蜗壳断面设计公式及说明
离心泵蜗壳八个断面的设计研究

F′= x H2 +〔b3 + 2 r (1 - cosγ) - 2 x rsinγ〕·H + x r2 ·sin2γ
-
rsinγ〔b3 + 2 r (1 - cosγ) 〕-
R2 (2tgγ -
πγ 180
+
2 co sγ
-
π 2)
(5)
由图
1
可知 :
F1
= 2〔(
b3 2
+
r
+
b′3 ) 2
后依次确定其余各断面的倾角 。抽送一般介质的普通离心泵取 tgγ8 = 0135~015 ;输送有 一定纤维杂质的离心泵 ,考虑到介质在泵蜗壳中的通过性能 ,一般取 tgγ8 = 0125~014 。泵 比转数 ns 较小时取小值 ,比转数 ns 较大时取大值 。
各过水断面圆角 Ri 由下式计算 Ri =
第 2 期 徐伟利 :离心泵蜗壳八个断面的设计研究 9 9
(10) 式为蜗壳流道断面面积公式 。 由 (10) 式可知 :
x H2 + W H - ( V + F) = 0
H=- W±
W2 + 4 x ( V 2x
+
F)
,舍去负值有 : H
=
-
W+
W 2 + 4 x ( V + F) 2x
由图 1 可知 Ei 值 ,单位 mm ,其计算公式为
Ei
=
1 2
〔b3
+
2
r (1
-
cosγi) 〕+ ( H0 -
r ·sinγi) ·tgγi
(14)
式中 H0 —给定常数 ,一般大于或等于泵出口直径 。 综上所述 , (12) 、(13) 、(14) 为推导建立的蜗壳流道断面几何尺寸计算公式 ,该公式若采
蜗壳设计

17.1 进气蜗壳类型按通道数目划分,向心涡轮进气蜗壳可分为单通道和多通道两种。
图17-3 双通道串列进气蜗壳在图17-5中示出向心涡轮进气蜗壳常见的截面形状。
为今后叙述方便,每一种都取一个象形的名称。
图17-5 进气蜗壳常见截面形状17.2 蜗壳流动流动假定:不可压缩流体,稳定,等熵,等环量流动。
蜗壳进口处气流马赫数很低,可合理地假定为不可压缩流体。
在蜗壳出口处气流马赫数己很高,特别是无叶喷嘴环向心涡轮蜗壳出口,不可压缩流体必然导致较大误差。
内燃机出口气流是脉动的,稳定流动假定并不合理。
因非稳定流动的求解非常复杂,此假定是不得己而为之。
等熵流动假定意昧着计算中不考虑损失系数修正。
由于蜗壳中流体遵守动量距守恒规律,故等环量流动是比较符合实际的合理假定。
图17-1 单通道进气蜗壳图17-2双通道并列进气蜗壳图17-2图17-4 双通道串列进气蜗壳周向布置图17-6 进气蜗壳流动示意图进口流动:图17-6为进气蜗壳流动示意图。
在蜗壳进口处(O-O 截面)有,⎰=RCREi Ui dR b C G ρ0 (1)式中,0G 蜗壳进气流量。
ρ流体密度,不可压缩,故为常数。
i U C ,微流管周向分速。
i b 微流管宽度。
按气流流动是等环量分布的假定,Γ=i i U R C ,,可将上式改写成,⎰Γ=RCRE iidR R b G ρ0 ……………………………………….(2) 令 ⎰=RCREi dR b A 0,即蜗壳进口截面面积。
若设=0R A 0S dR R b RCRE ii=⎰,则 00S G Γ=ρ=0R A Γρ ……………………………………….(3) 式中,0R 是进口截面当量平均半径,由下式计算,⎰=RCRHiidR R b A R 00 ………………………………………. (4) 出口流动:蜗壳出口截面是宽度为b ,半径为h R 的圆柱面。
假定蜗壳出口气流沿周向均匀分布,即沿整个蜗壳出口截面的气流速度C 和气流角度α均为常数。
蜗壳的作用、型式、主要尺寸的选择与计算

➢混凝土蜗壳:梯形断面
➢m≥n:减低厂房高度, 缩短主轴长度
第 一 第节二蜗章壳水的轮型机式的蜗及壳其、主尾要水参管和数气选蚀择
• 混凝土蜗壳进口断面形状选择:
(1)δ一般为20°~30°, 常取δ=30°;
(2)当n=0时,γ=10°~15°,
b/a=1.5~1.7,可达 2.0;
2、金属蜗壳的水力计算
通过任一断面i 的流量为: Qi Qmaxi / 360
( i :从蜗壳鼻端至断面i 的包角)
又 Vu C Vc 的假定
∴断面半径
i
Qi
Vc
Qmax i 360Vc
断面中心矩: ai ra i 断面外半径:Ri ra 2i
对进口断面,将 i 代入0 公式
Q0 , ,0 , a即0和得R0。值
面和断面单线图。
已知条件:Hr、Qmax、b0、 Da、Db,蜗壳类型,
0、Vc 。
第 一 第节二蜗章壳水的轮型机式的蜗及壳其、主尾要水参管和数气选蚀择
1、蜗壳中的水流运动 V Vr Vu
(1)径向分速度 V:r
Vr
Qmax
Dab0
constant
