三角函数与三角恒等变换(附答案)
三角函数与三角恒等变换(附答案)

三角函数与三角恒等变换(A)一、 填空题(本大题共14小题,每题5分,共70分.不需写出解答过程,请把答案写在指定位置上) 1. 半径是r ,圆心角是α(弧度)的扇形的面积为________. 2.若sin(3)απ+=,则tan(π+α)=________.3. 若α是第四象限的角,则π-α是第________象限的角.4. 适合52sin 23m xm-=-的实数m 的取值范围是_________.5. 若tan α=3,则cos2α+3sin 2α=__________. 6. 函数sin 24y x π⎛⎫=+ ⎪⎝⎭的图象的一个对称轴方程是___________.(答案不唯一)7. 把函数4cos 13y x π⎛⎫=++ ⎪⎝⎭的图象向左平移ϕ个单位,所得的图象对应的函数为偶函数,则ϕ的最小正值为___________.8. 若方程sin 2x +cos x +k =0有解,则常数k 的取值范围是__________.…9. 1-sin10°·sin 30°·sin 50°·sin 70°=__________.10. 角α的终边过点(4,3),角β的终边过点(-7,1),则si n (α+β)=__________.11. 函数2cos 152sin 5x y x ππ⎛⎫+- ⎪⎝⎭=⎛⎫+ ⎪⎝⎭的递减区间是___________. 12. 已知函数f (x )是以4为周期的奇函数,且f (-1)=1,那么sin(5)2f ππ⎡⎤+=⎢⎥⎣⎦__________. 13. 若函数y =sin(x +ϕ)+cos(x +ϕ)是偶函数,则满足条件的ϕ为_______. 14. tan3、tan4、tan5的大小顺序是________.二、 解答题(本大题共6小题,共90分.解答后写出文字说明、证明过程或演算步骤) 15. (本小题满分14分)已知3tan 4θ=-,求22sin cos cos θθθ+-的值.—16. (本小题满分14分)已知函数f (x )=2si nx (si nx +c os x ). (1) 求函数f (x )的最小正周期和最大值;(2) 在给出的直角坐标系中,画出函数y =f (x )在区间,22ππ⎡⎤-⎢⎥⎣⎦上的图象.17. (本小题满分14分)求函数y =4si n 2x +6c os x -6(233x ππ-≤≤)的值域.\18. (本小题满分16分)已知函数()sin()(0,0)y f x A x ωϕωϕπ==+><<的图象如图所示.(1) 求该函数的解析式; (2) 求该函数的单调递增区间./19. (本小题满分16分)设函数2()4sin sin cos 242x f x x x π⎛⎫=++ ⎪⎝⎭(x ∈R ).(1) 求函数f (x )的值域; (2) 若对任意x ∈2,63ππ⎡⎤⎢⎥⎣⎦,都有|f (x )-m |<2成立,求实数m 的取值范围.20. (本小题满分16分)已知奇函数f (x )的定义域为实数集,且f (x )在[0,+∞)上是增函数.当02πθ≤≤时,是否存在这样的实数m ,使2(42cos )(2sin 2)(0)f m m f f θθ--+>对所有的0,2πθ⎡⎤∈⎢⎥⎣⎦均成立若存在,求出所有适合条件的实数m ;若不存在,请说明理由. 、第五章三角函数与三角恒等变换(B)一、 填空题(本大题共14小题,每题5分,共70分.不需写出解答过程,请把答案写在指定位置上)cos 225+tan240+sin(-300)=︒︒︒.tan 20tan 4020tan 40︒+︒︒︒=.3. 已知tan 2x =-,则2222sin 3cos 3sin cos x xx x+-的值为_________.4. 已知34παβ+=,则(1tan )(1tan )αβ--=________.5. 将函数y =sin2x 的图象向左平移4π个单位, 再向上平移1个单位,所得图象的函数解析式是________.~6. 已知函数)0)(2sin(παα≤≤+=x y 是R 上的偶函数,则ϕ=__________.7. 函数12log sin 24y x π⎛⎫=+ ⎪⎝⎭的单调递减区间为________.8. 已知函数sin y x x =+,且,6x ππ⎡⎤∈⎢⎥⎣⎦,则函数的值域是_________.9. 若3sin cos 0θθ-=,则21cos sin 22θθ+的值是___________.10. 