系统的滞后频域校正法

合集下载

滞后校正

滞后校正

学号:0121111360725课程设计用MATLAB进行控制系统的滞题目后校正设计学院自动化专业自动化班级自动化1102姓名姚望指导教师谭思云2013 年12 月27 日课程设计任务书学生姓名: 姚望 专业班级: 自动化1102 指导教师: 谭思云 工作单位: 自动化学院题 目: 用MATLAB 进行控制系统的滞后校正设计。

初始条件:已知一单位反馈系统的开环传递函数是)1)(1.01()(s s s Ks G ++=要求系统的静态速度误差系数1100-=s K v , 45≥γ,并且幅值裕度不小于10分贝。

要求完成的主要任务: (包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)1、用MATLAB 作出满足初始条件的K 值的系统伯德图,计算系统的幅值裕度和相位裕度。

2、系统前向通路中插入一相位滞后校正,确定校正网络的传递函数,并用MATLAB 进行验证。

3、用MATLAB 画出未校正和已校正系统的根轨迹。

4、课程设计说明书中要求写清楚计算分析的过程,列出MATLAB 程序和MATLAB 输出。

说明书的格式按照教务处标准书写。

时间安排:1、课程设计任务书的布置,讲解 (半天)2、根据任务书的要求进行设计构思。

(半天)3、熟悉MATLAB 中的相关工具(一天)4、系统设计与仿真分析。

(三天)5、撰写说明书。

(二天)6、课程设计答辩(半天)指导教师签名: 年 月 日 系主任(或责任教师)签名: 年 月 日摘要 (1)1.正特性及校正方法 (2)1.1滞后校正特性 (2)1.2滞后校正设计的一般步骤与方法 (2)2.未校正时系统分析 (4)2.1伯德图绘制 (4)2.2未校正系统的相位裕度和幅值裕度 (5)3. 确定滞后校正传递函数 (6)4.系统校正前后根轨迹图 (8)4.1未校正系统根轨迹图 (8)4.2校正后系统根轨迹图 (9)5.心得体会 (11)参考文献 (12)滞后校正的基本原理是利用滞后网络的高频幅值衰减特性使系统截止频率下降,从而使系统获得足够的相位裕度。

《自动控制原理》第6章_自动控制系统的校正

《自动控制原理》第6章_自动控制系统的校正
频率法校正的基本原理: 利用校正网络的特性来增大系统的相位裕度,
改善系统瞬态响应。
校正装置分类
校正装置按 控制规律分
超前校正(PD) 滞后校正(PI)
滞后超前校正(PID)
校正装置按 实现方式分
有源校正装置(网络) 无源校正装置(网络)
有源超前校正装置
R2
u r (t)
i 2 (t)
R1
i1(t)
(aTa s
1)(Tb a
s
1)
滞后--超前网络
L'()
20db / dec
20 lg K c
1 1/ T1 2 1/ T2
设相角为零时的角频率
1
()
a)
20db / dec
5
1 T1T2
90
5 校正网络具有相
5
位滞后特性。
90
b)
5 校正网络具有相位
超前特性。
G( j)
Kc
( jT1
G1 (s)
N (s) C(s)
G2 (s)
性能指标
时域:
超调量 σ%
调节时间 ts
上升时间 tr 稳态误差 ess
开环增益 K
常用频域指标:
开环频域 指标
截止频率: 相角裕度:
c
幅值裕度:
h
闭环频域 指标
峰值 : M p
峰值频率: r
带宽: B
复数域指标 是以系统的闭环极点在复平面
上的分布区域来定义的。
解:由稳态速度误差系数 k v 1应00 有
G( j)
100
j( j0.1 1)( j0.01 1)
100 A()
1 0.012 1 0.00012