(水流必须均匀地、 轴对称地进入导水机构)
(3)当m>n时,γ=10°~20°,
(b-n)/a=1.2~1.7,可达1.85;
(4)当m≤n时,γ=25°~35°,
(b-m)/a=1.2~1.7,可达1.85;
中间断面形状的确定: 直线过渡或抛物线过渡。
第 一 第节二蜗章壳水的轮型机式的蜗及壳其、主尾要水参管和数气选蚀择
3、蜗壳的包角 0:从蜗壳鼻端至蜗壳进口断面
可求出对应每一个Ri中间断面的尺寸 ai ,ni ,mi及
蜗壳的型式及主要尺寸的确定

蜗壳的型式及主要尺寸的确定根据设计资料提供,水轮机型号为 HL160—LJ —410及水电站工作水头H=118.5m>40m ,故采用金属蜗壳。
金属蜗壳只承受内水压力,而机墩传下的荷载和水轮机层的荷载是由金属蜗壳外围的混凝土承受。
为使金属蜗壳与其外围混凝土分开,受力互不传递,我国通常是在金属蜗壳上半部表面铺设沥青、麻刀、锯末或软木沥青、塑料软垫3——5cm 厚的软垫层,靠近座环处不铺。
使外压不传到金属蜗壳,内水压力不传到蜗壳外的混凝土上。
蜗壳主要参数的选择① 设计资料提供,每台机组的最大引用流量,则蜗壳进口处的流量s m Q Q 300max 00088.117123360345360=⨯==ϕ②、蜗壳进口断面平均流速《水力机械》第二版P99图4—30(b)曲线得s m V c 9= ③、座环内、外径选择由水轮机的型号 HL160—LJ —410,查到cm D 4101=的座环尺寸, 当H=118.5m<170m 时,其座环内径mm D b 5450=, 115m<H=118.5m<170m,其座环外径mm D a 6450= 金属蜗壳的水力计算设i ϕ为从蜗壳鼻端起算至计算断面i 的包角,则该计算断面处的max 0360Q Q ii ϕ=cii V Q πϕρ0max 360=i a i r R ρ2+=蜗壳断面计算表0 0 0 0 3.23 15 5.13 0.57 0.43 4.08 30 10.25 1.14 0.60 4.43 45 15.38 1.71 0.74 4.70 60 20.50 2.28 0.85 4.93 75 25.63 2.85 0.95 5.13 90 30.75 3.42 1.04 5.31 105 35.88 3.99 1.13 5.48 120 41.00 4.56 1.20 5.63 135 46.13 5.13 1.28 5.78 150 51.25 5.69 1.35 5.92 165 56.38 6.26 1.41 6.05 180 61.50 6.83 1.48 6.18 195 66.63 7.40 1.54 6.30 210 71.75 7.97 1.59 6.41 225 76.88 8.54 1.65 6.52 240 82.00 9.11 1.70 6.63 255 87.13 9.68 1.76 6.74 270 92.25 10.25 1.81 6.84 285 97.38 10.82 1.86 6.94 300 102.50 11.39 1.90 7.03 315 107.63 11.96 1.95 7.13 330 112.75 12.53 2.00 7.22 345117.8813.102.047.31根据计算结果作蜗壳单线图。
蜗壳横截面的设计公式

蜗壳横截面的设计公式
O·A·奥迪索;封雁国;向世武
【期刊名称】《国际水力发电》
【年(卷),期】1991(043)008
【摘要】本文提出了用于设计蜗壳椭圆形或圆形横截面的一个公式。
对给定水流型态实行一些简化假设后获得了这个最终的数学公式。
该公式用于设计不可压缩和一维水流条件的反击式水轮机和离心式水泵。
应用角动量守恒定律得到了本公式,从而获得了一种简单的计算方法。
应用该方法可以确定反击式水轮机蜗壳圆周不同角度位置蜗壳横截面的几何参数。
【总页数】4页(P31-33,50)
【作者】O·A·奥迪索;封雁国;向世武
【作者单位】无
【正文语种】中文
【中图分类】TV547
【相关文献】
1.无蜗壳与有蜗壳离心式风机在空调系统中的流场对比分析 [J], 孙政;许敏;顾晓卫;张天坤;张芳
2.用蜗壳隔舌插件技术对蜗壳式离心泵实施优化改进 [J], 李学来;贺博
3.蜗壳横截面的设计 [J], 无
4.轴流转桨式机组混凝土蜗壳调整为钢衬蜗壳后的结构与施工优化 [J], 龙波
5.蜗壳断面形状及叶轮位置对蜗壳式轴流泵性能的影响 [J], 王党雄;曹卫东;张忆宁;刘晓娟;马金星
因版权原因,仅展示原文概要,查看原文内容请购买。
蜗壳设计

• [3] 赵德印,杨述华,李苏泷等.离心风机蜗壳设计优化[J].制冷与空调,2012,12(4):47,25.