已知,αβ都是锐角,且54sin ,cos()135ααβ=+=-,则sin β的值是_________. 11. 给出下列四个命题,其中不正确命题的序号是_______. ① 若cos cos αβ=,则2k αβπ-=,k ∈Z ;② 函数2cos 23y x π⎛⎫=+ ⎪⎝⎭的图象关于12x π=对称;③ 函数cos(sin )y x = (x ∈R )为偶函数;④ 函数y =sin|x |是周期函数,且周期为2π.>12. 已知函数()cos()f x A x ωϕ=+的图象如图所示,223f π⎛⎫=- ⎪⎝⎭,则f (0)=_________.13. 若0,,(0,)4παβπ⎛⎫∈∈ ⎪⎝⎭,且11tan(),tan 27αββ-==-,则2αβ-=______.14. 已知函数()sin 4f x x πω⎛⎫=+ ⎪⎝⎭(x ∈R ,ω>0)的最小正周期为π.将y =f (x )的图象向左平移(0)ϕϕ>个单位长度,所得图象关于y 轴对称,则ϕ的最小值是______.二、 解答题(本大题共6小题,共90分.解答后写出文字说明、证明过程或演算步骤) 15. (本小题满分14分)如图是表示电流强度I 与时间t 的关系sin()(0,0)I A t ωϕωϕπ=+><<在一个周期内的图象.(1) 写出sin()IA t ωϕ=+的解析式;(2) 指出它的图象是由I =si nt 的图象经过怎样的变换而得到的.[16. (本小题满分14分)化简sin6sin 42sin66sin78︒︒︒︒.·17. (本小题满分14分)已知函数y =sin x ·cos x +sin x +cos x ,求y 的最大值、最小值及取得最大值、最小值时x 的值.18. (本小题满分16分)设02πθ<<,曲线22sin sin 1xy θθ+=和22cos sin 1x y θθ-=有4个不同的交点. (1) 求θ的取值范围;(2) 证明这4个交点共圆,并求圆的半径的取值范围.19. (本小题满分16分)函数f (x )=1-2a -2a cos x -2sin 2x 的最小值为g (a ),a ∈R .:(1) 求g (a )的表达式; (2) 若g (a )=12,求a 及此时f (x )的最大值.20. (本小题满分16分)已知定义在区间,2ππ⎡⎤-⎢⎥⎣⎦上的函数y =f (x )的图象关于直线4x π=对称,当x ≥4π时,函数f (x )=sin x . (1) 求,24f f ππ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭的值; (2) 求y =f (x )的函数表达式;(3) 如果关于x 的方程f (x )=a 有解,那么在a 取某一确定值时,将方程所求得的所有解的和记为M a ,求M a 的所有可能取值及相对应的a 的取值范围.—、第五章三角函数与三角恒等变换(A )1.212r α 2. 3. 三 4.10,2⎡⎤⎢⎥⎣⎦5.19106. x =8π【解析】对称轴方程满足2x +4π=k π+2π,所以x =28k ππ+(k ∈Z ).…7.23π8.5,14⎡⎤-⎢⎥⎣⎦9.1516【解析】∵ sin10°·sin30°·sin50°·sin70°=sin 20sin 30sin 50cos 202cos10︒︒︒︒︒ =sin 40sin 30cos 40sin80sin 301,4cos108cos1016︒︒︒︒︒==︒︒∴ 原式=1-115.1616=10. 11.732,2,55k k k ππππ⎛⎫-+∈ ⎪⎝⎭Z 12. -1 【解析】f (5)=-f (-5)=-f (-1)=-1,∴ 原式=sin 2π⎛⎫-⎪⎝⎭=-1. 13.ϕ=k π+4π(k ∈Z ) 14. tan5<tan3<tan415. 2+sinθcosθ-cos2θ=2+2222sin cos cos tan12sin cos tan1θθθθθθθ--=+++=312242.925116--+=+16. (1)f(x)=2sin2x+2sin xc os x=1-c os2x+sin2x=1+2(sin2x cos4π-cos2x sin4π)=1+2sin(2x-4π).`所以函数f(x)的最小正周期为π,最大值为1+2.