计算机过程控制实验报告

合集下载

计算机控制技术实验报告

计算机控制技术实验报告

计算机控制技术实验报告实验一 信号的采样与保持一、实验目的1.熟悉信号的采样和保持过程。

2.学习和掌握香农(采样)定理。

3.学习用直线插值法和二次曲线插值法还原信号。

二、实验设备PC 机一台,TD-ACS 实验系统一套,i386EX 系统板一块。

三、实验原理香农(采样)定理:若对于一个具有有限频谱(max ωω<)的连续信号)(t f 进行采样,当采样频率满足max 2ωω≥s 时,则采样函数)(t f *能无失真地恢复到原来的连续信号)(t f 。

m ax ω为信号的最高频率,s ω为采样频率。

四.实验内容1.采样与保持编写程序,实现信号通过 A/D 转换器转换成数字量送到控制计算机,计算机再把数字量送到 D/A 转换器输出。

实验线路图如图2-1所示,图中画“○”的线需用户在实验中自行接好,其它线系统已连好。

图2-1 采样保持线路图控制计算机的“OUT1”表示386EX 内部1#定时器的输出端,定时器输出的方波周期=定时器时常,“IRQ7”表示386EX 内部主片8259的“7”号中断,用作采样中断。

正弦波单元的“OUT ”端输出周期性的正弦波信号,通过模数转换单元的“IN7”端输入,系统用定时器作为基准时钟(初始化为10ms ),定时采集“IN7”端的信号,转换结束产生采样中断,在中断服务程序中读入转换完的数字量,送到数模转换单元,在“OUT1”端输出相应的模拟信号。

由于数模转换器有输出锁存能力,所以它具有零阶保持器的作用。

采样周期T= TK×10ms,TK 的范围为01~ FFH ,通过修改TK 就可以灵活地改变采样周期,后面实验的采样周期设置也是如此。

零阶采样保持程序流程图如图2-2所示。

图2-2 零阶采样保持程序流程图实验步骤:(1)参考流程图2-2编写零阶保持程序,编译、链接。

(2)按照实验线路图2-1接线,检查无误后开启设备电源。

(3)用示波器的表笔测量正弦波单元的“OUT ”端,调节正弦波单元的调幅、调频电位器及拨动开关,使得“OUT ”端输出幅值为3V ,周期1S 的正弦波。

过程控制实验报告【范本模板】

过程控制实验报告【范本模板】

过程控制实验实验报告班级:自动化1202姓名:杨益伟学号:1209003212015年10月信息科学与技术学院实验一 过程控制系统建模作业题目一:常见的工业过程动态特性的类型有哪几种?通常的模型都有哪些?在Simul ink 中建立相应模型,并求单位阶跃响应曲线.答:常见的工业过程动态特性的类型有:无自平衡能力的单容对象特性、有自平衡能力的单容对象特性、有相互影响的多容对象的动态特性、无相互影响的多容对象的动态特性等。

通常的模型有一阶惯性模型,二阶模型等. 单容过程模型1、无自衡单容过程的阶跃响应实例已知两个无自衡单容过程的模型分别为s s G 5.01)(=和se ss G 55.01)(-=,试在Simuli nk 中建立模型,并求单位阶跃响应曲线。

Simul ink 中建立模型如图所示: 得到的单位阶跃响应曲线如图所示:2、自衡单容过程的阶跃响应实例已知两个自衡单容过程的模型分别为122)(+=s s G 和s e s s G 5122)(-+=,试在Simu link 中建立模型,并求单位阶跃响应曲线.Simu link 中建立模型如图所示: 得到的单位阶跃响应曲线如图所示:多容过程模型3、有相互影响的多容过程的阶跃响应实例已知有相互影响的多容过程的模型为121)(22++=Ts s T s G ξ,当参数1=T , 2.1 ,1 ,3.0 ,0=ξ时,试在S imulink 中建立模型,并求单位阶跃响应曲线在Simu lin k中建立模型如图所示: 得到的单位阶跃响应曲线如图所示:4、无相互影响的多容过程的阶跃响应实例已知两个无相互影响的多容过程的模型为)1)(12(1)(++=s s s G (多容有自衡能力的对象)和)12(1)(+=s s s G (多容无自衡能力的对象),试在Simulink 中建立模型,并求单位阶跃响应曲线。