• [4]王延生.车辆发动机废气涡轮增压. • [5]朱大鑫.涡轮增压与涡轮增压器.
带入下式中
• 将某一个已确定的R值带入,就可求出一个对应的ϕ值。如此变更不同的R值, 得到相应的不同ϕ值;将一系列ϕ值与它对应的R值制成表格或曲线关系后, 再反过来由表格或曲线用插值法求出各所需指定整数ϕ值角度处对应的R值。
参考文献
• [1] 潘地林,丁维龙,许云龙等.离心式通风机蜗壳型线设计方法的理论分析与试 验研究[J].流体机械,2002,30(4):4-7.DOI:10.3969/j.issn.1005-0329.2002.04.001.
周向平均速度法
周向平均速度法
周向平均速度法
• 确定蜗壳最大截面积,应设蜗壳的流量较计算值 略大10%,根据连续性方程:
• 最后根据公式
计算出各个截面的面积大小
等环量法
• 流经第i断面的流量为 • 根据等环量假设,设蜗壳内
ห้องสมุดไป่ตู้
; 通过微元面积的流量为: ,K为速度矩常数,则:
等环量法
• 采用不同的蜗壳截面形状是,必须找出b和r的函数关系。 • 在实际设计计算中,通常就是先假设一个蜗壳的截面形状,求出b=b(r)的关系
离心式压气机蜗壳设计方 法的理论分析与研究
概述
• 传统的蜗壳设计方法主要有两种:
金属蜗壳水力计算和尾水管设计

金属蜗壳的水力计算在选定包角ϕ0及进口断面平均流速v 0后,根据设计流量Q r ,即可求出进口断面面积F 0。
由于要求水流沿圆周均匀地进入导水机构,蜗壳任一断面ϕi 通过的流量Q ϕ应为 Q Q ir ϕϕ=360(7—6)于是,蜗壳进口断面的流量为 Q Q r 00360=ϕ(7—7)进口断面的面积为F Q v Qv r 00000360==ϕ (7—8) 圆形断面蜗壳的进口断面半径为 ρπϕπmax ==F Q v r00360 (7—9)采用等速度矩方法计算蜗壳内其它断面的参数。
取蜗壳中的任一断面,其包角为ϕi ,如图7—15所示,通过该断面的流量为Q v bdr u r R aiϕ=⎰(7—10)因v r K u =,则v K r u =/,代入式(7—10)得: Q Kbrdr r R aiϕ=⎰(7—11) 式中:r a ──座环固定导叶的外切圆 半径;R i ──蜗壳断面外缘到水轮机轴线半径;r ──任一断面上微小面积到水轮机轴线的半径: b ──任一断面上微小面积的高度。
一、圆形断面蜗壳的主要参数计算对圆形断面的蜗壳,断面参数b 从图7—15中的几何关系可得b r a i i =--222ρ() (7—12) 式中:ρi ──蜗壳任一断面的半径;a i ──任一断面中心到水轮机轴线距离。
图7—15 金属蜗壳的平面图和断面图水轮机轴r aa ir R id rρibv uv rviϕ将式(7—12)代入式(7—11),并进行积分得:Q K a a i i i ϕπρ=--222() (7—13) 由式(7—6)与式(6-13)得ϕπρi r i i i KQ a a =--72022 () (7—14) 令C KQ r=720 π,称为蜗壳系数,则有ϕρi i i i C a a =--()22 (7—15)或 ρϕϕi i ii a C C =-⎛⎝ ⎫⎭⎪22(7—16)以上两式中的蜗壳系数C 可由进口断面作为边界条件求得。
水轮机全蜗壳圆形断面的水力优化设计方法

水轮机全蜗壳圆形断面的水力优化设计方法【摘要】近年来,我国水利水电工程得到了长足的发展,其在满足我国电力能源供需要求的同时为我国可持续发展战略的落实打下坚实的基础。