基本概念两种常用校正装置设计方法频率法2

基本概念两种常用校正装置设计方法频率法2

第六章1. 基本概念2. 两种常用校正装置3. 设计方法(1)频率法(2)根轨迹法(3)复合校正 6—1 校正的基本概念一、性能指标的提法:1.稳态误差:Ess 或v Kp Kz Kv 2.动态品质:(1) 时域指标:δ% ts (2)开环频域指标:Wc ν(3)闭环频域指标:Mr Wr 或Wb 如何改变性能的问题?1. 改变系统参数:增大开环传递函数K →ess ↓→h ↘v ↘→σ(改善很有限,且稳态与动态有些矛盾)2. 改变系统结构:增加辅助装置定义:利用增加辅助装置改变系统性能方法称为— 辅助装置包括:校正装置 、控制器、调节器二、校正方式:1. 串联校正:图P36 2. 反馈校正:图 3. 复合校正:(1)按给定输入的 图 目的:理论上可以做到:C (S )=R (S )即C (t )=R (t )(2)按扰动输入的 图 目的:理论上完全消除N (s )对输入影响Cr (s )=0工程上一般采用近似补偿 三、设计方法 (频域法) 1. 试探法(分析法)首先根据检验选定校正装置的基本形式→算出校正装置的参数→检验校正后的性能指标→是否符合; 如果符合则完成设计 ;否从新设计2.综合法(数学法)首先由要求的性能指标→画出希望的开环L(w)曲线→再与原系统的L (W )想比较→得到校正装置的Lc(w)→反写出校正装置的传函6—2常用的校正装置分类:讨论电的校正装置1。

无源校正装置(RC 网络)2。

有源校正装置(运放器)调节器一、无源超前校正装置(RC 网络 传函 伯德图) 电路:U2U1CR2R1传函:(复阻抗法)Gc(s)=1+Tas/a(1+Ts) a 衰减系数 T 时间常数必须补偿a 的衰减:把原K 增加a 倍或再串一个放大器(a 倍) 补偿后:aGc(s)=1+TaS/1+TS (a>1) 二、无源迟后校正装置 电路;6—3一、超前校正问题的提出 例:系统如图所示,要求1. 在单位斜坡输入下稳态误差ess<0.1;2. 开环剪切频率3. 相角裕度 幅值裕度问是否需要校正,怎样校正?解:首先进行稳态计算K=10可以满足稳态误差要求。

控制工程基础:第五章 系统校正

控制工程基础:第五章 系统校正

PD控制的作用(特点)
L()
1. 某系统的开环频率特 性——Bode图如图所示。
2. 加相位超前校正。
系统的频率特性发生变化。
60
[20]
40
20
0
( ) 900
[20] [40]
c
[40]
c
[60]
3. 对系统性能的影响
00
(1)改善了系统的动态性能(幅 900
值穿越频率ωc 增大,过渡过程1800
X
i
(s)
(
s)
Gc (s)
U(s)
G(s)
B(s)
H (s)
X 0 (s)
若按控制器与系统 的组成关系,此控制 方式为串联校正。
xi (t)
比例
积分
微分
测量变送
被控对象
x0 (t)
PID控制器是一种线 性控制器。它将偏差的比
例、积分和微分通过线性
组合构成控制量,对被控
对象进行控制。
一、PID控制规律
TD s)
40 20
(1
1 Ti s
TDs)
Ti
s
1 TiTDs2 Ti s
0
1
( )
Ti
1 TD
k(1s 1)( 2s 1) 900
Ti s
00
iD
即:由比例、积分、一阶微 900
分 (2个)环节组成。
由此可见:在低频段,PID控制器主要起积分控制作用, 改善系统的稳态性能;在高频段主要起微分控制作用,提高 系统的动态性能。
§5.1 概述
例如:在车削螺纹时,要求主轴与刀架有严格的运动关系。
主轴转1转→刀架移动一定距离