在Simu lin k中建立模型如图所示: 得到的单位阶跃响应曲线如图所示:作业题目二:某二阶系统的模型为2() 224nG s s s n nϖζϖϖ=++,二阶系统的性能主要取决于ζ,n ϖ两个参数。

进程控制实验报告

进程控制实验报告

测试过程: (实验中出现的问题、错误、解决方法)创建好项目和文件, 对文件进行编译和运行, 编译没有错误, 但是运行总是提示有2个错误。

解决办法:在新建项目的时候“新建”, 然后新建文件, 程序就可以正常的运行了。

实验总结:1、课下没有对Microsoft Visual c++ 6.0进行深入的研究, 还是好多问题不知道怎么解决, 好好钻研一下这个很有必要的啊!评语与成绩:教师签名:年月日实验名称进程控制实验类型验证性实验时间实验环境Windows xp 、Microsoft Visual c++ 6.0实验目的与要求:1.通过创建进程、观察正在运行的进程和终止进程的程序设计和调试操作, 进一步熟悉操作系统的进程概念, 理解Windows 2000进程的“一生”。

2.通过阅读和分析实验程序,学习创建进程、观察进程和终止进程的程序设计方法。

实验内容:本实验给出了三段程序:创建进程、正在运行的进程和终止进程, 阅读程序回答所提问题, 分析运行结果。

一、实验步骤: (算法描述、源程序、操作步骤和方法)二、创建进程回答问题:1.该程序是一个简单使用CreateProcess()API函数的例子。

首先形成简单的命令行, 提供当前EXE文件的指定文件名和代表生成克隆进程的号码。

大多数参数都可取默认值, 但是创建标志参数使用了CREATE_NEW_CONSOLE标志, 指示新进程分配自己的控制台, 这使得运行程序时, 在任务栏上产生许多活动标记。

然后该克隆进程的创建方法关闭传递过来的句柄并返回main ()函数。

在关闭程序之前, 每一进程的执行主线程暂停一下, 以便让用户看到其中的至少一个窗口。

2、CreateProcess()函数有几个核心参数?本实验程序中设置的各个参数的值是什么?答、CreateProcess()函数有10个核心参数参数的值为: CreateProcess(szFilename, //产生这个EXE的应用程序的名称szCmdLine, //告诉其行为像一个子进程的标志NULL, //缺省的进程安全性NULL, //缺省的线程安全性FALSE, //不继承句柄CREATE_NEW_CONSOLE, //使用新的控制台NULL, //新的环境NULL, //当前目录&si, //启动信息&pi);3.程序运行时屏幕显示的信息是什么?答、三、运行进程1、回答问题:2、给出运行结果(当前PID信息、操作系统版本、系统提示信息)答、运行结果为:2.如何获得当前的PID和操作系统版本可利用GetCurrentProcessId()API函数查看系统当前进程的标识符(pid), 该pid在整个系统中都可使用。

过程控制实验的实训报告

过程控制实验的实训报告

一、实训目的通过本次过程控制实验实训,使我对过程控制的基本原理、系统组成、控制策略以及实际应用等方面有一个全面的认识,提高我运用理论知识解决实际问题的能力。

同时,通过实验操作,掌握实验设备的使用方法,培养我的动手能力和团队协作精神。

二、实训内容1. 实验设备本次实验使用的设备包括:过程控制系统实验台、传感器、执行器、控制器、计算机等。

2. 实验内容(1)过程控制系统基本原理及组成(2)传感器特性及测量方法(3)执行器特性及控制方法(4)控制器特性及控制策略(5)过程控制系统设计及应用三、实验步骤1. 观察实验设备,了解其组成及功能。