经过多年的工作实践总结得出,水利水电工程建设在减少煤炭资源能耗、加强水资源利用率、完善环境保护措施方面发挥了重要作用,为我国环保工作的开展提供了坚定的平台。
蜗壳作为水轮机最为重要的部件之一,做好其优化设计工作极为关键。
本文针对目前是轮机蜗壳常规水利设计方法中存在的问题进行分析,提出了有关优化设计方法,旨在提高水轮机蜗壳水利性能,增加水电站工作效率。
【关键词】水轮机;蜗壳;水力损失;优化设计自新中国成立至今,我国环境问题愈演愈烈,极大的威胁着人类身体健康、制约着社会经济发展。
在这种时代背景下,节能、环保以及可持续发展观念不断提出且得到了极大的落实,成为社会经济发展的主导方向,这也为水利水电事业提供了广阔的发展空间,是水利水电事业发展的基础前提。
水轮机作为水利水电工程中的重要组成部分,在现代化建设中发挥着重要作用和意义。
蜗壳作为水轮机中的重要组成,做好其优化设计方法受到业内工作人士的重视。
1.水轮机蜗壳概述就我国水利水电工程而言,由于工程建设时间长短不一、投入的设备和技术也存在着一定的差异,这就造成了一部分水利水电工程的水轮机设施存在着极为严重的问题。
随着社会经济的飞速发展和水轮机制造技术的不断进步,传统的水轮机已经无法满足现代化社会发展的需求,这就要求我们在工作中对水轮机进行改造和优化。
蜗壳作为水轮机重要组成部分,其问题尤为明显,因此,我们有必要对蜗壳中存在问题进行归纳和总结。
1.1水轮机蜗壳概念蜗壳是水轮机中极为重要的基础设施,是过流系统中不可缺少的一部分,它的主要作用在于尽量让水流在进入导叶之前均匀分配,并且具有一定的环量,使得水流对称和向心流之间的方向产生一定的变化。
所谓的蜗壳主要是水轮机中的一种那个蜗壳式的引水式,它主要是因为外观上看起来极像蜗牛壳,为此被广泛的称之为蜗壳。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三节:反击式水轮机的引水室
一、简介
一般混流式水轮机的引水室和压力水管联接部分还装有阀门,小型水轮机为闸阀或球阀,大型多为碟阀。
阀的作用式在停机时止水,机组检修时或机组紧急事故时导叶又不能关闭时使用,绝不能用来调节流量
水轮机引水室的作用:
1.保证导水机构周围的进水量均匀,水流呈轴对称,使转轮四周受水流的作用力均匀,以便提高运行的稳定性。
2.水流进入导水机构签应具有一定的旋转(环量),以保证在水轮机的主要工况下导叶处在不大的冲角下被绕流。
二、引水室
引水室的应用范围
1.开敞式引水室
2.罐式引水室
3.蜗壳式引水室
混凝土蜗壳一般用于水头在40M以下的机组。
由于混凝土结构不能承受过大水压力,故在40M以上采用金属蜗壳或金属钢板与混凝土联合作用的蜗壳
蜗壳自鼻端至入口断面所包围的角度称为蜗壳的包角蜗壳包角图
金属蜗壳的包角340度到350度
三、金属蜗壳和混凝土蜗壳的形状及参数
1.蜗壳的型式
水轮机蜗壳可分为金属蜗壳和混凝土蜗壳
当水头小于40M时采用钢筋混凝土浇制的蜗壳,简称混凝土蜗壳;一般用于大、中型低水头水电站。
当水头大于40M时,由于混凝土不能承受过大的内水压力,常采用钢板焊接或铸钢蜗壳,统称为金属蜗壳。
蜗壳应力分布图
椭圆断面应力分析图
金属蜗壳按制造方法有焊接铸焊和铸造三种。
,
尺寸较大的中、低水头混流一般采用钢板焊接,其中铸造和铸焊适用于尺寸不大的高水头混流水轮机
2.蜗壳的断面形状
金属蜗壳的断面常作成圆形,以改善其受力条件,当蜗壳尾部用圆断面不能和座环蝶形边相接时,采用椭圆断面。
金属蜗壳与有蝶形边座环的连接图
金属蜗壳的断面形状图
混凝土蜗壳的断面常做成梯形,以便于施工和减小其径向尺寸、降低厂房的土建投资