(2)列表.x38π-8π-8π38π58π24xπ-π-?2π-02ππy112-112+1 >故函数y=f(x)在区间,22ππ⎡⎤-⎢⎥⎣⎦上的图象是?17. y=4sin2x+6cos x-6=4(1-cos2x)+6cos x-6 =-4cos2x+6cos x-2=-4231cos.44x⎛⎫-+⎪⎝⎭∵-3π≤x≤23π,∴-12≤cos x≤1,∴ y ∈16,4⎡⎤-⎢⎥⎣⎦. 18. (1) 由图象可知:T =2388ππ⎡⎤⎛⎫-- ⎪⎢⎥⎝⎭⎣⎦=π⇒ω=2T π=2.A =2(2)2--=2,∴ y =2sin (2x +ϕ). 又∵,28π⎛⎫-⎪⎝⎭为“五点画法”中的第二点,∴ 2×8π⎛⎫- ⎪⎝⎭+ϕ=2π⇒ϕ=34π.∴ 所求函数的解析式为y =2sin 32.4x π⎛⎫+⎪⎝⎭(2) ∵ 当2x +34π∈2,222k k ππππ⎡⎤-++⎢⎥⎣⎦(k ∈Z )时,f (x )单调递增, ∴ 2x ∈52,244k k ππππ⎡⎤-+-+⇒⎢⎥⎣⎦x ∈5,88k k ππππ⎡⎤-+-+⎢⎥⎣⎦(k ∈Z ). [19. (1) f (x )=4sin x ·1cos 22x π⎛⎫-+ ⎪⎝⎭+cos2x =2sin x (1+sin x )+1-2sin 2x =2sin x +1.∵ x ∈R ,∴ sin x ∈[-1,1],故f (x )的值域是[-1,3]. (2) 当x ∈2,63ππ⎡⎤⎢⎥⎣⎦时,sin x ∈1,12⎡⎤⎢⎥⎣⎦,∴ f (x )∈[2,3]. 由|f (x )-m |<2⇒-2<f (x )-m <2,∴ f (x )-2<m <f (x )+2恒成立. ∴ m <[f (x )+2]min =4,且m >[f (x )-2]max =1. 故m 的取值范围是(1,4).20. 因为f (x )为奇函数,所以f (-x )=-f (x )(x ∈R ),所以f (0)=0.所以f (4m -2m cosθ)-f (2sin 2θ+2)>0,所以f (4m -2m cos θ)>f (2sin 2θ+2).又因为f (x )在[0,+∞)上是增函数,且f (x )是奇函数, 所以f (x )是R 上的增函数,所以4m -2m cos θ>2sin 2θ+2. 所以cos 2θ-m cos θ+2m -2>0. 因为θ∈0,2π⎡⎤⎢⎥⎣⎦,所以cos θ∈[0,1].;令l =cos θ(l ∈[0,1]). 满足条件的m 应使不等式l 2-ml +2m -2>0对任意l ∈[0,1]均成立. 设g (l )=l 2-ml +2m -2=22m l ⎛⎫- ⎪⎝⎭-24m +2m -2.由条件得01,0,1,2220,(0)0,(1)0.2m m m m g g g ⎧≤≤⎧⎧⎪<>⎪⎪⎪⎨⎨⎨⎛⎫⎪⎪⎪>>>⎩⎩ ⎪⎪⎝⎭⎩或或 解得,m >4-.第五章三角函数与三角恒等变换(B )3.711【解析】原式=2222tan 3(2)37.3tan 13(2)111x x +-+==--- 4. 2 5. y =2c os 2x 6.2π7.,88k k ππππ⎛⎫-+⎪⎝⎭(k ∈Z ) 【解析】∵ sin 24x π⎛⎫+⎪⎝⎭>0,且y =12log t 是减函数, ∴ 2k π<2x +4π≤2π+2k π,(k ∈Z ),∴ x ∈,88k k ππππ⎛⎤-+ ⎥⎝⎦(k ∈Z ).~8.2⎡⎤⎣⎦ 【解析】y =sin xx =2sin 3x π⎛⎫+ ⎪⎝⎭,又2π≤x +3π≤4,3π∴ sin 3x π⎛⎫+ ⎪⎝⎭∈⎡⎤⎢⎥⎣⎦,∴ y2]. 9. 65【解析】tan θ=13,∴ cos 2θ+12sin2θ=2222cos sin cos 1tan 6.sin cos tan 15θθθθθθθ++==++10.5665【解析】由题意得cos α=1213,sin (α+β)=35.∴ sin β=sin [(α+β)-α]=sin (α+β)·cos α-cos (α+β)·sin α=5665.11. ①②④ 12. 2313.34π-【解析】tan α=tan (α-β+β)=11127113127-=+⨯,∴ tan (2α-β)=tan [(α-β)+α]=1123111123+=-⨯.∵ β∈(0,π),且tan β=-17∈(-1,0),∴ β∈3,4ππ⎛⎫⎪⎝⎭,∴ 2α-β∈,,4ππ⎛⎫--⎪⎝⎭∴ 2α-β=-34π.14.8π【解析】由已知,周期为π=2πω,∴ ω=2.