面的认识,提高我运用理论知识解决实际问题的能力。

同时,通过实验操作,掌握实验设备的使用方法,培养我的动手能力和团队协作精神。

二、实训内容1. 实验设备本次实验使用的设备包括:过程控制系统实验台、传感器、执行器、控制器、计算机等。

2. 实验内容(1)过程控制系统基本原理及组成(2)传感器特性及测量方法(3)执行器特性及控制方法(4)控制器特性及控制策略(5)过程控制系统设计及应用三、实验步骤1. 观察实验设备,了解其组成及功能。

2. 搭建实验系统,连接传感器、执行器、控制器等。

3. 根据实验要求,设置控制器参数,实现过程控制。

4. 观察实验现象,分析实验结果,调整控制器参数,优化控制效果。

5. 实验结束后,整理实验数据,撰写实验报告。

四、实验结果与分析1. 实验现象通过搭建实验系统,观察实验现象,发现当控制器参数设置合理时,系统能够实现稳定的控制效果。

2. 实验结果(1)传感器输出信号与被测参数之间的关系符合线性关系。

(2)执行器响应速度快,控制精度高。

(3)控制器参数对系统控制效果有显著影响。

3. 实验分析(1)传感器在过程控制系统中起到采集被测参数的作用,其输出信号与被测参数之间的关系符合线性关系,为后续控制策略的制定提供了基础。

(2)执行器作为控制系统的输出环节,其响应速度快、控制精度高,对系统控制效果有重要影响。

(3)控制器参数的设置对系统控制效果有显著影响,合理设置控制器参数可以提高控制效果。

五、实训体会1. 通过本次实训,我对过程控制的基本原理、系统组成、控制策略以及实际应用等方面有了更深入的了解。

2. 实验过程中,我掌握了实验设备的使用方法,提高了自己的动手能力。

3. 实验过程中,我学会了与团队成员沟通协作,提高了自己的团队协作精神。

4. 实验过程中,我认识到理论知识与实际应用之间的联系,为今后学习和工作打下了基础。

过程控制实验报告

过程控制实验报告

过程控制实验报告过程控制实验报告引言:过程控制是一种重要的工程控制方法,广泛应用于工业生产、环境保护、交通运输等各个领域。

本实验旨在通过对过程控制的实际操作,理解和掌握过程控制的基本原理和方法。

一、实验目的本实验的主要目的是通过搭建一个简单的过程控制系统,了解过程控制的基本概念和原理,并通过实际操作掌握过程控制的方法和技巧。

二、实验装置和原理实验所用的装置是一个温度控制系统,由温度传感器、控制器和执行器组成。

温度传感器负责测量温度,控制器根据测量值与设定值的差异来控制执行器的动作,从而实现温度的控制。

三、实验步骤1. 将温度传感器安装在被控温度区域,并连接到控制器上。

2. 设置控制器的参数,包括设定值、比例系数、积分时间和微分时间等。

3. 打开控制器,开始实验。

观察温度的变化过程,并记录实验数据。

4. 根据实验数据分析控制效果,并对控制器的参数进行调整,以达到更好的控制效果。

5. 重复步骤3和4,直到达到满意的控制效果。

四、实验结果与分析在实验过程中,我们观察到温度的变化过程,并记录了实验数据。

通过对实验数据的分析,我们可以评估控制效果的好坏,并对控制器的参数进行调整。

五、实验总结与体会通过本次实验,我们深入了解了过程控制的基本原理和方法。

实践操作使我们更加熟悉了过程控制的过程和技巧。

同时,我们也体会到了过程控制在工程实践中的重要性和应用价值。

六、实验改进与展望本次实验中,我们采用了简单的温度控制系统进行实验。

未来可以进一步扩展实验内容,涉及到其他参数的控制,如压力、流量等,以更全面地了解过程控制的应用。

结语:过程控制是一门重要的工程学科,对于提高生产效率、保护环境、提升产品质量等方面具有重要意义。

通过本次实验,我们对过程控制的原理和方法有了更深入的理解,为今后的工程实践打下了坚实的基础。

希望通过不断学习和实践,我们能够在工程领域中运用过程控制的知识,为社会发展做出更大的贡献。

过程控制实验报告

过程控制实验报告

过程控制实验报告1. 实验目的本次实验的目的是学习和掌握过程控制的基本原理和操作方法,了解过程控制系统的组成和结构,掌握过程控制系统的基本调试方法和过程控制的自动化程度。

