过程控制系统实验报告

合集下载

北京科技大学过程控制实验报告

北京科技大学过程控制实验报告

实验报告课程名称:过程控制系统实验项目名称:被控对象特性测试实验日期与时间: 2022.07 指导教师:班级:姓名:学号:成绩:一、实验目的要求1.了解控制对象特性的基本形式。

2.掌握实验测试对象特性的方法,并求取对象特性参数二、实验内容本节实验内容主要完成测试对象特性,包含以下两部分内容:1.被控对象特性的实验测定本实验采用飞升曲线法(阶跃向应曲线法)测取对象的动特性。

飞升曲线是指输入为阶跃信号时的输出量变化的曲线。

实验时,系统处于开环状态,被控对象在某一状态下稳定一段时间后,输入一阶跃信号,使被控对象达到另一个稳定状态,得到被控对象的飞升曲线。

在实验时应注意以下的一些问题:1)测试前系统应处于正常工作状态,也就是说系统应该是平衡的。

采取一切措施防止其他干扰的发生,否则将影响实验结果。

2)在测试工作中要特别注意工作点与阶跃幅度的选取。

作为测试对象特性的工作点,应该选择正常工作状态,也就是在额定负荷及正常的其他干扰下,因为整个控制过程将在此工作点附近进行。

阶跃作用的取值范围为其额定值的 5-10%。

如果取值太小,由于测量误差及其它干扰的影响,会使实验结果不够准确。

如果取值过大,则非线性影响将扭曲实验结果。

不能获得应有的反应曲线,同时还将使生产长期处于不正常的工作状态,特别是有进入危险区域的可能性,这是生产所不能允许的。

3)实验时,必须特别注意的是,应准确地记录加入阶跃作用的计时起点,注意被调量离开起始点时的情况,以便计算对象滞后的大小,这对以后整定控制器参数具有重要的意义。

4)每次实验应在相同的条件下进行两次以上,如果能够重合才算合格。

为了校验线性,宜作正负两种阶跃进行比较。

也可作不同阶跃量的实验。

2.飞升曲线数据处理在飞升曲线测得以后,可以用多种方法来计算出所测对象的微分方程式,数据处理方法有面积法、图解法、近似法等。

面积法较复杂,计算工作量较大。

近似法误差较大,图解法较方便,误差比近似法小。

过程控制实验报告

过程控制实验报告

过程控制系统Matlab/Simulink仿真实验实验一过程控制系统建模 (1)实验二PID控制 (10)实验三串级控制 (27)实验四比值控制 (35)实验五解耦控制系统 (40)实验一 过程控制系统建模作业题目一:常见的工业过程动态特性的类型有哪几种?通常的模型都有哪些?在Simulink 中建立相应模型,并求单位阶跃响应曲线。

答:常见的工业过程动态特性的类型有:无自平衡能力的单容对象特性、有自平衡能力的单容对象特性、有相互影响的多容对象的动态特性、无相互影响的多容对象的动态特性等。

通常的模型有一阶惯性模型,二阶模型等。

(1) 无自平衡能力的单容对象特性: 两个无自衡单容过程的模型分别为s s G 5.01)(=和se ss G 55.01)(-=,在Simulink 中建立模型如下单位阶跃响应曲线如下:(2) 有自平衡能力的单容对象特性: 两个自衡单容过程的模型分别为122)(+=s s G 和s e s s G 5122)(-+=,在Simulink 中建立模型如下:单位阶跃响应曲线如下:(3) 有相互影响的多容对象的动态特性: 有相互影响的多容过程的模型为121)(22++=Ts s T s G ξ,当参数1=T ,2.1 ,1 ,3.0 ,0=ξ时,在Simulink 中建立模型如下:单位阶跃响应曲线如下:(4) 无相互影响的多容对象的动态特性: 两个无相互影响的多容过程的模型为)1)(12(1)(++=s s s G (多容有自衡能力的对象)和)12(1)(+=s s s G (多容无自衡能力的对象),在Simulink 中建立模型如下单位阶跃响应曲线如下作业题目二:某二阶系统的模型为2() G s ϖ=,二阶系统的性能主要取决于ζ,ϖ两个参数。