系统的滞后频域校正法

系统的滞后频域校正法

系统的滞后频域校正法
系统的滞后频域校正法是一种基于频域分析的控制系统校正方法,其主要目的是消除系统的滞后响应,提高系统的稳定性和响应速度。

步骤:
1.进行频域分析,得到系统的频率响应曲线,可以使用频率响应函数或传递函数进行分析。

2.确定系统的滞后频率ωH,即始终滞后于输入信号的最高频率。

3.在滞后频率的左侧选择一个频率ωa,使得系统的相位延迟角φ(ωa)为-π/4。

4.根据滞后频率和ωa之间的差异,计算相位补偿角δ。

5.应用相位补偿器,将补偿角δ加到系统的传递函数中,以消除系统在滞后频率处的相位延迟。

6.检查校正后的频率响应曲线,确保相位延迟角在滞后频率
处为零。

注意事项:
1.在选择频率ωa时,应该尽可能选择靠近滞后频率但又远离系统的干扰频率。

2.应该检查校正后的频率响应曲线,并根据需要进行调整,以达到最佳的系统性能。

3.在进行相位补偿时,应该小心使用带通滤波器等滤波器,以避免引入不必要的相位延迟。

线性系统,超前、滞后校正

线性系统,超前、滞后校正

L' ' (c ' ' ) 20lg L' (c ' ' ) 0
1 0.1c ' ' T
5)验证已校正系统的相角裕度和幅值裕度是否满足要求。

单位负反馈系统的开环传递函数为:
K G0 ( s) s(0.1s 1)(0.2s 1)
设计指标: (1)校正后系统的静态速度误差系数Kv=30 ; (2)开环系统截止频率 c ≥2.3rad/s ; (3)相位裕量γ"≥40°; (4)幅值裕量h"≥10dB ; 试设计串联校正装置。
串联滞后校正
利用滞后网络的高频幅值衰减特性使截止频率降低, 从而使系统获得较大的相位裕量,同时保持低频段 的开环增益不受影响。
Gc ( s )
与超前校正比较
Ts 1
Ts 1
滞后校正既能提高系统的稳态性能,有基本上不改变系 统的动态性能,采用超前校正的系统带宽大于滞后校正 的,带宽越大,抗干扰能力越差。 不过如果采用超前-滞后校正,则更完美。
自由响应:动态电路的完全响应中,已由初条确定待定系数k 的微分方程通解部分,称为电路系统的自由响应, 它的函数形式是由电路系统本身结构决定的,与外加激励无关。 强迫响应:动态电路微分方程的特解形式,仅仅由激励决定, 称为强迫响应;
1)零极点和传递函数对系统性能的影响 2)串联超前校正与串联滞后校正
当零极点相重合,产生零极点对消时,相应的模态也消失
串联超前校正与串联滞后校正
串联超前校正
1)改善系统的动态性能,实现在系统静态性能不受 损的前提下,提高系统的动态性能。 2)通过加入超前校正环节,利用其相位超前特性来 增大系统的相位裕度,改变系统的开环频率特性。 3)一般使校正环节的最大相位超前角出现在系统新 的穿越频率点。 其传递函数为

控制工程基础第五章——校正

控制工程基础第五章——校正

三 系统常用校正方法(2)
前馈校正 (复合控制)
对输入的
对扰动的
系统校正的基本思路
系统的设计问题通常归结为适当地设计串 联或反馈校正装置。究竟是选择串联校正还是 反馈校正,这取决于系统中信号的性质、系统 中各点功率的大小、可供采用的元件、设计者 的经验以及经济条件等等。
一般来说,串联校正可能比反馈校正简单, 但是串联校正常需要附加放大器和(或)提供隔离。 串联校正装置通常安装在前向通道中能量最低的地方。 反馈校正需要的元件数目比串联校正少,因为反馈校 正时,信号是从能量较高的点传向能量较低的点,不 需要附加放大器。
显然不满足要求。
令 20lgG(j0)0 或 G0(j0) 1 可求得ω0,再求得γ。

☆ 超前校正设计的伯德图
☆ 超前校正设计⑵
☆ 超前校正设计⑶
⒊确定超前校正装置的最大超前相位角
m4 52 75 23
⒋确定校正装置的传递函数
①确定参数α ②确定ωm
1 1 s sii n n m m1 1 s sii2 2n n 3 32.28
PID 传递 函数
G c(s)U E ((s s))K PK I1 sK D s
Gc(s)KP(1T1IsTDs)
KP——比例系数;TI——积分时间常数; TD——微分时间常数
二 PID控制器各环节的作用
比例环节 积分环节 微分环节
即时成比例地反映控制系统的偏差 信号,偏差一旦产生,控制器立即产 生控制作用,以减少偏差。
为了充分利用超前装置的最大超前相位角,一般取校正后系统的
开环截止频率为 0 m 。故有 Lc(m)L(0 ' )0d B
于是可求得校正装置在ωm处的幅值为
2 lG 0 g c (jm ) 1 l0 g 1 l2 0 g .2 3 8 .5 d8 B最后得校正装置