2. 搭建实验系统,连接传感器、执行器、控制器等。

3. 根据实验要求,设置控制器参数,实现过程控制。

4. 观察实验现象,分析实验结果,调整控制器参数,优化控制效果。

5. 实验结束后,整理实验数据,撰写实验报告。

四、实验结果与分析1. 实验现象通过搭建实验系统,观察实验现象,发现当控制器参数设置合理时,系统能够实现稳定的控制效果。

2. 实验结果(1)传感器输出信号与被测参数之间的关系符合线性关系。

(2)执行器响应速度快,控制精度高。

(3)控制器参数对系统控制效果有显著影响。

3. 实验分析(1)传感器在过程控制系统中起到采集被测参数的作用,其输出信号与被测参数之间的关系符合线性关系,为后续控制策略的制定提供了基础。

(2)执行器作为控制系统的输出环节,其响应速度快、控制精度高,对系统控制效果有重要影响。

(3)控制器参数的设置对系统控制效果有显著影响,合理设置控制器参数可以提高控制效果。

五、实训体会1. 通过本次实训,我对过程控制的基本原理、系统组成、控制策略以及实际应用等方面有了更深入的了解。

2. 实验过程中,我掌握了实验设备的使用方法,提高了自己的动手能力。

3. 实验过程中,我学会了与团队成员沟通协作,提高了自己的团队协作精神。

4. 实验过程中,我认识到理论知识与实际应用之间的联系,为今后学习和工作打下了基础。

过程控制实验报告

过程控制实验报告

过程控制实验报告过程控制实验报告引言:过程控制是一种重要的工程控制方法,广泛应用于工业生产、环境保护、交通运输等各个领域。

本实验旨在通过对过程控制的实际操作,理解和掌握过程控制的基本原理和方法。

一、实验目的本实验的主要目的是通过搭建一个简单的过程控制系统,了解过程控制的基本概念和原理,并通过实际操作掌握过程控制的方法和技巧。

二、实验装置和原理实验所用的装置是一个温度控制系统,由温度传感器、控制器和执行器组成。

温度传感器负责测量温度,控制器根据测量值与设定值的差异来控制执行器的动作,从而实现温度的控制。

三、实验步骤1. 将温度传感器安装在被控温度区域,并连接到控制器上。

2. 设置控制器的参数,包括设定值、比例系数、积分时间和微分时间等。

3. 打开控制器,开始实验。

观察温度的变化过程,并记录实验数据。

4. 根据实验数据分析控制效果,并对控制器的参数进行调整,以达到更好的控制效果。

5. 重复步骤3和4,直到达到满意的控制效果。

四、实验结果与分析在实验过程中,我们观察到温度的变化过程,并记录了实验数据。

通过对实验数据的分析,我们可以评估控制效果的好坏,并对控制器的参数进行调整。

五、实验总结与体会通过本次实验,我们深入了解了过程控制的基本原理和方法。

实践操作使我们更加熟悉了过程控制的过程和技巧。

同时,我们也体会到了过程控制在工程实践中的重要性和应用价值。

六、实验改进与展望本次实验中,我们采用了简单的温度控制系统进行实验。

未来可以进一步扩展实验内容,涉及到其他参数的控制,如压力、流量等,以更全面地了解过程控制的应用。

结语:过程控制是一门重要的工程学科,对于提高生产效率、保护环境、提升产品质量等方面具有重要意义。

通过本次实验,我们对过程控制的原理和方法有了更深入的理解,为今后的工程实践打下了坚实的基础。

希望通过不断学习和实践,我们能够在工程领域中运用过程控制的知识,为社会发展做出更大的贡献。

过程控制实验报告

过程控制实验报告

过程控制实验报告1. 实验目的本次实验的目的是学习和掌握过程控制的基本原理和操作方法,了解过程控制系统的组成和结构,掌握过程控制系统的基本调试方法和过程控制的自动化程度。

2. 实验原理过程控制是指对一组物理过程进行控制的技术和方法。

过程控制的目的是使被控制的物理过程在一定的条件下,达到预期的目标,如稳定、精度、速度、延迟、可靠性、安全性、经济性等等。

过程控制系统由传感器、执行元件、控制器和执行器构成,其中传感器用于检测被控制物理过程的状态,控制器根据传感器获取的信息进行决策,并通过执行元件控制执行器实现对被控制物理过程的控制。