2. 实验原理过程控制是指对一组物理过程进行控制的技术和方法。

过程控制的目的是使被控制的物理过程在一定的条件下,达到预期的目标,如稳定、精度、速度、延迟、可靠性、安全性、经济性等等。

过程控制系统由传感器、执行元件、控制器和执行器构成,其中传感器用于检测被控制物理过程的状态,控制器根据传感器获取的信息进行决策,并通过执行元件控制执行器实现对被控制物理过程的控制。

3. 实验步骤本次实验的过程控制系统由一台工业控制计算机、一台工业控制器和一组执行器构成。

实验的具体步骤如下:(1) 将传感器与控制器连接,并将控制器与计算机连接。

(2) 在计算机上启动控制软件,在软件中设置控制器和传感器的参数。

(3) 将执行器与控制器连接,并调试执行器的控制参数。

(4) 在控制软件中设置控制策略和控制目标,并启动控制器。

(5) 监测被控制物理过程的状态,并记录相关数据。

(6) 对控制策略和控制参数进行调整,直到被控制物理过程达到预期目标。

4. 实验结果经过多次实验,我们成功地控制了被控制的物理过程,并达到了预期目标。

实验结果表明,过程控制技术可以有效地控制物理过程,并提高物理过程的稳定性、精确性和可靠性。

5. 实验总结本次实验使我们深入了解了过程控制的原理和操作方法,掌握了过程控制系统的基本调试方法和过程控制的自动化程度。

通过实验,我们发现过程控制技术在许多工业领域都具有广泛的应用前景,是提高生产效率和质量的重要手段。

在今后的学习和工作中,我们将继续深入学习和研究过程控制技术,为推动工业自动化和智能化发展做出贡献。

《过程控制系统》实验报告

《过程控制系统》实验报告

《过程控制系统》实验报告实验报告:过程控制系统一、引言过程控制系统是指对工业过程中的物理、化学、机械等变量进行监控和调节的系统。

它能够实时采集与处理各种信号,根据设定的控制策略对工业过程进行监控与调节,以达到所需的目标。

在工业生产中,过程控制系统起到了至关重要的作用。

本实验旨在了解过程控制系统的基本原理、组成以及操作。

二、实验内容1.过程控制系统的组成及原理;2.过程控制系统的搭建与调节;3.过程控制系统的优化优化。

三、实验步骤1.复习过程控制系统的原理和基本组成;2.使用PLC等软件和硬件搭建简单的过程控制系统;3.设计一个调节过程,如温度控制或液位控制,调节系统的参数;4.通过修改控制算法和调整参数,优化过程控制系统的性能;5.记录实验数据并进行分析。

四、实验结果与分析在本次实验中,我们搭建了一个温度控制系统,通过控制加热器的功率来调节温度。

在调节过程中,我们使用了PID控制算法,并调整了参数,包括比例、积分和微分。

通过观察实验数据,我们可以看到温度的稳定性随着PID参数的调整而改变。

当PID参数调整合适时,温度能够在设定值附近波动较小,实现了较好的控制效果。

在优化过程中,我们尝试了不同的控制算法和参数,比较了它们的性能差异。

实验结果表明,在一些情况下,改变控制算法和参数可以显著提高过程控制系统的性能。

通过优化,我们实现了更快的响应时间和更小的稳定偏差,提高了系统的稳定性和控制精度。

五、结论与总结通过本次实验,我们了解了过程控制系统的基本原理、组成和操作方法。

我们掌握了搭建过程控制系统、调节参数以及优化性能的技巧。

实验结果表明,合理的控制算法和参数选择可以显著提高过程控制系统的性能,实现更好的控制效果。

然而,本次实验还存在一些不足之处。

首先,在系统搭建过程中,可能由于设备和软件的限制,无法完全模拟实际的工业过程。

其次,实验涉及到的控制算法和参数调节方法较为简单,在实际工程中可能需要更为复杂和精细的控制策略。

《过程控制系统》实验报告

《过程控制系统》实验报告

《过程控制系统》实验报告一、实验目的过程控制系统实验旨在通过实际操作和观察,深入理解过程控制系统的组成、工作原理和性能特点,掌握常见的控制算法和参数整定方法,培养学生的工程实践能力和解决实际问题的能力。

