第三章 条件概率与条件期望

合集下载

条件分布与条件期望ppt课件

条件分布与条件期望ppt课件
P{ y Y y dy}
P{x X x dx | y Y y dy}
13
pX|Y ( x | y)dx P{x X x dx | y Y y dy} 换句话说,对很小的dx和 dy,pX|Y ( x | y)dx 表示已知 Y 取值于y和y+dy之间的条件下,X 取值 于x和x+dx之间的条件概率.
解: 由例3.2.2 有X+Y~P(1+ 2).
注意: X与Y相互独立,但X与X+Y不相互独立. P(X k | X Y n) P(X k, X Y n) P(X Y n) P( X k,Y n k) P(X Y n)
9
k
1 e1
4
一、离散型r.v的条件分布 形式实下际的上重变是复类量第.似Y一的定章条义讲件在过概X的率=x条函i 条件数件概. 下率,概随念机在另一种
定义1 设 (X,Y) 是二维离散型随机变量,对于固 定的 j,若P(Y=yj)>0,则称
P(X=xi|Y=yj)=
P
(
X xi ,Y P(Y y
j)


y),
( X ,Y )为离散 ( X ,Y )为连续
其中P(X = xi | Y = y)为在给定Y = y下X的条件分布列, p(x | y)为在Y=y下X的条件密度函数.
注意:条件期望E(X | y)与(无条件)期望E(X)的不同含义
27
例:若X表示中国人的年收入,则 注意:条件期望E(X|y)与 E(X)表示: 中国人的平均年收入. (无条件)期望E(X)的不同含义.
),

2 2
(1

§3.5---条件分布与条件期望

§3.5---条件分布与条件期望
在Y y 的条件下X的条件分布密度记为PX|Y(x | y)
FX|Y(x | y) P(X x |Y y)
lim P(X x | y Y y y) y0
lim P(X x, y Y y y) y0 P( y Y y y)
lim F (x, y y) F (x, y) 分子、分母同除 y y0 FY ( y y) FY ( y)
Pij PJ
i=1,2,.....
Pj|i
Pij Pi
j=1,2,........
例3.5.5.设(X, Y)的联合密度为:
P( x,
y)
24(1
0
x)
y
0 x 1, 0 y x 其它
求条件密度函数 PX|Y (x | y)和 PY|X ( y | x)
解:PX (x)
P(x, y)dy
5 4 20
PX 0,Y 1 P(X 0)P(Y 1| X 0) 2 3 6
5 4 20
PX 1,Y 0 P(Y 1)P(Y 0 | X 1)
32 6 5 4 20
PX 1,Y 1 P(X 1)P(Y 1| X 1)
32 6 5 4 20
XY 0 1
0
2
6
20 20
1
X|Y 3 1
2
P
4/7 3/7
例3.5.3 设随机变量X,Y独立,X P(1),Y P(2)
在X Y n 条件下,求X 的条件分布?
解:由已知条件和泊松分布的可加性得:XY P(1 2)
所以 P(X k |XY n)
P(X k, XY P(XY n)
n)
P(X k ,Y n k) P(XY n)
6
6
20 20

条件期望资料

条件期望资料
• 可以基于概率分布进行求解,如风险调整政策分析、概率调整政策分
析等。
• 可以基于矩生成函数进行求解,如政策效果最大化分析等。
⌛️
方法的优缺点
• 优点:有助于中央银行更好地评估政策工具的效果和风险,从而制定更有效 Nhomakorabea货币政策。
• 缺点:计算过程可能较为复杂,且需要已知货币政策的政策效果分
布。
05
条件期望在其他领域的应用
心理和行为规律。
• 缺点:计算过程可能较为复杂,且需要已知消费者的偏好分布。
消费者行为分析的基本问题
• 消费者行为分析是研究消费者在购买、使用和处理商品及服务过程中
的心理和行为规律的方法。
• 条件期望在消费者行为分析中的应用主要是计算消费者在已知某个条
件下,对商品或服务的期望效用。
条件期望在消费者行为分析中的求解方法
知某个条件下,对投资项目的期望收益。
02
条件期望在企业投资决策中的求解方法
• 可以基于概率分布进行求解,如风险调整收益分析、概
率调整收益分析等。
• 可以基于矩生成函数进行求解,如收益最大化分析等。
03
方法的优缺点
• 优点:有助于企业更好地评估投资项目的风险和收益,
从而做出更合理的投资决策。
• 缺点:计算过程可能较为复杂,且需要已知投资项目的
02
条件期望的计算方法
• 当Y是离散随机变量时,条件期望可以通过求和计算:
E(Y|X=x) = ∑y * P(Y=y|X=x)
• 当Y是连续随机变量时,条件期望可以通过积分计算:
E(Y|X=x) = ∫y * P(Y=y|X=x) dy
03
条件期望的性质
• 非负性:E(Y|X) ≥ 0,因为Y的平均值总是非负的。