3. 实验步骤本次实验的过程控制系统由一台工业控制计算机、一台工业控制器和一组执行器构成。

实验的具体步骤如下:(1) 将传感器与控制器连接,并将控制器与计算机连接。

(2) 在计算机上启动控制软件,在软件中设置控制器和传感器的参数。

(3) 将执行器与控制器连接,并调试执行器的控制参数。

(4) 在控制软件中设置控制策略和控制目标,并启动控制器。

(5) 监测被控制物理过程的状态,并记录相关数据。

(6) 对控制策略和控制参数进行调整,直到被控制物理过程达到预期目标。

4. 实验结果经过多次实验,我们成功地控制了被控制的物理过程,并达到了预期目标。

实验结果表明,过程控制技术可以有效地控制物理过程,并提高物理过程的稳定性、精确性和可靠性。

5. 实验总结本次实验使我们深入了解了过程控制的原理和操作方法,掌握了过程控制系统的基本调试方法和过程控制的自动化程度。

通过实验,我们发现过程控制技术在许多工业领域都具有广泛的应用前景,是提高生产效率和质量的重要手段。

在今后的学习和工作中,我们将继续深入学习和研究过程控制技术,为推动工业自动化和智能化发展做出贡献。

《过程控制系统》实验报告

《过程控制系统》实验报告

《过程控制系统》实验报告实验报告:过程控制系统一、引言过程控制系统是指对工业过程中的物理、化学、机械等变量进行监控和调节的系统。

它能够实时采集与处理各种信号,根据设定的控制策略对工业过程进行监控与调节,以达到所需的目标。

在工业生产中,过程控制系统起到了至关重要的作用。

本实验旨在了解过程控制系统的基本原理、组成以及操作。

二、实验内容1.过程控制系统的组成及原理;2.过程控制系统的搭建与调节;3.过程控制系统的优化优化。

三、实验步骤1.复习过程控制系统的原理和基本组成;2.使用PLC等软件和硬件搭建简单的过程控制系统;3.设计一个调节过程,如温度控制或液位控制,调节系统的参数;4.通过修改控制算法和调整参数,优化过程控制系统的性能;5.记录实验数据并进行分析。

四、实验结果与分析在本次实验中,我们搭建了一个温度控制系统,通过控制加热器的功率来调节温度。

在调节过程中,我们使用了PID控制算法,并调整了参数,包括比例、积分和微分。

通过观察实验数据,我们可以看到温度的稳定性随着PID参数的调整而改变。

当PID参数调整合适时,温度能够在设定值附近波动较小,实现了较好的控制效果。

在优化过程中,我们尝试了不同的控制算法和参数,比较了它们的性能差异。

实验结果表明,在一些情况下,改变控制算法和参数可以显著提高过程控制系统的性能。

通过优化,我们实现了更快的响应时间和更小的稳定偏差,提高了系统的稳定性和控制精度。

五、结论与总结通过本次实验,我们了解了过程控制系统的基本原理、组成和操作方法。

我们掌握了搭建过程控制系统、调节参数以及优化性能的技巧。

实验结果表明,合理的控制算法和参数选择可以显著提高过程控制系统的性能,实现更好的控制效果。

然而,本次实验还存在一些不足之处。

首先,在系统搭建过程中,可能由于设备和软件的限制,无法完全模拟实际的工业过程。

其次,实验涉及到的控制算法和参数调节方法较为简单,在实际工程中可能需要更为复杂和精细的控制策略。

《过程控制系统》实验报告

《过程控制系统》实验报告

《过程控制系统》实验报告一、实验目的过程控制系统实验旨在通过实际操作和观察,深入理解过程控制系统的组成、工作原理和性能特点,掌握常见的控制算法和参数整定方法,培养学生的工程实践能力和解决实际问题的能力。

二、实验设备1、过程控制实验装置包括水箱、水泵、调节阀、传感器(液位传感器、温度传感器等)、控制器(可编程控制器 PLC 或工业控制计算机)等。

2、计算机及相关软件用于编程、监控和数据采集分析。

三、实验原理过程控制系统是指对工业生产过程中的某个物理量(如温度、压力、液位、流量等)进行自动控制,使其保持在期望的设定值附近。

其基本原理是通过传感器检测被控量的实际值,将其与设定值进行比较,产生偏差信号,控制器根据偏差信号按照一定的控制算法计算出控制量,通过执行机构(如调节阀、电机等)作用于被控对象,从而实现对被控量的控制。