试利用Simulink 仿真两个参数的变化对二阶系统输出响应的影响,加深对二阶系统的理解,分别进行下列仿真:(1)2n ϖ=不变时,ζ分别为0.1, 0.8, 1.0, 2.0时的单位阶跃响应曲线; (2)0.8ζ=不变时,n ϖ分别为2, 5, 8, 10时的单位阶跃响应曲线。

过程控制实验的实训报告

过程控制实验的实训报告

一、实训目的通过本次过程控制实验实训,使我对过程控制的基本原理、系统组成、控制策略以及实际应用等方面有一个全面的认识,提高我运用理论知识解决实际问题的能力。

同时,通过实验操作,掌握实验设备的使用方法,培养我的动手能力和团队协作精神。

二、实训内容1. 实验设备本次实验使用的设备包括:过程控制系统实验台、传感器、执行器、控制器、计算机等。

2. 实验内容(1)过程控制系统基本原理及组成(2)传感器特性及测量方法(3)执行器特性及控制方法(4)控制器特性及控制策略(5)过程控制系统设计及应用三、实验步骤1. 观察实验设备,了解其组成及功能。

2. 搭建实验系统,连接传感器、执行器、控制器等。

3. 根据实验要求,设置控制器参数,实现过程控制。

4. 观察实验现象,分析实验结果,调整控制器参数,优化控制效果。

5. 实验结束后,整理实验数据,撰写实验报告。

四、实验结果与分析1. 实验现象通过搭建实验系统,观察实验现象,发现当控制器参数设置合理时,系统能够实现稳定的控制效果。

2. 实验结果(1)传感器输出信号与被测参数之间的关系符合线性关系。

(2)执行器响应速度快,控制精度高。

(3)控制器参数对系统控制效果有显著影响。

3. 实验分析(1)传感器在过程控制系统中起到采集被测参数的作用,其输出信号与被测参数之间的关系符合线性关系,为后续控制策略的制定提供了基础。

(2)执行器作为控制系统的输出环节,其响应速度快、控制精度高,对系统控制效果有重要影响。

(3)控制器参数的设置对系统控制效果有显著影响,合理设置控制器参数可以提高控制效果。

五、实训体会1. 通过本次实训,我对过程控制的基本原理、系统组成、控制策略以及实际应用等方面有了更深入的了解。

2. 实验过程中,我掌握了实验设备的使用方法,提高了自己的动手能力。

3. 实验过程中,我学会了与团队成员沟通协作,提高了自己的团队协作精神。

4. 实验过程中,我认识到理论知识与实际应用之间的联系,为今后学习和工作打下了基础。

过程控制实验报告

过程控制实验报告

过程控制实验报告过程控制实验报告引言:过程控制是一种重要的工程控制方法,广泛应用于工业生产、环境保护、交通运输等各个领域。

本实验旨在通过对过程控制的实际操作,理解和掌握过程控制的基本原理和方法。

一、实验目的本实验的主要目的是通过搭建一个简单的过程控制系统,了解过程控制的基本概念和原理,并通过实际操作掌握过程控制的方法和技巧。

二、实验装置和原理实验所用的装置是一个温度控制系统,由温度传感器、控制器和执行器组成。

温度传感器负责测量温度,控制器根据测量值与设定值的差异来控制执行器的动作,从而实现温度的控制。

三、实验步骤1. 将温度传感器安装在被控温度区域,并连接到控制器上。

2. 设置控制器的参数,包括设定值、比例系数、积分时间和微分时间等。

3. 打开控制器,开始实验。

观察温度的变化过程,并记录实验数据。

4. 根据实验数据分析控制效果,并对控制器的参数进行调整,以达到更好的控制效果。

5. 重复步骤3和4,直到达到满意的控制效果。

四、实验结果与分析在实验过程中,我们观察到温度的变化过程,并记录了实验数据。