条件概率-条件分布-条件期望

条件概率-条件分布-条件期望

y}.
定义 设二维随机变量( X ,Y ) 的概率密度为
f ( x, y),( X ,Y ) 关于 Y 的边缘概率密度为fY ( y).若
对于固定的 y,
fY ( y) 0, 则称
f ( x, y) 为在Y fY ( y)
y
的条件下 X 的条件概率密度,记为
f (x, y)
f (x y)
.
XY
(2)无放回抽样
YX
01
02
2
7
7
12
1
7
7
二、连续型随机变量的条件分布
条件分布函数 FX Y (x y)
条件分布是指在一个随机变量取某个确定值 的条件下,另一个随机变量的分布, 即 FX Y ( x y) P{ X x Y y} .
由于P{Y y}可能为零(连续型时一定为零).故直接 用条件概率来定义时, 会出现分母为零. 因此,在条件分布中,作为条件的注意点 • E(X| Y=y) 是 y 的函数.
所以记 g(y) = E(X| Y=y). 进一步记 g(Y) = E(X| Y).
f (x, y)d x
1 π
1 y2 d x 2
1 y2
π
1 y2 , 1 y 1,
0,
其他.
于是当 1 y 1时,有
fX
Y
(x
y)
(2
1 π)
π 1
y2
2
1 , 1 y2
1 y2 x
1 y2,
0,
其他.
条件数学期望
定义
E ( X
|Y
y)
i
xi P( X xi | Y y)
二 条件分布
一、离散型随机变量的条件

条件概率,条件分布,条件期望

条件概率,条件分布,条件期望

FX Y ( x y )
x
y
f X Y ( x y ) d x [ f ( x , y ) fY ( y )]d x .
y
x
FY X ( y x )
说明

fY X ( y x ) d y [ f ( x , y ) f X ( x )]d y .
定义
设二维随机变量( X ,Y ) 的概率密度为
f ( x , y ), ( X ,Y ) 关于 Y 的边缘概率密度为 fY ( y ).若 f ( x, y) 对于固定的 y , fY ( y ) 0, 则称 为在Y y fY ( y ) 的条件下 X 的条件概率密度 , 记为 f ( x, y) f X Y ( x y) . fY ( y )
为在事件A发生的条件下事件B发生的条件概率.

条件分布
一、离散型随机变量的条件分布
问题
考虑一大群人, 从其中随机挑选一个人 , 分别 用 X 和 Y 记此人的体重和身高 , 则X 和 Y 都是随 机变量, 他们都有自己的分布 .
现在如果限制Y 取值从1.5 m 到1.6 m , 在这个限制下求X 的 分布 .
一 条件概率 (Conditional Probability) 条件概率是指在事件A发生的条 件下,另一事件B发生的概率,记用 P(B|A).
引例 从所有有两个孩子的家庭随机抽取一个家庭记录男 孩女孩的情况。
则试验所有可能的结果为(男孩记为“b”,女孩记为“g”) (b,b) (b,g) (g,b) (g,g) 设A={ 至少一个男孩}, B ={ 至少一个女孩}, 考虑在事件A发生的条件下,事件B发生的概率。
定义 设 ( X ,Y ) 是二维离散型随机变量 , 对于固定

条件分布与条件期望

条件分布与条件期望



这表明,二元正态分布的条件分布仍为正态分布:
1 2 2 N r y , 1 r 2 1 1 2



31
二.条件数学期望
32
1.条件数学期望的概念
33
条件分布的数学期望称为条件数学期望.
34
对于离散型随机变量,当 Y y j 时,随机变量 X 的条 件分布律为
1 2 PX Y n
n!
n
e
1 2

所以,当 X Y n 时, X 的取值为 0, 1,
2, , n .
13
PX k X Y n
PX k , X Y n PX k , Y n k PX Y n PX Y n
PX k PY n k k! n k ! PX Y n 1 2 n e 1 2 n!
n! 1 k!n k ! 1 2
k
1k
e 1
2 n k
e 2
2 2 1
17
所以,
PY k PX nP Y k X n
n 0