二、实验设备1、过程控制实验装置包括水箱、水泵、调节阀、传感器(液位传感器、温度传感器等)、控制器(可编程控制器 PLC 或工业控制计算机)等。

2、计算机及相关软件用于编程、监控和数据采集分析。

三、实验原理过程控制系统是指对工业生产过程中的某个物理量(如温度、压力、液位、流量等)进行自动控制,使其保持在期望的设定值附近。

其基本原理是通过传感器检测被控量的实际值,将其与设定值进行比较,产生偏差信号,控制器根据偏差信号按照一定的控制算法计算出控制量,通过执行机构(如调节阀、电机等)作用于被控对象,从而实现对被控量的控制。

常见的控制算法包括比例(P)控制、积分(I)控制、微分(D)控制及其组合(如 PID 控制)。

四、实验内容及步骤1、单回路液位控制系统实验(1)系统组成及连接将液位传感器安装在水箱上,调节阀与水泵相连,控制器与传感器和调节阀连接,计算机与控制器通信。

(2)参数设置在控制器中设置液位设定值、控制算法(如 PID)的参数等。

(3)系统运行启动水泵,观察液位的变化,通过控制器的调节使液位稳定在设定值附近。

(4)数据采集与分析利用计算机采集液位的实际值和控制量的数据,绘制曲线,分析系统的稳定性、快速性和准确性。

2、温度控制系统实验(1)系统组成与连接类似液位控制系统,将温度传感器安装在加热装置上,调节阀控制加热功率。

设置温度设定值和控制算法参数。

(3)运行与数据采集分析启动加热装置,观察温度变化,采集数据并分析。

五、实验数据及结果分析1、单回路液位控制系统(1)实验数据记录不同时刻的液位实际值和控制量。

(2)结果分析稳定性分析:观察液位是否在设定值附近波动,波动范围是否在允许范围内。

快速性分析:计算液位达到设定值所需的时间。

过程控制实验报告.doc

过程控制实验报告.doc

实验报告专业:自动化姓名:学号:实验一、计算机控制系统实验一、实验目的1、了解计算机控制系统的基本构成。

2、掌握本装置计算机实时监控软件的使用3、熟悉计算机控制算法。

4、掌握计算机控制的参数整定方法。

二、实验设备1、THKGK-1过程控制实验装置:GK-02 GK-03 GK-072、计算机及上位机监控软件三、实验原理与常规仪表控制系统相比,计算机控制系统的最大区别就是用微型机和A/D、D/A转换卡来代替常规的调节器。

基本构成框图如下:计算机根据测量值与设定值的偏差,按程序设定的算法进行运算,并将结果经D/A转换器输出。

控制算法有位置式,增量式和速度式。

为了使采样时间间隔内,输出保持在相应的数值,在D/A卡上设有零阶保持器。

四、实验步骤(一)、监控软件的使用及安装说明:1、计算机硬件要求:CPU:486以上。

内存:32MB或更多。

硬盘:1GB。

操作系统:Windows98/2000/XP。

显示器:1024×768。

串行口:COM12、软件安装安装过程已经在上位机光盘里面。

(二)、登录后选择PID算法对上水箱液位进行控制1、将计算机与单片机控制屏结合使用,对上水箱液位进行直接数字DDC控制实验。

系统连接图自拟。

(单片机控制屏仅起A/D、D/A转换的作用)2、设置适当的作图时间间隔和给定值,调整PID参数K、、Ti、Td、直到得到较好的过程控制实时曲线。

3、对不同PID参数下的实时控制曲线进行比较,分析各参数变化对控制质量的影响。

4、自行选择其他控制算法进行实验,了解不同算法的控制质量。

五、实验小结1、将上述实验结果整理好,写出参数整定的具体步骤及整定数值,整理出系统的结构图。

Kp=2 Ki=6 K=5 阀门开度为60%2、简述PID参数对系统性能的影响。

PID调节器分别对应比例、积分和微分作用1、比例参数KP的作用是加快系统的响应速度,提高系统的调节精度。

随着KP的增大系统的响应速度越快,系统的调节精度越高,但是系统易产生超调,系统的稳定性变差,甚至会导致系统不稳定。

过程控制控实验报告

过程控制控实验报告

过程控制控实验报告实验⼀单容⾃衡⽔箱特性的测试⼀、实验⽬的1. a 根据实验得到的液位阶跃响应曲线,⽤相应的⽅法确定被测对象的特征参数K 、T 和传递函数。

⼆、实验设备1. A3000⾼级过程控制实验系统2. 计算机及相关软件三、实验原理由图2.1可知,对象的被控制量为⽔箱的液位h ,控制量(输⼊量)是流⼊⽔箱中的流量Q 1,Q 2为流出⽔箱的流量。