通过对实验数据的分析,我们可以评估控制效果的好坏,并对控制器的参数进行调整。

五、实验总结与体会通过本次实验,我们深入了解了过程控制的基本原理和方法。

实践操作使我们更加熟悉了过程控制的过程和技巧。

同时,我们也体会到了过程控制在工程实践中的重要性和应用价值。

六、实验改进与展望本次实验中,我们采用了简单的温度控制系统进行实验。

未来可以进一步扩展实验内容,涉及到其他参数的控制,如压力、流量等,以更全面地了解过程控制的应用。

结语:过程控制是一门重要的工程学科,对于提高生产效率、保护环境、提升产品质量等方面具有重要意义。

通过本次实验,我们对过程控制的原理和方法有了更深入的理解,为今后的工程实践打下了坚实的基础。

希望通过不断学习和实践,我们能够在工程领域中运用过程控制的知识,为社会发展做出更大的贡献。

过程控制实验报告

过程控制实验报告

过程控制实验报告1. 实验目的本次实验的目的是学习和掌握过程控制的基本原理和操作方法,了解过程控制系统的组成和结构,掌握过程控制系统的基本调试方法和过程控制的自动化程度。

2. 实验原理过程控制是指对一组物理过程进行控制的技术和方法。

过程控制的目的是使被控制的物理过程在一定的条件下,达到预期的目标,如稳定、精度、速度、延迟、可靠性、安全性、经济性等等。

过程控制系统由传感器、执行元件、控制器和执行器构成,其中传感器用于检测被控制物理过程的状态,控制器根据传感器获取的信息进行决策,并通过执行元件控制执行器实现对被控制物理过程的控制。

3. 实验步骤本次实验的过程控制系统由一台工业控制计算机、一台工业控制器和一组执行器构成。

实验的具体步骤如下:(1) 将传感器与控制器连接,并将控制器与计算机连接。

(2) 在计算机上启动控制软件,在软件中设置控制器和传感器的参数。

(3) 将执行器与控制器连接,并调试执行器的控制参数。

(4) 在控制软件中设置控制策略和控制目标,并启动控制器。

(5) 监测被控制物理过程的状态,并记录相关数据。

(6) 对控制策略和控制参数进行调整,直到被控制物理过程达到预期目标。

4. 实验结果经过多次实验,我们成功地控制了被控制的物理过程,并达到了预期目标。

实验结果表明,过程控制技术可以有效地控制物理过程,并提高物理过程的稳定性、精确性和可靠性。

5. 实验总结本次实验使我们深入了解了过程控制的原理和操作方法,掌握了过程控制系统的基本调试方法和过程控制的自动化程度。

通过实验,我们发现过程控制技术在许多工业领域都具有广泛的应用前景,是提高生产效率和质量的重要手段。

在今后的学习和工作中,我们将继续深入学习和研究过程控制技术,为推动工业自动化和智能化发展做出贡献。

《过程控制系统》实验报告

《过程控制系统》实验报告

《过程控制系统》实验报告实验报告:过程控制系统一、引言过程控制系统是指对工业过程中的物理、化学、机械等变量进行监控和调节的系统。

它能够实时采集与处理各种信号,根据设定的控制策略对工业过程进行监控与调节,以达到所需的目标。

在工业生产中,过程控制系统起到了至关重要的作用。

本实验旨在了解过程控制系统的基本原理、组成以及操作。

二、实验内容1.过程控制系统的组成及原理;2.过程控制系统的搭建与调节;3.过程控制系统的优化优化。

三、实验步骤1.复习过程控制系统的原理和基本组成;2.使用PLC等软件和硬件搭建简单的过程控制系统;3.设计一个调节过程,如温度控制或液位控制,调节系统的参数;4.通过修改控制算法和调整参数,优化过程控制系统的性能;5.记录实验数据并进行分析。