第六章 超前(迟后)校正解读

第六章 超前(迟后)校正解读
系统设计概述
系统分析:在系统的结构、参数已知的情况下, 计算出它的性能。 系统校正: 在系统分析的基础上,引入某些参数 可以根据需要而改变的辅助装置,来改善系统的性 能,这里所用的辅助装置又叫校正装置。 一般说来,原始系统除放大器增益可调外,其结 构参数不能任意改变,有的地方将这些部分称之为 “不可变部分”。这样的系统常常不能满足要求。 如为了改善系统的稳态性能可考虑提高增益,但系 统的稳定性常常受到破坏,甚至有可能造成不稳定。 为此,人们常常在系统中引入一些特殊的环节 —— 校正装置,以改善其性能指标。
m
m
1 7.94s -1 T
T 0.378s
1 2.65s -1 T
16
L ( ) dB
.
20
20
40
Lc
20
9.6 dB
20
1 T
0
1
T
3 .5 4.6

40
( )
90

c
L0
20
L
0

0
42
90
180
15


7 .94
17
Gc ( s)
C (s)

E ( s)
G1 ( s)


G2 ( s)
Gn ( s)


C (s)
H ( s)

H (s)
前馈校正:输入控制方式
前馈校正:干扰控制方式
2
校正类型比较: 串联校正:
分析简单,应用范围广,易于理解、接受。
反馈校正:
常用于系统中高功率点传向低功率点的场合,一 般无附加放大器,所以所要元件比串联校正少。另一 个突出优点是:只要合理地选取校正装置参数,可消 除原系统中不可变部分参数波动对系统性能的影响。 在 特殊的系统中,常常同时采用串联 、反馈和前 馈校正。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《自动控制原理》课程设计姓名:学号:班级:11电气1班专业:电气工程及其自动化学院:电气与信息工程学院2014年3月目录一、设计目的 (1)二、设计任务 (1)三、具体要求 (1)四、设计原理概述 (1)五、设计内容 (2)六、设计方案及分析 (2)1、观察原系统性能指标 (2)2、手动计算设计 (6)3、校正方案确定 (8)七、课程设计总结 (14)模拟随动控制系统的串联校正设计一、设计目的1、通过课程设计熟悉频域法分析系统的方法原理。

2、通过课程设计掌握滞后-超前校正作用与原理。

3、通过在实际电路中校正设计的运用,理解系统校正在实际中的意义。

二、设计任务 控制系统为单位负反馈系统,开环传递函数为)1025.0)(11.0()(G ++=s s s K s ,设计校正装置,使系统满足下列性能指标:开环增益100K ≥;超调量30%p σ<;调节时间ts<0.5s 。

三、具体要求1、使用MATLAB 进行系统仿真分析与设计,并给出系统校正前后的MATLAB 仿真结果,同时使用Simulink 仿真验证;2、使用EDA 工具EWB 搭建系统的模拟实现电路,分别演示并验证校正前和校正后的效果。

四、设计原理概述校正方式的选择:按照校正装置在系统中的链接方式,控制系统校正方式分为串联校正、反馈校正、前馈校正和复合校正4种。

串联校正是最常用的一种校正方式,这种方式经济,且设计简单,易于实现,在实际应用中多采用这种校正方式。

串联校正方式是校正器与受控对象进行串联链接的。

本设计按照要求将采用串联校正方式进行校正。

校正方法的选择:根据控制系统的性能指标表达方式可以进行校正方法的确定。

本设计要求以频域指标的形式给出,因此采用基于Bode 图的频域法进行校正。

几种串联校正简述:串联校正可分为串联超前校正、串联滞后校正和滞后-超前校正等。

超前校正的目的是改善系统的动态性能,实现在系统静态性能不受损的前提下,提高系统的动态性能。

通过加入超前校正环节,利用其相位超前特性来增大系统的相位裕度,改变系统的开环频率特性。

一般使校正环节的最大相位超前角出现在系统新的穿越频率点。

滞后校正通过加入滞后校正环节,使系统的开环增益有较大幅度增加,同时又使校正后的系统动态指标保持原系统的良好状态。

它利用滞后校正环节的低通滤波特性,在不影响校正后系统低频特性的情况下,使校正后系统中高频段增益降低,从而使其穿越频率前移,达到增加系统相位裕度的目的。

滞后-超前校正适用于对校正后系统的动态和静态性能有更多更高要求的场合。

施加滞后-超前校正环节,主要是利用其超前部分增大系统的相位裕度,以改善系统的动态性能;利用其滞后部分改善系统的静态性能。

五、设计内容1、分别通过手工计算和计算机编程计算,求取校正前系统的频率特性指标,并与设计要求进行比较;2、通过手工计算和计算机编程方法,确定校正后期望的穿越频率,具体值的选取与所选择的校正方式相适应。