⼿动阀QV105和闸板QV116的开度(5~10毫⽶)都为定值。

根据物料平衡关系,在平衡状态时:0Q Q 2010=- (1)动态时则有: dtdVQ Q 21=- (2)式中V 为⽔箱的贮⽔容积,dtdV为⽔贮存量的变化率,它与h 的关系为Adh dV =,即:dtdhA dt dV = (3) A 为⽔箱的底⾯积。

把式(3)代⼊式(2)得:QV116V104V103hh QV105QV102P102LT103LICA 103FV101MQ 1Q 2图2.1单容⽔箱特性测试结构图图2.2 单容⽔箱的单调上升指数曲线dtdhA=-21Q Q (4)基于S 2R h Q =,R S 为闸板QV116的液阻,则上式可改写为dtdhA R h Q S =-1,即:或写作:1)()(1+=TS Ks Q s H (5)式中T=AR S ,它与⽔箱的底积A 和V 2的R S 有关;K=R S 。

式(5)就是单容⽔箱的传递函数。

若令SR s Q 01)(=,R 0=常数,则式(5)可改为: TS KR S R K S R T S T K s H 0011/)(0+-=?+= 对上式取拉⽒反变换得: )e -(1KR h(t)t/T0-= (6)当∞→t 时0KR )h(=∞,因⽽有=∞=0R )h(K 阶跃输⼊输出稳态值。

当t=T 时,则)h(KR )e-(1KR h(T) 001∞===-0.6320.632。

式(6)表⽰⼀阶惯性环节的响应曲线是⼀单调上升的指数函数,如图2.2所⽰。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一 单容自衡水箱特性的测试一、实验目的1. a 根据实验得到的液位阶跃响应曲线,用相应的方法确定被测对象的特征参数K 、T 和传递函数。

二、实验设备1. A3000高级过程控制实验系统2. 计算机及相关软件 三、实验原理由图2.1可知,对象的被控制量为水箱的液位h ,控制量(输入量)是流入水箱中的流量Q 1,Q 2为流出水箱的流量。

手动阀QV105和闸板QV116的开度(5~10毫米)都为定值。

根据物料平衡关系,在平衡状态时:0Q Q 2010=- (1) 动态时则有: dtdV Q Q 21=- (2) 式中V 为水箱的贮水容积,dtdV 为水贮存量的变化率,它与h 的关系为Adh dV =,即:dtdh A dt dV = (3) A 为水箱的底面积。

把式(3)代入式(2)得:QV116 V104 V103 h ∆h QV105 QV102 P102LT103 LICA 103 FV101 M Q 1 Q 2 图2.1单容水箱特性测试结构图图2.2 单容水箱的单调上升指数曲线 dtdh A=-21Q Q (4) 基于S 2R h Q =,R S 为闸板QV116的液阻,则上式可改写为dtdh A R h Q S =-1,即: 或写作: 1)()(1+=TS K s Q s H (5) 式中T=AR S ,它与水箱的底积A 和V 2的R S 有关;K=R S 。

式(5)就是单容水箱的传递函数。

若令SR s Q 01)(=,R 0=常数,则式(5)可改为: TS KR S R K S R T S T K s H 0011/)(0+-=⨯+= 对上式取拉氏反变换得: )e -(1KR h(t)t/T 0-= (6)当∞→t 时0KR )h(=∞,因而有=∞=0R )h(K 阶跃输入输出稳态值。

当t=T 时,则)h(KR )e -(1KR h(T) 001∞===-0.6320.632。

式(6)表示一阶惯性环节的响应曲线是一单调上升的指数函数,如图2.2所示。

当由实验求得图2.2所示的阶跃响应曲线后,该曲线上升到稳态值的63%所对应的时间,就是水箱的时间常数T 。

该时间常数T 也可以通过坐标原点对响应曲线作切线,切线与稳态值交点所对应的时间就是时间常数T ,由响应曲线求得K 和T 后,就能求得单容水箱的传递函数。

1KQ h dt dh AR S =+图2.3 单容水箱的阶跃响应曲线如果对象的阶跃响应曲线为图2.3,则在此曲线的拐点D 处作一条切线,它与时间轴交于B 点,与响应稳态值的渐近线交于A 点。