四、实验结果与分析在本次实验中,我们搭建了一个温度控制系统,通过控制加热器的功率来调节温度。

在调节过程中,我们使用了PID控制算法,并调整了参数,包括比例、积分和微分。

通过观察实验数据,我们可以看到温度的稳定性随着PID参数的调整而改变。

当PID参数调整合适时,温度能够在设定值附近波动较小,实现了较好的控制效果。

在优化过程中,我们尝试了不同的控制算法和参数,比较了它们的性能差异。

实验结果表明,在一些情况下,改变控制算法和参数可以显著提高过程控制系统的性能。

通过优化,我们实现了更快的响应时间和更小的稳定偏差,提高了系统的稳定性和控制精度。

五、结论与总结通过本次实验,我们了解了过程控制系统的基本原理、组成和操作方法。

我们掌握了搭建过程控制系统、调节参数以及优化性能的技巧。

实验结果表明,合理的控制算法和参数选择可以显著提高过程控制系统的性能,实现更好的控制效果。

然而,本次实验还存在一些不足之处。

首先,在系统搭建过程中,可能由于设备和软件的限制,无法完全模拟实际的工业过程。

其次,实验涉及到的控制算法和参数调节方法较为简单,在实际工程中可能需要更为复杂和精细的控制策略。

《过程控制系统》实验报告

《过程控制系统》实验报告

《过程控制系统》实验报告一、实验目的过程控制系统实验旨在通过实际操作和观察,深入理解过程控制系统的组成、工作原理和性能特点,掌握常见的控制算法和参数整定方法,培养学生的工程实践能力和解决实际问题的能力。

二、实验设备1、过程控制实验装置包括水箱、水泵、调节阀、传感器(液位传感器、温度传感器等)、控制器(可编程控制器 PLC 或工业控制计算机)等。

2、计算机及相关软件用于编程、监控和数据采集分析。

三、实验原理过程控制系统是指对工业生产过程中的某个物理量(如温度、压力、液位、流量等)进行自动控制,使其保持在期望的设定值附近。

其基本原理是通过传感器检测被控量的实际值,将其与设定值进行比较,产生偏差信号,控制器根据偏差信号按照一定的控制算法计算出控制量,通过执行机构(如调节阀、电机等)作用于被控对象,从而实现对被控量的控制。

常见的控制算法包括比例(P)控制、积分(I)控制、微分(D)控制及其组合(如 PID 控制)。

四、实验内容及步骤1、单回路液位控制系统实验(1)系统组成及连接将液位传感器安装在水箱上,调节阀与水泵相连,控制器与传感器和调节阀连接,计算机与控制器通信。

(2)参数设置在控制器中设置液位设定值、控制算法(如 PID)的参数等。

(3)系统运行启动水泵,观察液位的变化,通过控制器的调节使液位稳定在设定值附近。

(4)数据采集与分析利用计算机采集液位的实际值和控制量的数据,绘制曲线,分析系统的稳定性、快速性和准确性。

2、温度控制系统实验(1)系统组成与连接类似液位控制系统,将温度传感器安装在加热装置上,调节阀控制加热功率。

设置温度设定值和控制算法参数。

(3)运行与数据采集分析启动加热装置,观察温度变化,采集数据并分析。

五、实验数据及结果分析1、单回路液位控制系统(1)实验数据记录不同时刻的液位实际值和控制量。

(2)结果分析稳定性分析:观察液位是否在设定值附近波动,波动范围是否在允许范围内。

快速性分析:计算液位达到设定值所需的时间。

过程控制系统实验报告

过程控制系统实验报告

《过程控制系统实验报告》院-系:专业:年级:学生姓名:学号:指导教师:2015 年6 月过程控制系统实验报告部门:工学院电气工程实验教学中心实验日期:年月日姓名学号班级成绩实验名称实验一单容水箱液位定值控制实验学时课程名称过程控制系统实验与课程设计教材过程控制系统一、实验仪器与设备A3000现场系统,任何一个控制系统,万用表二、实验要求1、使用比例控制进行单溶液位进行控制,要求能够得到稳定曲线,以与震荡曲线。

2、使用比例积分控制进行流量控制,能够得到稳定曲线。

设定不同的积分参数,进行比较。

3、使用比例积分微分控制进行流量控制,要求能够得到稳定曲线。

设定不同的积分参数,进行比较。

三、实验原理(1)控制系统结构单容水箱液位定值(随动)控制实验,定性分析P, PI,PD控制器特性。

水流入量Qi由调节阀u控制,流出量Qo则由用户通过负载阀R来改变。

被调量为水位H。

使用P,PI , PID控制,看控制效果,进行比较。

控制策略使用PI、PD、PID调节。

测量或控测量或控制量使用PLC端使用ADAM端四、实验内容与步骤1、编写控制器算法程序,下装调试;编写测试组态工程,连接控制器,进行联合调试。

这些步骤不详细介绍。

2、在现场系统上,打开手阀QV-115、QV-106,电磁阀XV101(直接加24V到DOCOM,GND到XV102控制端),调节QV-116闸板开度(可以稍微大一些),其余阀门关闭。