3、根据待设计的校正环节的形式和转折频率,计算相关参数,进而确定校正环节。

4、得出校正后系统。

检验系统满足设计要求。

如不满足则从第二步重新开始。

在MATLAB中基于Bode图进行系统设计的基本思路是通过比较校正后的频率特性。

尝试选定合适的校正环节,根据不同的设计原理,确定校正环节参数。

最后对校正后的系统进行检验,并反复设计直至满足要求。

六、设计方案及分析1、观察原系统性能指标(1)使用MATLAB编写程序观察原系统的频率特性及阶跃响应。

程序如下:s=tf('s');G0=100/(s*(0.1*s+1)*(0.025*s+1)); %原系统开环传递函数[Gm,Pm]=margin(G0); %返回系统相对稳定参数figure(1)margin(G0) %系统Bode图figure(2)step(feedback(G0,0.1)) %系统单位阶跃响应Fs=G(s)/(1+G(s)); %闭环传递函数figure(3)margin(Fs) %闭环系统Bode图程序运行结果得到系统Bode图、阶跃响应和闭环Bode图,分别如图1、图2和图3所示:图1校正前系统Bode图从图1看出,原系统的幅值裕度为Gm=-6.02dB(at 20rad/s),相角裕度Pm=-15(at 27.8rad/s)。

(a)系统阶跃响应曲线(b)系统阶跃响应曲线(局部放大)图2 校正前系统的单位阶跃响应图3 系统闭环Bode图(2)使用Simulink观察系统性能在Simulink新建系统模型,如图4所示:图4 原系统模型选中并单击示波器模块,可查看系统阶跃响应,如图5所示:图5 系统Simulink仿真结果如图2和图5所示,原系统阶跃响应为发散。

(3)使用EWB工具建立模拟实际电路EWB是Electronics Workbench软件的缩写,是一种在电子技术工程与电子技术教学中广泛应用的优秀计算机仿真软件,专门用于电子线路仿真实验与设计的“虚拟电子工作平台”。

该软件的主要特点是:电子计算机图形界面操作,使用它可以实现大部分模拟电子线路与数字电子线路实验的功能,易学、易用、真实、准确、快捷和方便。

未校正系统的传递函数100/[s(0.1s+1)(0.025s+1)]可分解为以下三级传函级联形式:10/[0.1s(0.1s+1)(0.025s+1)] 其中,10/(0.1s+1)惯性环节、1/0.1s积分环节和1/(0.025s+1)惯性-比例环节可分别用以下有源校正装置表示,如图6所示。

(a)惯性环节(b)积分环节(c)惯性-比例环节图6 系统各环节表示使用EWB工具建立模拟实际电路如图7所示:图7 使用EWB搭建的模拟实际电路图在系统的仿真中,用键盘上的空格键控制开关的打开、关闭,这样就可以得到一个阶跃信号。

由此得出如图8所示的模拟实际电路图的仿真运行结果。

图8 模拟实际电路的仿真运行结果(4)对原系统的性能分析由以上各图中对校正前系统的分析结果可知,系统的幅值裕度Gm=-27.1dB(at20rad/s)和相角裕度Pm=-15度(at27.8rad/s ),系统不稳定,远且系统相角裕度小于0度,截止频率较大。

从系统阶跃响应结果和模拟系统搭建的电路仿真结果看,结果是一致的。

因此,系统需要进行校正。

2、手动计算设计(1)由设计要求,K ≥100,取K=100。

(2)绘制未校正系统的开环对数幅频曲线,确定截止频率和相角裕度。

6.3110010c0=⨯ω︒-=-︒=8.20406.31arctan 106.31arctan -900γ (3)根据设计要求s 5.0t %30%s ≤≤,σ,求出截止频率*c ω和相角裕度*γ。