混凝土蜗壳断面形状图
当蜗壳的进口断面的形状确定后,其中间断面形状可由各断面的顶角点的变化规律来决定,有直线变化和向内弯曲的抛物线变化规律
混凝土蜗壳的断面变化规律
3.蜗壳的包角
对于金属蜗壳,其过流量较小,允许的流速较大因此其外形尺寸对厂房造价影响较小,为获得良好的水力性能及考虑到其结构和加工工艺条件的限制,一般
对于混凝土蜗壳其过流量较大,允许的流量较小,因此其外形尺寸常成为厂房大小的控制尺寸,直接影响厂房的土建投资,一般
4.蜗壳的进口流速
当蜗壳断面形状及包角确定后,蜗壳进口断面平均流速是决定蜗壳尺寸的主
要参数。
对于相同的过流量,选得大,则蜗壳断面就小,但水力损失增大。
值可根据水轮机设计水头查曲线的。
一般可取图中的中间值;对于金属蜗壳和有钢板里村的混凝土蜗壳,可取上限值;当布置上不受限制时也可取下限值,但不应小于引水道中的流速。
四、蜗壳的水力计算
1.蜗壳中的水流运动
蜗壳中的水流运动规律,一般认为两种形式。
(1)蜗壳断面的平均速度周向分量为常数的规律
(2)蜗壳中水流按等速度矩规律运动。
即位于蜗壳内任一点水流速度的切向分量与该点距水轮机轴线的半径的乘积不变常数
蜗壳中的水流运动图
通过蜗壳任一断面的流量
2.金属蜗壳的水力计算
(1)参数的选择
(2)与座环蝶形边相接的金属蜗壳的水力设计
(a)蜗壳参数与断面连接尺寸选择
1)按金属蜗壳的流速系数与水头的关系曲线
选择蜗壳流速系数K 2)确定蜗壳包角
3)与座环连接部位几何尺寸由座环设计给定,见图
(b)进口断面计算
进口断面流量
进口断面流速
进口断面面积求得:进口断面半径
进口断面中心距
进口断面外径
(c)圆断面计算
(d)椭圆断面计算
椭圆短半径
与圆的同等面积
椭圆断面长半径
椭圆断面中心距
椭圆断面外径
3.混凝土蜗壳的水力计算
(1)确定进口断面尺寸
(2)确定中间断面的顶角点、底角点变化规律
(3)绘制若干查出相应的及断面尺寸,便可绘制出蜗壳平面单线图混凝土蜗壳的水力计算曲线
混凝土蜗壳的平面单线图4.座环的结构形式
(1)与混凝土蜗壳联结的座环一是整体结构座环如图
二是装配式结构如图
(2)与金属蜗壳联结的座环一是带蝶形边的座环如图
二是不带蝶形边的座环如图
第五节:反击式水轮机的尾水管一、尾水管的作用
尾水管的作用
1.将转轮出口水流引向下游
2.利用下游水面至转轮出口处的高程差,形成转轮出口处的静力真空
3.利用转轮出口的水流动能,将其转换成为转轮出口处的动力真空三种尾水管
三种尾水管的能量差比较
1.没有尾水管
2.具有圆柱形尾水管
3.具有扩散型尾水管时
实际恢复的动能与理想恢复的功能的比值称为尾水管的恢复系数
二、尾水管的基本类型
1.直锥形尾水管
2.弯曲线尾水管弯肘形尾水管
弯锥形尾水管
三、尾水管选择
1.直锥形尾水管的设计
(1)根据经验公式,决定尾水管的进口速度
(2)确定尾水管出口断面面积
(3) 确定锥角及管长
根据扩散管中水力损失最小原则,一般选锥角,管长L 可由进口断面面积和出口断面面积值及值算出。
(4) 决定排水渠道尺寸
2.弯肘形尾水管的选择及计算
(1)尾水管的深度
尾水管深度是指水轮机导水机构底环平面至尾水管底板平面之间的距离。
对转轮进口直径小于转轮出口直径的混流式水轮机取;对转桨式水轮机取,对转轮直径的高水头混流式水轮机则可取。
(2)肘管型式
标准混凝土肘管
(3)水平长度
水平长度是机组中心到尾水管出口的距离通常取:L=4.5扩散段与支敦
四、减轻尾水管振动的措施
1.尾水管加导流隔板
尾水管中装设导流板
2.尾水管补气。