则结合平移公式和诱导公式可知平移后是偶函数,sin()24x πϕ⎡⎤++⎢⎥⎣⎦=±cos2x ,故ϕmin=8π.15. (1) I =300sin 1003t ππ⎛⎫+⎪⎝⎭. (2) I =sin t 3π−−−−→向左平移个单位I =sin 3t ππ⎛⎫+−−−−−−−−→ ⎪⎝⎭纵坐标不变1横坐标变为原来的倍100 I =sin 1003t ππ⎛⎫+ ⎪⎝⎭−−−−−−−→横坐标不变纵坐标变为原来的300倍I =300sin 1003t ππ⎛⎫+ ⎪⎝⎭. #16. 原式=sin6°·c os48°·c os24°·c os12°=cos6sin 6cos12cos 24cos 48cos6︒︒︒︒︒︒=1sin12cos12cos 24cos 482cos6︒︒︒︒︒=…=1sin 96116.cos616︒=︒17. 令sin x +cos x =t .由sin x +cos x sin 4x π⎛⎫+ ⎪⎝⎭,知t ∈],∴ sin x ·cos x=212t -,t ].所以y =212t -+t =12(t +1)2-1,t ].当t =-1,即2sin 4x π⎛⎫+⎪⎝⎭=-1,x =2k π+π或x =2k π+32π(k ∈Z )时,y min =-1;当tsin 4x π⎛⎫+ ⎪⎝⎭, x =2k π+4π(k ∈Z )时,y max =12+ 18. (1) 解方程组222222sin cos 1,sin cos ,sin cos 1,cos sin .x y x x y y θθθθθθθθ⎧⎧+==+⎪⎪⎨⎨-==-⎪⎪⎩⎩得 故两条已知曲线有四个不同的交点的充要条件为sin cos 0,cos sin 0.θθθθ+>⎧⎨->⎩∵ 0<θ<2π,∴ 0<θ<4π.(2) 设四个交点的坐标为(x i ,y i )(i =1,2,3,4),则2i x +2i y =2cos θ,2)(i =1,2,3,4).故此四个交点共圆,并且这个圆的半径r .19. f (x )=1-2a -2a cos x -2sin 2x =1-2a -2ac os x -2(1-cos 2x )=2cos 2x -2a cos x -1-2a =22cos 2a x ⎛⎫- ⎪⎝⎭-1-2a -22a (a ∈R ).(1) 函数f (x )的最小值为g (a ).① 当2a <-1,即a <-2时,由cos x =-1,得g (a )=2212a ⎛⎫-- ⎪⎝⎭-1-2a -22a =1;② 当-1≤2a ≤1,即-2≤a ≤2时,由cos x =2a,得g (a )=-1-2a -22a ;③ 当2a >1,即a >2时,由cos x =1,得g (a )=2212a ⎛⎫- ⎪⎝⎭-1-2a -22a =1-4a .综上所述,21(2),()12(22),214(2).aag a a aa a<-⎧⎪⎪=----≤≤⎨⎪->⎪⎩(2)∵ g(a)=12,∴-2≤a≤2,∴-1-2a-22a=12,得a2+4a+3=0,∴a=-1或a=-3(舍).将a=-1代入f(x)=22cos2ax⎛⎫-⎪⎝⎭-1-2a-22a,得f(x)=221cos2x⎛⎫+⎪⎝⎭+12.∴当c os x=1,即x=2kπ(k∈Z)时,f(x)max=5.20. (1)f2π⎛⎫- ⎪⎝⎭=f(π)=sinπ=0,f4π⎛⎫- ⎪⎝⎭=f34π⎛⎫⎪⎝⎭=sin34π=2.(2)当-2π≤x<4π时,f(x)=f2xπ⎛⎫-⎪⎝⎭=sin2xπ⎛⎫-⎪⎝⎭=c os x.∴f(x)=sin,,,4cos,,.24x xx xππππ⎧⎡⎤∈⎪⎢⎥⎪⎣⎦⎨⎡⎫⎪∈-⎪⎢⎪⎣⎭⎩(3)作函数f(x)的图象(如图),显然,若f(x)=a有解,则a∈[0,1].①当0≤a<22时,f(x)=a有两解,且1224x xπ+=,∴x1+x2=2π,∴M a=2π;②当a=22时,f(x)=a有三解,且x1+x2+x3=2π+4π=34π,∴M a=34π;③当22<a<1时,f(x)=a有四解,且x1+x2+x3+x4=x1+x4+x2+x3=2π+2π=π,∴M a=π;④ 当a =1时,f (x )=a 有两解,且x 1=0,x 2=2π,∴ x 1+x 2=2π,∴ M a=2π. 综上所述,M a=,0,{1},223,,42,.2a a a πππ⎧⎡⎫∈⎪⎪⎢⎪⎪⎣⎭⎪⎪∈⎨⎪⎪⎩⎭⎪⎪⎛⎫⎪∈ ⎪ ⎪⎪⎝⎭⎩。
三角函数恒等变换含答案及高考题.