3、在控制系统上,将液位变送器LT-103输出连接到AI0,AO0输出连到变频器U-101控制端上。

注意:具体哪个通道连接指定的传感器和执行器依赖于控制器编程。

对于全连好线的系统,例如DCS,则必须安装已经接线的通道来编程。

4、打开设备电源。

包括变频器电源,设置变频器4-20mA的工作模式,变频器直接驱动水泵P101。

5、连接好控制系统和监控计算机之间的通讯电缆,启动控制系统。

6、启动计算机,启动组态软件,进入测试项目界面。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《过程控制系统实验报告》院-系:专业:年级:学生姓名:学号:指导教师:2015 年6 月过程控制系统实验报告部门:工学院电气工程实验教学中心实验日期:年月日姓名学号班级成绩实验名称实验一单容水箱液位定值控制实验学时课程名称过程控制系统实验及课程设计教材过程控制系统一、实验仪器与设备A3000现场系统,任何一个控制系统,万用表二、实验要求1、使用比例控制进行单溶液位进行控制,要求能够得到稳定曲线,以及震荡曲线。

2、使用比例积分控制进行流量控制,能够得到稳定曲线。

设定不同的积分参数,进行比较。

3、使用比例积分微分控制进行流量控制,要求能够得到稳定曲线。

设定不同的积分参数,进行比较。

三、实验原理(1)控制系统结构单容水箱液位定值(随动)控制实验,定性分析P, PI,PD控制器特性。

水流入量Qi由调节阀u控制,流出量Qo则由用户通过负载阀R来改变。

被调量为水位H。

使用P,PI , PID控制,看控制效果,进行比较。

控制策略使用PI、PD、PID调节。

(2)控制系统接线表使用ADAM端口测量或控制量测量或控制量标号使用PLC端口锅炉液位LT101 AI0 AI0调节阀FV101 AO0 AO0四、实验内容与步骤1、编写控制器算法程序,下装调试;编写测试组态工程,连接控制器,进行联合调试。

这些步骤不详细介绍。

2、在现场系统上,打开手阀QV-115、QV-106,电磁阀XV101(直接加24V到DOCOM,GND到XV102控制端),调节QV-116闸板开度(可以稍微大一些),其余阀门关闭。

3、在控制系统上,将液位变送器LT-103输出连接到AI0,AO0输出连到变频器U-101控制端上。

注意:具体哪个通道连接指定的传感器和执行器依赖于控制器编程。

对于全连好线的系统,例如DCS,则必须安装已经接线的通道来编程。

4、打开设备电源。

包括变频器电源,设置变频器4-20mA的工作模式,变频器直接驱动水泵P101。

5、连接好控制系统和监控计算机之间的通讯电缆,启动控制系统。

6、启动计算机,启动组态软件,进入测试项目界面。

启动调节器,设置各项参数,将调节器的手动控制切换到自动控制。

7、设置PID控制器参数,可以使用各种经验法来整定参数。

这里不限制使用的方法。

五、实验结果记录及处理六、实验心得体会:比例控制特性:能较快克服扰动的影响,使系统稳定下来,但有余差。

比例积分特性:能消除余差,它能适用于控制通道时滞较小、负荷变化不大、被控量不允许由余差的场合。

比例微分特性:对于改善系统的动态性能指标,有显著的效果。

比例积分微分特性:可以消除余差,又能提高系统的稳定性。

过程控制系统实验报告部门:工学院电气工程实验教学中心实验日期:年月日姓名学号班级成绩实验名称实验二双容水箱液位定值控制实验学时课程名称过程控制系统实验及课程设计教材过程控制系统一、实验仪器与设备A3000现场系统,任何一个控制系统,万用表二、实验要求1、掌握多容系统单回路控制的特点2、深入了解PID控制特点。