PX nP Y k X n PX nP Y k X n
n 0 nk
k 1


n 0
k 1
n
n!
e 0
nk

n
n!
e C p 1 p
f X x 0 .
26

设二维随机变量 X , Y 服从平面区域
x, D
y:
x y 1

概率论中的条件概率公式详解贝叶斯定理条件期望等

概率论中的条件概率公式详解贝叶斯定理条件期望等

概率论中的条件概率公式详解贝叶斯定理条件期望等概率论是数学中的一门重要学科,研究的是随机事件的概率性质以及它们之间的关系。

条件概率公式、贝叶斯定理和条件期望是概率论中的重要概念和定理,它们在解决实际问题中具有广泛应用。

本文将对这些概念进行详细解释和讨论。

一、条件概率公式条件概率是指在已知某一事件发生的条件下,其他事件发生的概率。

设A和B是两个事件,且P(B)≠0,那么在事件B已经发生的条件下,事件A发生的概率记作P(A|B),读作“A在B发生的条件下发生”。

条件概率公式的形式为:P(A|B) = P(AB) / P(B)其中,P(AB)表示事件A和B同时发生的概率,又称为A与B的交集的概率。

通过这个公式,我们可以根据已知的条件概率来计算其他事件的概率。

二、贝叶斯定理贝叶斯定理是概率论中的核心定理之一,它描述了在已知某一事件发生的条件下,其他事件发生的概率如何更新。

设A和B是两个事件,且P(A)≠0,P(B)≠0,那么贝叶斯定理的表达式为:P(B|A) = P(A|B) * P(B) / P(A)其中,P(B|A)表示在事件A已经发生的条件下,事件B发生的概率。

贝叶斯定理的主要应用在于通过已知的先验概率和条件概率来计算后验概率。

它在统计学、生物信息学、机器学习等领域有着广泛的应用。

三、条件期望条件期望是在已知某一事件发生的条件下,随机变量的期望值。

设X和Y是两个随机变量,且P(Y=y)≠0,那么在事件Y=y已经发生的条件下,随机变量X的条件期望记作E(X|Y=y)。

条件期望的计算公式为:E(X|Y=y) = Σx(x * P(X=x|Y=y))其中,Σ表示对所有可能的取值进行求和。

通过条件期望,我们可以得到在给定条件下随机变量的平均值,从而更好地理解和分析随机事件的分布特性。

综上所述,条件概率公式、贝叶斯定理和条件期望是概率论中的重要概念和定理。

它们可以帮助我们计算和预测事件的概率,以及根据已知条件更新概率。

概率论与数理统计3-6 条件分布与条件期望、回归与第二回归

概率论与数理统计3-6 条件分布与条件期望、回归与第二回归

p(u, y)du.

1 yy
lim
[ p(u, v)du]dv.
y0 y y

lim
y0
1 y
y y y
p
(u)dv
p
( y)

0.
F
(
x
y)

x
p(u, y) p ( y)
du.
由此可见:在 y的条件下,的分布列仍是
§3.6 条件分布与条件期望、回归 与第二回归
一、条件分布
在离散型R.V中,我们利用条件概率公式
P(A B)

P( AB) , P(B)
P(B)
0.
求出了离散型R.V .的条件分布列:P(

xi


yj)

Pi
.
j
类似的问题对连续型R.V .也存在.
由于连续型R.V .取单点值的概率为零,所以用分布列
lim P( x, y y y) . y0 P( y y y)
P( x, y y y)
lim
.
y0 P( , y y y)
设(,)的p d f 为p(x, y),则上式又变为
x yy
密度为P ( y


那么称 xP (


x y
), 如果

x
P

(y
x
x )dx为在(
)dx . y)发生的条件下的条件
数学期望,记为 E( y).即
E(

y)