图中OB 即为对象的滞后时间τ,BC 为对象的时间常数T ,所得的传递函数为:T sKe s+=-1H(S)τ 四、实验内容与步骤1. 智能仪表的测量值输入端AI0可任意选择上、中、下水箱中的一个水箱连接,操作值输出端AO0接电动调节阀。

2. 接通控制系统柜的电源开关和现场系统单项电源开关,启动执行机构。

3. 打开上位机“组态王”的工程管理器,选择 “智能仪表过程控制实验组态”工程,进入“A3000高级过程控制实验监控系统”运行环境,点击“进入系统”按钮进入主画面《A3000 高级过程控制实验系统__智能仪表》 ,在实验目录中选择“单容自衡水箱对象特性测试”工程,进入本实验的监控界面。

4. 在上位机监控界面中将智能仪表设置为“手动”控制,并将输出值设置为一个合适的值,即给电动调节阀设置一个合适的开度,此操作须通过调节仪表实现。

5. 打开现场系统面板上的“水泵2#”开关,给2#水泵上电打水。

通过适当增/减智能仪表的输出量,使水箱液位处于某一平衡位置,记录此时的仪表输出值和液位值。

6. 改变电动调节阀的开度,使其输出有一个正(或负)阶跃量的变化(此增量不宜过大,以免水箱中水溢出),于是水箱的液位便离开原平衡状态,经过一定的调节时间后,水箱的液位进入新的平衡状态,记录此时的仪表输出值和液位值。

液位的响应过程曲线如图2.4所示。

7. 根据前面记录的液位值和仪表输出值,按公式(6)计算K 值,再根据图2.3中的实验曲线求得T 值,把所得的结果填入下表。

写出对象的传递函数。

参数值测量值液位h K T τ正向输入0.1875 3 0 负向输入1.75 6.5 0 平均值 0.96875 4.75 0五、实验报告1. 写出常规的实验报告内容。

2. 分析用上述方法建立对象的数学模型有什么局限性?人为因素比较大,切点取得的位置直接影响到各个参数的求的六、思考题1. 做本实验时,为什么不能任意改变出水口闸板开度的大小?如果改变出水口闸板开度,就改变了对象的特性,实验数据就不是对同一个对图2.4 单容箱特性响应曲线图3.1 单回路控制系统方框图图3.2 扰动作用于不同位置的控制系统象测得的2. 用响应曲线法确定对象的数学模型时,其精度与那些因素有关? 切线取的位置单回路控制系统的概述及调节器参数整定方法一、 单回路控制系统的概述图3.1为单回路控制系统方框图的一般形式,它是由被控对象、执行器、调节器和测量变送器所组成的一个闭环控制系统。

系统的给定量是一定值,要求系统的被控制量稳定至给定量。

由于这种系统结构简单,调试方便,性能较好,故在工业生产中被广泛应用。

二、 干扰对系统性能的影响● 干扰通道的放大系数、时间常数及纯滞后对系统的影响干扰通道的放大系数Kf 会影响干扰加在系统中的幅值。

若系统是有差系统,则干扰通道的放大系数愈大,系统的静差也就愈大。

我们希望干扰通道的放大系数愈小愈好。

如果干扰通道是一个惯性环节,令时间常数为Tf ,则阶跃扰动通过惯性环节后,其过渡过程的动态分量被滤波而幅值变小。

即时间常数Tf 越大,则系统的动态偏差就愈小。

通常干扰通道中还会有纯滞后环节,使被调参数的响应时间滞后一个τ值,即)-Y(t (t)Y ττ=上式表明调节过程沿时间轴平移了一个τ的距离,即干扰通道出现纯滞后,但不会影响系统的调节质量。

● 干扰进入系统中的不同位置复杂的生产过程往往有多个干扰量,他们作用在系统的不同位置,如图3.2所示。

控制理论证明,同一形式、大小相同的扰动在系统中不同的位置所产生的静差是不一样的。

对扰动产生影响的仅是扰动作用点前的那些环节。

δ1K =(S)G P C =三、 控制规律的确定选择系统调节规律的目的是令调节器与调节对象很好匹配,使组成的控制系统满足工艺上所提出的动、静态性能指标。

比例(P)调节纯比例调节器是一种最简单的调节器,它对控制作用和扰动作用的响应都很快。

由于比例调节只有一个参数,所以整定很方便。

这种调节器的主要缺点是使系统有静差存在。

其传递函数为式中Kp 为比例系数,δ为比例带。

比例积分(PI)调节PI 调节器就是利用P 调节快速抵消干扰的影响,同时利用I 调节消除残差,但I 调节会降低系统的稳定性,这种调节器在过程控制中是应用最多的一种调节器。