3、深入研究P、PI和PID调节器的参数对系统性能的影响。

三、实验原理1、系统结构水从中水箱进入,中水箱闸板开度8毫米,进入下水箱,下水箱闸板开度5-6毫米。

要保证中水箱闸板开度大约下水箱闸板开度,这样控制效果好些。

水流入量Qi由调节阀u控制,流出量Qo则由用户通过闸板来改变。

2、控制逻辑结构双容水箱液位控制系统3、控制系统接线表测量或控制量测量或控制量标号使用PLC端口使用ADAM端口下水箱液位LT103 AI0 AI0调节阀FV101 AO0 AO0四、实验内容与步骤1、使用组态软件进行组态。

注意实时曲线时间要设定大些,例如15分钟。

因为多容积导致的延迟比较大。

2、在A3000-FS上,打开手阀JV205、JV201,调节中水箱、下水箱闸板具有一定开度,其余阀门关闭。

3、连线:下水箱液位连接到内给定调节仪输入。

内给定调节仪的输出连接到调节阀的控制端。

4、打开A3000电源。

在A3000-FS上,启动右边水泵,给中水箱注水。

5、按所学理论操作调节器,进行PID设定。

首先还是使用P比例调节,单容实验的P值可以参考。

然后再加I值。

参见上一实验。

五、实验结果记录及处理六、实验心得体会:PID 控制特点:它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制主要技术之一。

当被控对象结构和参数不能完全掌握,或不到精确数学模型时,控制理论其它技术难以采用时,系统控制器结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。

过程控制系统实验报告部门:工学院电气工程实验教学中心实验日期:年月日姓名学号班级成绩实验名称实验三流量调节阀 PID单回路控制学时课程名称过程控制系统实验及课程设计教材过程控制系统一、实验仪器与设备A3000现场系统,任何一个控制系统,万用表二、实验要求1、熟悉单回路流量PID控制系统的硬件配置。

1、根据实验数据,进一步了解流量PID控制。

三、实验原理流量调节阀控制流程图如图2.5.1所示。

四、实验内容与步骤水介质由泵P101(变频器驱动)从水箱V104中加压获得压头,经由管路进入水箱V103,通过手阀QV-116回流至水箱V104而形成水循环;其中,水箱V103的液位由LT-103测得,通过调节手阀QV-116的开启程度来模拟负载的大小。

本例为定值自动调节系统,变频器U-101转速为操纵变量,LT-103为被控变量,采用PID调节来完成。

五、实验结果记录及处理六、实验心得体会控制阀的选择:角型阀:1)结构特点:阀体为角型,其它结构与单座阀类似。

2)使用场合:适用于高压差、高粘度、含有悬浮物和颗粒物流体的场合。

三通阀:1)结构特点:有三个出入口与管道相连接。

按作用方式可分为合流和分流两种。

2)使用场合:一般用于替代两个直通阀进行热交换器的旁通控制。

隔膜阀:1)结构特点:采用带有耐腐蚀村里的阀体和耐腐蚀隔膜。

2)使用场合:适用于强酸、强碱、强腐蚀性流体的控制,和有毒性、易燃、易爆、贵重流体的控制。

碟阀:1)结构特点:有常温型、低温型和高温型之分。

2)使用场合:特别适用于大流量、大管径、低压差的场合。

过程控制系统实验报告部门:工学院电气工程实验教学中心实验日期:年月日姓名学号班级成绩实验名称实验四单容下水箱液位变频器PID 单回路控制学时课程名称过程控制系统实验及课程设计教材过程控制系统一、实验仪器与设备A3000现场系统,任何一个控制系统,万用表二、实验要求1、掌握单回路控制的特点。

2、了解PID控制特点,以及对控制效果的评价。

3、掌握通过变频器控制流量的原理和操作。

三、实验原理单容液位变频器PID单回路控制工艺流程图如图2.3.1所示。

图 2.3.1 单容下水箱液位变频器PID单回路控制流程图单容下水箱液位调节阀PID单回路控制测点清单如表2.3.1所示。

表 2.3.1 单容下水箱液位调节阀PID单回路控制测点清单位号或代号设备名称用途原始信号类型工程量LT-103 压力变送器下水箱液位4~20mADC AI 2.5kPaU-101 变频器频率控制2~10VDC AO 0~100%四、实验内容与步骤水介质由泵P101(变频器驱动)从水箱V104中加压获得压头,经由管路进入水箱V103,通过手阀QV-116回流至水箱V104而形成水循环;其中,水箱V103的液位由LT-103测得,通过调节手阀QV-116的开启程度来模拟负载的大小。