xP

(y
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012/3/2
Copyright©Pei Zhang ,2012
6
例3.2
• 有n个零件,零件i在雨天运转的概率为pi, 在非雨天运转的概率为qi,i=1,2,……,n。 明天下雨的概率为。计算在明天下雨时, 运转的零件数的条件期望。
2012/3/2
Copyright©Pei Zhang ,20Zhang ,2012
12
例3.6(几何分布的均值)
• 连续抛掷一枚正面出现的概率为p的硬 币直至出现正面为止,问需要抛掷的 次数的期望是多少?
2012/3/2
Copyright©Pei Zhang ,2012
13
例3.7
• 某矿工身陷在有三个门的矿井之中,经 第1个门的通道行进2小时后,他将到达 安全地。经第二个门的通道前进3小时 后,他将回到原地。经过第三个门的通 道前进5小时后,他还是回到原地。假 定这个矿工每次都等可能地选取任意一 个门,问直到他到达安全地所需时间的 期望是多少?
• 连续地做每次成功率为p的独立试验。N 是首次成功时的试验次数,求Var(N)
2012/3/2
Copyright©Pei Zhang ,2012
16
三、通过取条件期望计算概率
• E是一个事件,定义示性随机变量X为:
1,若E发生 X 0,若E不发生 由X的定义推出: E[X]=P(E) E[X|Y=y]=P(E|Y=y)
7
第二节
连续随机变量的条件概率与条件期望
• X和Y是连续随机变量,联合密度函数为 f(x,y),那么在Y=y时X的条件概率密度函数 定义为:
f ( x, y ) f X |Y ( x | y) fY ( y )
• 给定Y=y时X的条件期望定义为:
E[ X | Y y] xf X |Y ( x | y)dx
E[ X ] E[ E[ X | Y ]]
注意: E[X|Y]本身是一个随机变量,是随机变量Y的 函数,在Y=y处取值是E[X|Y=y]
2012/3/2 Copyright©Pei Zhang ,2012 11
例3.5
• 假设我们正在读一本概率书和一本历史 书,在读的一章概率书中的印刷错误数 服从均值为2的泊松分布,在读的一章 历史书中的印刷错误数服从均值为5的 泊松分布,假定我们等可能地选取概率 书或历史书,那么遇到的印刷错误数的 期望是多少?
2012/3/2
Copyright©Pei Zhang ,2012
3
第一节 离散随机变量的条件概率与条件期望 • 如果X和Y是离散随机变量,在Y=y给定的 条件下,X的条件概率密度函数定义为:
P{ X x, Y y} p( x, y) p X |Y ( x | y ) P{ X x | Y y} P{Y y} pY ( y)
第三章 条件概率与条件期望
为什么要研究条件概率与期望
• 在解决现实问题时,常常需要计算在 部分信息已知时的概率和期望 • 条件概率和条件期望本身是计算概率 和期望的有效方法
2012/3/2
Copyright©Pei Zhang ,2012
2
本章主要内容
• 离散随机变量的条件概率与条件期望 • 连续随机变量的条件概率与条件期望 • 条件概率与条件期望的作用
2012/3/2 Copyright©Pei Zhang ,2012 14
二、通过取条件期望计算方差
• 方差的计算公式为:
Var ( X ) E[ X 2 ] ( E[ X ]) 2
用取条件期望分别计算两个期望值
2012/3/2
Copyright©Pei Zhang ,2012
15
例3.8

四、其他应用
例3.10(列表模型) • 考虑n个元素e1,…,en,是一个有序的 列表,在每个单位时间对于其中的一个 元素ei有需求的概率Pi独立于过去的情 形。在这个元素被需求后,它就移至列 表的第一个位置。此过程经长时间运作 后,确定被需求元素位置的期望。
2012/3/2
Copyright©Pei Zhang ,2012
9
例3.4
• X和Y的联合密度为
1 xy ye ,0 x ,0 y 2 f ( x, y ) 2 0, 其他
求 E[e
x/2
| Y 1]
2012/3/2
Copyright©Pei Zhang ,2012
10
第三节
条件概率与条件期望的应用
一、通过取条件期望计算期望 • 对于任何的随机变量X和Y,条件期望的重 要性质:
x x
• 特别地,如果X和Y独立,那么,前面所有 的定义和无条件时的一样。
2012/3/2
Copyright©Pei Zhang ,2012
5
例3.1
• 假定X和Y的联合概率密度函数p(x,y)为: p(1,1)=0.5, p(1,2)=0.1, p(2,1)=0.1, p(2,2)=0.3 计算在Y=1给定的条件下X的条件概率密度函 数。
2012/3/2
Copyright©Pei Zhang ,2012
17
由此可以推出:
P( E | Y y ) P(Y y ),若Y是离散的 y P( E ) P(E | Y y)fY ( y )dy, 若Y是连续的 -
2012/3/2
Copyright©Pei Zhang ,2012
• 在Y=y给定的条件下,X的条件分布密度函 数定义为:
FX |Y ( x | y) P{ X x | Y y} p X |Y (a | y)
a x
2012/3/2 Copyright©Pei Zhang ,2012 4
• 在Y=y的条件下,X的条件期望定义为:
E[ X | Y y] xP{ X x | Y y} xp X |Y ( x | y)

2012/3/2 Copyright©Pei Zhang ,2012 8

例3.3
• 假定X和Y有联合密度
6 xy (2 x y),0 x 1,0 y 1 f ( x, y ) 0, 其他
对于0<y<1,计算给定Y=y时X的条件期望。
2012/3/2
Copyright©Pei Zhang ,2012
18
例3.9
• 保险公司假定参保人每年发生事故数是 均值依赖于参保人的泊松随机变量,假 定一个随机选取的参保人的泊松均值具 有密度函数为:
g ( ) e , 0
的伽马分布。问一个随机选取的参保人明 年恰有n次事故的概率是多少?
2012/3/2 Copyright©Pei Zhang ,2012 19
20
相关文档
最新文档