三角函数恒等变形的基本策略。
(1)常值代换:特别是用“1”的代换,如1=cos 2θ+sin 2θ=tanx ·cotx=tan45°等。
(2)项的分拆与角的配凑。
如分拆项:sin 2x+2cos 2x=(sin 2x+cos 2x)+cos 2x=1+cos 2x ;配凑角:α=(α+β)-β,β=2βα+-2βα-等。
(3)降次与升次。
(4)化弦(切)法。
(4)引入辅助角。
asin θ+bcos θ=22b a +sin(θ+ϕ),这里辅助角ϕ所在象限由a 、b 的符号确定,ϕ角的值由tan ϕ=ab确定。
1.已知tan x =2,求sin x ,cos x 的值. 解:因为2cos sin tan ==xxx ,又sin 2x +cos 2x =1, 联立得⎩⎨⎧=+=,1cos sin cos 2sin 22x x xx 解这个方程组得.55cos 552sin ,55cos 552sin ⎪⎪⎩⎪⎪⎨⎧-=-=⎪⎪⎩⎪⎪⎨⎧==x x x x2.求)330cos()150sin()690tan()480sin()210cos()120tan(οοοοοο----的值.解:原式)30360cos()150sin()30720tan()120360sin()30180cos()180120tan(o οοοοοοοοοο--+---++-=.3330cos )150sin (30tan )120sin )(30cos (60tan -=---=οοοοοο3.若,2cos sin cos sin =+-xx xx ,求sin x cos x 的值.解:法一:因为,2cos sin cos sin =+-xx xx所以sin x -cos x =2(sin x +cos x ),得到sin x =-3cos x ,又sin 2x +cos 2x =1,联立方程组,解得,,⎪⎪⎩⎪⎪⎨⎧=-=⎪⎪⎩⎪⎪⎨⎧-==1010cos 10103sin 1010cos 10103sin x x x x 所以⋅-=103cos sin x x 法二:因为,2cos sin cos sin =+-xx xx所以sin x -cos x =2(sin x +cos x ),所以(sin x -cos x )2=4(sin x +cos x )2, 所以1-2sin x cos x =4+8sin x cos x , 所以有⋅-=103cos sin x x 4.求证:tan 2x ·sin 2x =tan 2x -sin 2x .证明:法一:右边=tan 2x -sin 2x =tan 2x -(tan 2x ·cos 2x )=tan 2x (1-cos 2x )=tan 2x ·sin 2x ,问题得证. 法二:左边=tan 2x ·sin 2x =tan 2x (1-cos 2x )=tan 2x -tan 2x ·cos 2x =tan 2x -sin 2x ,问题得证. 5.求函数)6π2sin(2+=xy 在区间[0,2π ]上的值域. 解:因为0≤x ≤2π,所以,6π76π26π,π20≤+≤≤≤x x 由正弦函数的图象, 得到],1,21[)6π2sin(-∈+x所以y ∈[-1,2]. 6.求下列函数的值域.(1)y =sin 2x -cos x +2; (2)y =2sin x cos x -(sin x +cos x ). 解:(1)y =sin 2x -cos x +2=1-cos 2x -cos x +2=-(cos 2x +cos x )+3,令t =cos x ,则,413)21(413)21(3)(],1,1[222++-=++-=++-=-∈t t t t y t利用二次函数的图象得到].413,1[∈y (2)y =2sin x cos x -(sin x +cos x )=(sin x +cos x )2-1-(sin x +cos x ),令t =sin x +cos x 2=,)4πsin(+x ,则]2,2[-∈t 则,,12--=t t y 利用二次函数的图象得到].21,45[+-∈y7.