其传递函数为)ST 1 +(11)S T 1 +(1K =(S)G I I P C δ= 式中T I 为积分时间。

比例微分(PD)调节这种调节器由于有微分的超前作用,能增加系统的稳定度,加快系统的调节过程,减小动态和静态误差,但微分抗干扰能力较差,且微分过大易导致调节阀动作向两端饱和,因此一般不用于流量和液位控制系统。

PD 调节器的传递函数为S)T +(11S)T +(1K =(S)G D D P C δ=比例微分积分(PID)调节器PID 是常规调节器中性能最好的一种调节器。

由于它具有各类调节器的优点,因而使系统具有更高的控制质量。

它的传递函数为S)T ST 1 +(11S)T S T 1 +(1K =(S)G D I D I P C +=+δ实验二 单容水箱液位定值控制系统一、 实验目的了解单容液位定值控制系统的结构与组成。

掌握单容液位定值控制系统调节器参数的整定和投运方法。

研究调节器相关参数的变化对系统静、动态性能的影响。

二、 实验设备1. A3000高级过程控制实验系统2. 计算机及相关软件三、 实验原理本实验系统的被控对象为下水箱,其液位高度作为系统的被控制量。

系统的给定信号为一定值,它要求被控制量下水箱液位的稳态值等于给定值。

由反馈控制的原理可知,应把下水箱的液位经传感器检测后的信号作为反馈信号。

QV116 V104 V103 h ∆h QV105 QV102P102LT10LICA 103 FV10M Q 1 Q 2 图3.5 下水箱液位定值控制系统结构图图3.6 上水箱液位定值控制系统方框图图3.5为本实验系统的结构图,图3.6为控制系统的方框图。

为了实现系统在阶跃给定和阶跃扰动作用下无静差,系统的调节器应为PI 或PID 。

四、 实验内容与步骤1. 本实验选择下水箱作为被控对象(也可选择中水箱或上水箱)。

实验之前先将储水箱中贮足水量,然后将阀门QV102、QV105全开,将下水箱出水闸板QV116开至适当开度(5-10mm )。

2. 智能仪表的测量值输入端AI0与下水箱液位输出端连接,操作值输出端AO0接电动调节阀。

3. 打开上位机“组态王”的工程管理器,选择 “智能仪表过程控制实验组态”工程,进入“A3000高级过程控制实验监控系统”运行环境,点击“进入系统”按钮进入主画面《A3000 高级过程控制实验系统__智能仪表》 ,在实验目录中选择“单容水箱液位定值控制系统”工程,进入本实验的监控界面。

4. 选用单回路控制系统实验中所述的某种调节器参数的整定方法整定好调节器的相关参数,并设置好系统的给定值后,在上位机监控界面中将智能仪表设置为“手动”控制。

5. 接通控制系统柜的电源开关和现场系统单相电源开关,打开现场系统面板上的“水泵2#”开关,给2#水泵上电打水。

6. 待下水箱液位达到给定值且基本稳定不变时,把调节器切换为自动,使系统投入自动运行状态。

7. 突加阶跃扰动(将给定量增加5%~15%),观察并记录系统的输出响应曲线。

8. 待系统进入稳态后,适量改变阀QV105的开度(作为系统的扰动),观察并记录在阶跃扰动作用下液位的变化过程。

9. 适量改变PI 的参数,用计算机记录不同参数时系统的响应曲线。

五、实验报告1.用实验方法确定调节器的相关参数。

2.列表记录,在上述参数下求得阶跃响应的动、静态性能指标。

超调量:20% 余差:0 调整时间:6.5min3.列表记录,在上述参数下求得系统在阶跃扰动作用下响应曲线的动、静态性能指标。

超调量:0 余差:0 调整时间:1.25min4.改变比例度δ和积分时间TI对系统的性能产生什么影响?此实验中没有加积分,δ越大,系统的跟踪能力越好,但是容易震荡实验三串级控制系统的连接实践一、串接控制系统的组成图4-1是串级控制系统的方框图。

该系统有主、副两个控制回路,主、副调节器相串联工作,其中主调节器有自己独立的设定值R,它的输出m1作为副调节器的给定值,副调节器的输出m2控制执行器,以改变主参数C1。

相关文档
最新文档