常见的控制算法包括比例(P)控制、积分(I)控制、微分(D)控制及其组合(如 PID 控制)。

四、实验内容及步骤1、单回路液位控制系统实验(1)系统组成及连接将液位传感器安装在水箱上,调节阀与水泵相连,控制器与传感器和调节阀连接,计算机与控制器通信。

(2)参数设置在控制器中设置液位设定值、控制算法(如 PID)的参数等。

(3)系统运行启动水泵,观察液位的变化,通过控制器的调节使液位稳定在设定值附近。

(4)数据采集与分析利用计算机采集液位的实际值和控制量的数据,绘制曲线,分析系统的稳定性、快速性和准确性。

2、温度控制系统实验(1)系统组成与连接类似液位控制系统,将温度传感器安装在加热装置上,调节阀控制加热功率。

设置温度设定值和控制算法参数。

(3)运行与数据采集分析启动加热装置,观察温度变化,采集数据并分析。

五、实验数据及结果分析1、单回路液位控制系统(1)实验数据记录不同时刻的液位实际值和控制量。

(2)结果分析稳定性分析:观察液位是否在设定值附近波动,波动范围是否在允许范围内。

快速性分析:计算液位达到设定值所需的时间。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

计算机过程控制实验报告实验1 单容水箱液位数学模型的测定实验1、试验方案:水流入量Qi 由调节阀u 控制,流出量Qo 则由用户通过负载阀R 来改变。

被调量为水位H 。

分析水位在调节阀开度扰动下的动态特性。

直接在调节阀上加定值电流,从而使得调节阀具有固定的开度。

(可以通过智能调节仪手动给定,或者AO 模块直接输出电流。

)调整水箱出口到一定的开度。

突然加大调节阀上所加的定值电流观察液位随时间的变化,从而可以获得液位数学模型。

通过物料平衡推导出的公式:μμk Q H k Q i O ==,那么)(1H k k Fdt dH -=μμ, 其中,F 是水槽横截面积。

在一定液位下,考虑稳态起算点,公式可以转换成μμR k H dtdHRC=+。

公式等价于一个RC 电路的响应函数,C=F 就是水容,kH R 02=就是水阻。

如果通过对纯延迟惯性系统进行分析,则单容水箱液位数学模型可以使用以下S 函数表示:)1()(0+=TS S KR S G 。

相关理论计算可以参考清华大学出版社1993年出版的《过程控制》,金以慧编著。

2、实验步骤:1) 在现场系统A3000-FS 上,将手动调节阀JV201、JV206完全打开,使下水箱闸板具有一定开度,其余阀门关闭。

2) 在控制系统A3000-CS 上,将下水箱液位(LT103)连到内给定调节仪输入端,调节仪输出端连到电动调节阀(FV101)控制信号端。

3) 打开A3000-CS 电源,调节阀通电。

打开A3000-FS 电源。

4) 在A3000-FS 上,启动右边水泵(即P102),给下水箱(V104)注水。

给定值图1 单容水箱液位数学模型的测定实验5) 调节内给定调节仪设定值,从而改变输出到调节阀(FV101)的电流,然后调节JV303开度,使得在低水位时达到平衡。

6) 改变设定值,记录水位随时间的曲线。

3、参考结果单容水箱水位阶跃响应曲线,如图2所示:图2 单容水箱液位飞升特性此时液位测量高度184.5 mm ,实际高度184 mm -35 mm =149 mm 。

实际开口面积5.5x49.5=272.25 mm ²。

此时负载阀开度系数:s m x H Q k /1036.7/5.24max -==。

水槽横截面积:0.206m ²。

那么得到非线性微分方程为(标准量纲):H H dt dH 00357.000138.0206.0/)000736.0000284.0(/-=-=。

进行线性简化,可以认为它是一阶惯性环节加纯延迟的系统)1/()(+=-Ts Ke s G s τSp =12实验总结:通过本次实验,我们知道了水流量Qi与调节阀u,流出量Qo与负载阀与被调量水位H之间的关系,即水位在调节阀开度扰动下的动态特性。