若函数y =A sin(ωx +φ)(ω>0,φ>0)的图象的一个最高点为)2,2(,它到其相邻的最低点之间的图象与x 轴交于(6,0),求这个函数的一个解析式.解:由最高点为)2,2(,得到2=A ,最高点和最低点间隔是半个周期,从而与x 轴交点的间隔是41个周期,这样求得44=T ,T =16,所以⋅=8πω又由)28πsin(22ϕ+⨯=,得到可以取).4π8πsin(2.4π+=∴=x y ϕ8.已知函数f (x )=cos 4x -2sin x cos x -sin 4x .(Ⅰ)求f (x )的最小正周期; (Ⅱ)若],2π,0[∈x 求f (x )的最大值、最小值. 数xxy cos 3sin 1--=的值域.解:(Ⅰ)因为f (x )=cos 4x -2sin x cos x -sin4x =(cos 2x -sin 2x )(cos 2x +sin 2x )-sin2x )4π2sin(2)24πsin(22sin 2cos 2sin )sin (cos 22--=-=-=--=x x x x x x x所以最小正周期为π.(Ⅱ)若]2π,0[∈x ,则]4π3,4π[)4π2(-∈-x ,所以当x =0时,f (x )取最大值为;1)4πsin(2=--当8π3=x 时,f (x )取最小值为.2-1. 已知2tan =θ,求(1)θθθθsin cos sin cos -+;(2)θθθθ22cos 2cos .sin sin +-的值.解:(1)2232121tan 1tan 1cos sin 1cos sin 1sin cos sin cos --=-+=-+=-+=++θθθθθθθθθθ; (2) θ+θθ+θθ-θ=θ+θθ-θ222222cos sin cos 2cos sin sin cos 2cos sin sin 324122221cos sin 2cos sin cos sin 2222-=++-=+θθ+θθ-θθ=.说明:利用齐次式的结构特点(如果不具备,通过构造的办法得到),进行弦、切互化,就会使解题过程简化。
高二数学三角函数三角恒等变换解三角形试题答案及解析

高二数学三角函数三角恒等变换解三角形试题答案及解析1.ABC中,已知,则ABC的形状为【答案】直角三角形【解析】略2.在中,,.(Ⅰ)求的值;(Ⅱ)设,求的面积.【答案】(1);(2).【解析】(1)利用内角和为,所以,再利用同角基本关系式求;(2),那么利用正弦定理,,求边,最后,试题解析:(1) ,,因为,所以,.(2),那么利用正弦定理,,代入数值,,所以.【考点】1.两角和的三角函数;2.正弦定理.3.(本题满分13分)已知中,点,动点满足(常数),点的轨迹为Γ.(Ⅰ)试求曲线Γ的轨迹方程;(Ⅱ)当时,过定点的直线与曲线Γ相交于两点,是曲线Γ上不同于的动点,试求面积的最大值.【答案】(Ⅰ)(Ⅱ)【解析】(Ⅰ)利用椭圆定义求动点轨迹,注意定义的条件要完整,不要少,另外要注意三角形中三顶点不共线,对轨迹要去杂(Ⅱ)求面积的最大值,首先要表示出面积,这要用到底乘高的一半,其中底为直线与椭圆的弦长,高为点到直线的距离,而由椭圆的几何性质知当直线与平行且与椭圆相切时,切点到直线的距离最大,因此还要求椭圆的切线,其次利用直线方程与椭圆方程联立方程组,再结合韦达定理可得弦长及切线,最后根据面积的表达式求最值,这要用到导数试题解析:(Ⅰ)在中,因为,所以(定值),且, 2分所以动点的轨迹为椭圆(除去与A、B共线的两个点).设其标准方程为,所以, 3分所以所求曲线的轨迹方程为.4分(Ⅱ)当时,椭圆方程为.5分①过定点的直线与轴重合时,面积无最大值.6分②过定点的直线不与轴重合时,设方程为:,,若,因为,故此时面积无最大值.根据椭圆的几何性质,不妨设.