本例为定值自动调节系统,变频器U-101转速为操纵变量,LT-103为被控变量,采用PID调节来完成。

五、实验结果记录及处理六、实验心得体会:单回路控制的特点:一对一控制咯,不是正作用就是反作用。

响应快,效果好。

环节少,故障少。

变频器工作原理直流->振荡电路->变压器(隔离、变压)->交流输出方波信号发生器使直流以50Hz的频率突变,用正弦和准正弦的振荡器,波形类似于长城的垛口,一上一下的方波,突变量约为5V;再经过信号放大器使突变量扩大至12V左右;经变压器升压至220V输处。

过程控制系统实验报告部门:工学院电气工程实验教学中心实验日期:年月日姓名学号班级成绩实验名称实验五压力调节阀PID单回路控制学时课程名称过程控制系统实验及课程设计教材过程控制系统一、实验仪器与设备A3000现场系统,任何一个控制系统,万用表二、实验要求1、掌握单回路控制的特点。

2、了解PID控制特点,以及对控制效果的评价。

3、掌握通过压力调节阀PID单回路控制流量的原理和操作。

三、实验原理压力调节阀PID单回路控制测点清单位号或代号设备名称用途原始信号类型工程量PT-101 压力变送器给水压力4~20mADC AI 150kPa FV-101 电动调节阀调节阀控制2~10VDC AO 0~100%四、实验内容与步骤水介质由泵P102从水箱V104中加压获得压头,经由流量计FT-102、调节阀FV-101进入水箱V103,通过手阀QV-116回流至水箱V104而形成水循环;其中,给水流量由FT-102测得。

本例为定值自动调节系统,FV-101为操纵变量,FT-102为被控变量,采用PID调节来完成。

五、实验结果记录及处理六、实验心得体会:压力调节阀的工作原理是可调减压阀,具体地说是通过调节给定弹簧的预紧力来调节比较机构的平衡状态。

当输出压力、给定弹簧的力(或力矩、或位移)与输入压力(或力矩、或位移)平衡时,阀的开度保持不变,输出压力就维持不变。

若输出压力发生变化,平衡状态被破坏,阀的开度就发生变化,最终进气量发生变化,从而使输出压力维持在给定弹簧设置的压力上。

过程控制系统实验报告部门:工学院电气工程实验教学中心实验日期:年月日姓名学号班级成绩实验名称实验六液位和进口流量串级控制学时课程名称过程控制系统实验及课程设计教材过程控制系统一、实验仪器与设备A3000现场系统,任何一个控制系统,万用表二、实验要求1、了解水箱液位的控制系统的物理结构。

2、了解闭环调节系统的数学结构和PID控制。

三、实验原理以串级控制系统来控制下水箱液位,以第一支路流量为副对象,右边水泵直接向下水箱注水,流量变动的时间常数小、时延小,控制通道短,从而可加快提高响应速度,缩短过渡过程时间,符合副回路选择的超前,快速、反应灵敏等要求。

液位和进口流量串级控制流程图液位和进口流量串级控制测点清单位号或代号设备名称用途原始信号类型工程量FT-101 1#流量计测量管路1流量4~20mADC AI 0-3 m³/hLT-103 V103液位变送器测量液位 4~20mADC AI 0-2.5kPaFV-101 调节阀 控制流量 2~10VDC AO 0~100%四、实验内容与步骤水介质一路(I 路)由泵P101(变频器)从水箱V104中加压获得压头,经流量计FT-101、电动阀FV-101、水箱V-103、手阀QV-116回流至水箱V104而形成水循环,负荷的大小通过手阀QV-116来调节;其中,水箱V103的液位由液位变送器LT-103测得,给水流量由流量计FT-101测得。

相关文档
最新文档