物料平衡推导出的公式等价于一个RC电路的响应函数,液位的动态特性与负载阀的开度系数密切相关。

得到的微分方程可认为是一个一阶惯性环节加纯延迟系统。

通过组态软件我们可以用不同的P,I ,D调节对液位进行调节,并且能够通过组态软件上的实时液位变化曲线来更直观的了解液位的动态特性。

对实验有更深刻的印象。

实验2 双容水箱液位数学模型的测定实验1、试验方案:水流入量Qi 由调节阀u 控制,流出量Qo 则由用户通过负载阀R 来改变。

被调量为下水箱水位H 。

分析水位在调节阀开度扰动下的动态特性。

直接在调节阀上加定值电流,从而使得调节阀具有固定的开度。

(可以通过智能调节仪手动给定,或者AO 模块直接输出电流。

)调整水箱出口到一定的开度。

突然加大调节阀上所加的定值电流观察液位随时间的变化,从而可以获得液位数学模型。

逻辑结构如图1所示。

通过物料平衡推导出的公式:0,122111=-+=+rH H dtdHT R k H dt dH T u μ, 其中R1、R2为线性化水阻。

212212122111,,R R R r R R R R F T R F T +=+==。

那么: μμ122212221)(R rk H T dt dHT T dtH d T T =+++。

2、实验步骤:1) 在A3000-FS 上,将手动调节阀JV205、JV201完全打开,并使阀中水箱、下水箱闸板具有一定开度,其余阀门关闭。

图1 双容水箱液位数学模型的测定实验2)在A3000-CS上,将下水箱液位(LT103)连到内给定调节仪输入端,调节仪输出端连到电动调节阀(FV101)控制信号端。

3)打开A3000电源,调节阀(FV101)通电。

4)在A3000-FS上,启动右边水泵,给中水箱V103 注水。

(下水箱V104由中水箱V103注水。

)5)调节内给定调节仪设定值,从而调节输出到FV101的电流,然后调节下水箱闸板开度,使得在低水位达到平衡。

6)改变设定值,记录水位随时间的曲线。

3、参考结果双容水箱水位阶跃响应曲线,如图2所示:图2 双容水箱液位飞升特性平衡时液位测量高度215 mm,实际高度215 mm -35 mm =180 mm。

对比单容实验,双容系统上升时间长,明显慢多了。

但是在上升末端,还是具有近似于指数上升的特点。

明显有一个拐点。

(1)p调节P=500 ,I=10000 , D=0 LP=1000 i=10000 d=0实验总结:通过本次实验,我们了解了双容水箱液位的动态特性。

通过液位的数学模型,我们有了更直观形象的对控制过程的理解。

同时还用物理学上电阻的特性,演变出线性水阻来更形象的理解控制过程。

实验的操作过程中,开启和关闭阀门要设定好。

通过改变设定值得到不同的阶跃响应曲线。

从曲线我们看出双容系统比起单容系统上升比较缓慢但是在上升末端,还是具有近似于指数上升的特点。

明显有一个拐点。

实验3 三容水箱液位数学模型的测定实验由于三容水箱液位数学模型具有更高阶导数,比较复杂,所以本实验为复杂控制系统以及高级算法研究提供了条件。

1、试验方案:水流入量Qi由调节阀u控制,流出量Qo则由用户通过负载阀R来改变。

被调量为水位H。

分析水位在调节阀开度扰动下的动态特性。

直接在调节阀上加定值电流,从而使得调节阀具有固定的开度。

(可以通过智能调节仪手动给定,或者AO模块直接输出电流。

)调整水箱出口到一定的开度。

突然加大调节阀上所加的定值电流观察液位随时间的变化,从而可以获得液位数学模型。

逻辑结构如图1所示。

定值通过物料平衡推导出的公式:)(11111Q R k F dt dH u -=μ )(12112Q Q F dt dH -= )(13233Q Q F dt dH -= 综合可以得到一个复杂的三阶微分方程。