联立方程组消去整理得:, 7分所以则.8分因为当直线与平行且与椭圆相切时,切点到直线的距离最大,设切线,联立消去整理得,由,解得.又点到直线的距离, 9分所以, 10分所以.将代入得:,令,设函数,则,因为当时,,当时,,所以在上是增函数,在上是减函数,所以.故时,面积最大值是.所以,当的方程为时,的面积最大,最大值为.13分【考点】椭圆定义,直线与椭圆位置关系4.函数的图象的一条对称轴的方程是( )A.B.C.D.【答案】D【解析】根据余弦函数的图像和性质,可知,解得,,可知当时得到,故选D.【考点】余弦函数的图像和性质.5.已知两灯塔A和B与海洋观测站C的距离相等,灯塔A在观察站C的北偏东400,灯塔B在观察站C 的南偏东600,则灯塔A在灯塔B的()A.北偏东100B.北偏西100C.南偏东100D.南偏西100【答案】B【解析】由题意知, .由数形结合可得灯塔在灯塔的北偏西.故B正确.【考点】数形结合.6.已知函数的图象向左平移个单位长度,所得图象关于原点对称,则的最小值为()A.B.C.D.【答案】C【解析】函数,向左平移个单位长度得:,因为关于原点对称,所以,因此的最小正值为,选C.【考点】三角函数图像与性质7.角的终边上有一点,则()A.B.C.D.【答案】B【解析】【考点】三角函数定义8.三角形ABC中..则A的取值范围是.【答案】【解析】由已知不等式结合正弦定理得则A的取值范围是【考点】正余弦定理解三角形9.已知是锐角的外心,.若,则A.B.C.3D.【答案】A【解析】取AB的中点D,连接OA,OD,由三角形外接圆的性质可得OD⊥AB,∴.,代入已知,两边与作数量积得到由正弦定理可得:,化为cosB+cosCcosA=msinC,∵cosB=-cos(A+C)=-cosAcosC+sinAsinC,∴sinAsinC=msinC,∴m=sinA.∵,∴【考点】1.向量的线性运算性质及几何意义;2.正弦定理;3.三角函数基本公式10.如图,某人在垂直于水平地面ABC的墙面前的点A处进行射击训练.已知点A到墙面的距离为AB,某目标点P沿墙面上的射击线CM移动,此人为了准确瞄准目标点P,需计算由点A观察点P的仰角的大小.若,,,则的最大值是(仰角为直线AP与平面ABC所成角)【答案】【解析】仰角最大时即为面ACM与面ABC所成的角.过B作BC的垂线交CM于点P,过B作连接PN,则为所求的角,【考点】1、二面角的平面角;2、线面垂直的应用.【易错点晴】本题主要考查的是二面角的平面角的应用,属于中档题.本题容易犯的错误是过B作认为为所求角,从而出错.题中说目标P沿线MC运动,面ACM是确定的,仰角的最大值就是二面角M-AC-B的平面角,再应用三垂线法做出二面角的平面角.11.如图,某市新体育公园的中心广场平面图如图所示,在y轴左侧的观光道曲线段是函数,时的图象且最高点B(-1,4),在y轴右侧的曲线段是以CO为直径的半圆弧.(1)试确定A,和的值;(2)现要在右侧的半圆中修建一条步行道CDO(单位:米),在点C与半圆弧上的一点D之间设计为直线段(造价为2万元/米),从D到点O之间设计为沿半圆弧的弧形(造价为1万元/米).设(弧度),试用来表示修建步行道的造价预算,并求造价预算的最大值?(注:只考虑步行道的长度,不考虑步行道的宽度)【答案】(1);(2)造价,,在时取极大值,也即造价预算最大值为()万元.【解析】(1)由“五点法”可求得;(2)由(1)求出点坐标,得半圆的半径,用表示出弦长和弧长,由题意可得造价,,下面用导数的知识求出的最大值.试题解析:(1)因为最高点B(-1,4),所以A=4;,因为代入点B(-1,4),,又;(2)由(1)可知:,得点C即,取CO中点F,连结DF,因为弧CD为半圆弧,所以,即,则圆弧段造价预算为万元,中,,则直线段CD造价预算为万元所以步行道造价预算,.由得当时,,当时,,即在上单调递增;当时,,即在上单调递减所以在时取极大值,也即造价预算最大值为()万元.……16分【考点】“五点法”,的解析式,导数与最值.12.