取s 5.0t %30%s ==,σ根据高阶系统工程中动态性能的估算公式:2)1s i n 1(5.2)1s i n 1(5.12[%100)]1sin 1(4.016.0[%-+-+=⨯-+=γγωπγσc s t计算出截止频率*c ω=17.79,相角裕度*γ>47.79。

原系统不稳定;原开环系统在*c ω=17.79处相交储备量︒=5.36*)(c c ωγ。

该系统单独用超前或滞后校正都难以达到目标,所以确定采用滞后-超前校正。

(4)选择校正后系统的截止频率79.17*==c c ωω,超前部分应提供的最大超前角为43.48636.579.476*)(*m =+-=︒+-=c c ωγγϕ则 94.6sin 1sin 1a =-+=m m ϕϕ 63.294.6a ==在c ω=17.79处作直线,与)(L 0ω交于点A ,确定点A 关于0dB 线的镜像点B ;以点B 为中心作斜率为+20dB/dec 的直线,分别与过79.46a ==c ωω,76.6/==a ωω的两条直线交于点C 和点D ,则C 点频率: 79.4679.1763.2*=⨯==c C a ωωD 点频率: 76.646.79316.4841*2c D ===C ωωω 从点C 向右作水平线,从点D 向左作水平线,在过点D 的水平线上确定c ωω1.0E =的点E ;过点E 作斜率为-20dB/dec 的直线交0dB 线于点F ,相应频率为F ω,则E 点频率: 779.179.171.0*1.0E =⨯==c ωωDC 延长线与0dB 线交点处的频率:13.5679.176.31220c 0===c ωωω F 点频率: 214.013.56779.176.60F =⨯==ωωωωE D 故可写出校正装置传递函数 )179.46)(1214.0()176.6)(1779.1(1111)(C ++++=++++=s s s s s s s ss G D F E c ωωωω (5)验算。

校正后系统开环传递函数)179.46)(1214.0)(140)(110()176.6)(1779.1(100)()()(0++++++==s s s s G s G s G c 校正后系统的超调量%9.15%=σ,调节时间s s 16.1t =,不满足设计要求;(6)调整第(3)步中期望的截止频率*c ω和相角裕度*γ的取值,重新进行计算。

当取值45c*=ω,83.50*=γ时,校正后的系统超调量%25%=σ,调节时间s t s 392.0=,满足设计要求。

此时的校正装置传递函数为:)193.323)(127.1()125.6)(15.4(1111)(C ++++=++++=s s s s s ss s s G D F E c ωωωω 系统开环传递函数 )193.323)(127.1)(140)(110()125.6)(15.4(100)()()(0++++++==s s s s s s s s G s G s G c 3、校正方案确定于校正结果分析根据需要,拟首先尝试采用较为简单的串联超前网络或滞后网络进行校正。

如果均无法达到设计要求,再使用滞后-超前网络校正。

(1)采用串联超前网络进行系统校正串联超前校正的MATLAB 程序如下:s=tf('s');G0=100/(s*(0.1*s+1)*(0.025*s+1)); %原系统开环传递函数[mag,phase,w]=bode(G0); %返回原系统Bode 图参数[Gm,Pm]=margin(G0); %返回稳定裕度值expPm=45; %期望相位裕度phim=expPm-Pm+6; %需要对系统增加的相位超前量 phim=phim*pi/180;alfa=(1-sin(phim))/(1+sin(phim)); %相位超前量的单位转换 adb=20*log10(mag); %超前校正网络的参数alfaam=10*log10(alfa); %幅值的单位转换wc=spline(adb,w,am); %找出校正器在最大超前相位处的增益 T=1/(wc*sqrt(alfa)); %得到最大超前相位处的频率 alfat=alfa*T; %求出校正器参数alfatGc1=tf([T 1],[alfat 1]); %求出校正器传递函数figure(1)margin(G0*Gc1) %返回校正后系统Bode图figure(2)step(feedback(G0*Gc1,1)) %返回校正后系统的阶跃响应曲线程序运行结果如图9所示:(a)超前校正后的系统Bode图(b)超前校正后的系统阶跃响应曲线图9系统经超前校正后的仿真结果超前校正仿真结果的分析:由仿真结果看,校正为达到要求。

相关文档
最新文档