2、实验步骤:1) 在A3000-FS 上,将手动调节阀JV204、JV201完全打开,并调节上水箱、中水箱和下水箱闸板具有一定开度,其余阀门关闭。

2) 在A3000-CS 上,将下水箱液位(LT103)连到内给定调节仪输入端,调节仪输出端连到电动调节阀(FV101)控制信号端。

3) 打开A3000电源,调节阀FV101通电。

4) 在A3000-FS 上,启动右边水泵,给上水箱V102注水;水箱V103、V104则分别由上、中水箱注水。

5) 调节内给定调节仪设定值,从而改变输出到FV101的电流,然后调节下水箱闸板开度使得在低水位段达到平衡。

6) 改变设定值,记录水位随时间的曲线。

3、参考结果三容水箱水位阶跃响应曲线,如图2所示:图2三容水箱液位飞升特性单P调节单I调节水位一直增加单D调节PI调节,I值过大引起较大波动PID调节三容水箱应该使I很小,不然会引起较大的波动实验总结:通过本次实验,我们通过组态软件进行组态进行三容水箱液位控制。

了解了三容水箱液位的动态特性。

其中水流入量Qi由调节阀u控制,流出量Qo则由用户通过负载阀R 来改变。

被调量为下水位H。

利用PID控制的特性来对实验进行控制观察实验结果。

对比单容水箱的实验截图可以看出三容水箱少了较大的偶然性波动,上升和下降都是叫缓和的。

于是我们知道不同容箱数的液位控制有不同的动态特性。

在实验的过程中我发现有许多不理解的地方,使我认识到我对课本上的知识有很多不懂,没有把理论上的知识学透彻,书上的知识是做实验的前提。

理论结合实际,才能把实验做好,每次不断的总结才能有不断的提升。

实验4单容水箱液位控制实验单容水箱液位定值(随动)控制实验,定性分析P,PI、PD控制器特性。

控制逻辑如图1所示:图1单容上水箱液位定值(随动)控制实验1水流入量Qi由调节阀u控制,流出量Qo则由用户通过负载阀R来改变。

被调量为水位H。

使用P,PI , PID控制,看控制效果,进行比较。

2、控制策略使用PI、PD、PID调节。

3、实验步骤1)使用组态软件进行组态。

数值定义为0~100。

实时曲线时间定义为5~10min。

2)在A3000-FS上,打开手阀JV206、JV201,调节下水箱闸板具有一定开度,其余阀门关闭。

3)连线:下水箱液位连接到内给定调节仪输入。

内给定调节仪的输出连接到调节阀的控制端。

4)打开A3000电源,打开电动调节阀开关。

5)在A3000-FS上,启动右边水泵(P102),给下水箱V104注水。

6)LT103→控制器→FV101单回路定值以及数学模型的实验。

7)按所学理论操作调节器,分别进行P、PI、PID设定。

简单设定规则:首先把P设定到30,I关闭(调节仪I>3600关闭),D关闭(调节仪D=0关闭)等水位低于40%,然后打开水泵,开始控制。

设定值60%。

一般P越大,则残差越大。

可以减少P,直到出现振荡。

则不出现振荡前的那个最小值就是P。

PI控制首先确认上次的P,我们可以不改变这个P值,也可以增加10%。

然后把I 设定为1800。

关闭水泵,等水位低于40%,然后打开水泵,开始控制。

设定值60%。

观察控制曲线的趋势,如果出现恢复非常慢,则可以减少I,直到恢复比较快,而没有出现振荡,超调也不是非常大。

最后逐步增加D,使得控制更快速,一般控制系统有PI控制就可以了。

4、参考结果单容水箱液位控制实验下闸板顶到铁槽顶距离(开度): 卡尺直接量7mm,使用纸板对齐画线测量6.5mm。

比例控制器控制曲线如图所示。

多个P值的控制曲线绘制在同一个图2上:图2 比例控制器控制曲线从图可见P=16时,有振荡趋势,P=24比较好。

残差大约是8%。

PI控制器控制曲线如图3所示。

选择P=24,然后把I从1800逐步减少。

图3 PI控制器控制曲线如图所示,在这里I的大小对控制速度影响已经不大。

从I=5时出现振荡,并且难以稳定了。

I的选择很大,8-100都具有比较好的控制特性,这里从临界条件,选择I=8到20之间。

PID控制器控制曲线如图4所示:图4 PID控制器控制曲线P=24,I=20,D=2或4都具有比较好的效果。

相关文档
最新文档