已知面积为,,则BC长为.【答案】【解析】由三角形面积公式可知【考点】三角形面积公式13.在△ABC中,a=3,b=5,sinA=,则sinB=()A.B.C.D.1【答案】A【解析】由正弦定理得【考点】正弦定理解三角形14.△ABC的内角A、B、C的对边分别为a、b、c.若a、b、c成等比数列且c=2a,则cosB =()A. B. C. D.【答案】A【解析】由a、b、c成等比数列且c=2,知:,所以,故选A.【考点】1、等比数列性质;2、余弦定理.15.已知中,角,所对的边分别是,且.(1)求的值;(2)若,求面积的最大值.【答案】(1);(2).【解析】(1)由条件的特点,可以考虑余弦定理求,再由半角公式求解;(2)由面积公式知,需求的最值,利用均值不等式即可.试题解析:(1)(2)又当且仅当时,△ABC面积取最大值,最大值为【考点】1、余弦定理;2、半角公式;3、基本不等式.【方法点晴】本题主要考查的是余弦定理、半角的正弦公式和三角形的面积公式及基本不等式,属于中档题.解题时一定要注意所给条件的结构特征,能主动联想余弦定理得角的余弦值,然后利用半角公式变形求解.由面积公式分析面积的最大值即求的最大值,因为考虑基本不等式来处理,注意等号成立的条件,这是易错点.16.已知角A、B、C为△ABC的三个内角,其对边分别为a、b、c,若=(-cos,sin),=(cos,sin),a=2,且·=.(1)若△ABC的面积S=,求b+c的值.(2)求b+c的取值范围.【答案】(1)b+c=4,(2)【解析】(1)由已知及余弦定理可求cosA=-,结合范围三角形内角的取值范围A∈(0,π),可求A.又由三角形面积公式可求bc,利用余弦定理即可解得b+c的值.(2)由正弦定理及三角形内角和定理可得b+c=4sin(B+),根据范围0<B<,利用正弦函数的有界性即可求得b+c的取值范围试题解析:(1)∵=(-cos,sin),=(cos,sin),且·=,∴-cos2+sin2=,即-cosA=,又A∈(0,π),∴A=.又由S=bcsinA=,所以bc=4,由余弦定理得:a2=b2+c2-2bc·cos=b2+c2+bc,△ABC∴16=(b+c)2,故b+c=4(2)由正弦定理得:==4,又B+C=π-A=,∴b+c=4sinB+4sinC=4sinB+4sin(-B)=4sin(B+),∵0<B<,则<B+<,则<sin(B+)≤1,即b+c的取值范围是.【考点】正弦定理,余弦定理,三角形面积公式.【方法点睛】(1)在三角形中处理边角关系时,一般全部转化为角的关系,或全部转化为边的关系.题中若出现边的一次式一般采用正弦定理,出现边的二次式一般采用余弦定理,应用正弦、余弦定理时,注意公式变形的应用,解决三角形问题时,注意角的限制范围;(2)在三角形中,注意隐含条件(3)解决三角形问题时,根据边角关系灵活的选用定理和公式.(3))在解决三角形的问题中,面积公式最常用,因为公式中既有边又有角,容易和正弦定理、余弦定理联系起来.17.要得到函数y = sin的图象,只要将函数y = sin2x的图象A.向左平移个单位B.向左平移个单位C.向右平移个单位D.向右平移个单位【答案】B【解析】,因此只需将函数y = sin2x的图象向左平移个单位【考点】三角函数图像平移18.在中,,则边的长为()A.B.3C.D.7【答案】A【解析】由三角形的面积公式,得,解得;由余弦定理,得,即;故选A.【考点】1.三角形的面积公式;2.余弦定理.19.在中,若,则的形状为.【答案】等腰三角形【解析】法一:由正弦定理可将变形为,,即.,.所以三角形为等腰三角形.法二: 由可得,整理可得,解得,即.所以三角形为等腰三角形.【考点】正弦定理,余弦定理.【方法点睛】本题主要考查的是正弦定理、余弦定理,属于容易题,本题利用正弦定理把边转化为角,变形后为正弦的两角和差公式.或是利用余弦定理将角转化为边再变形整理.即解此类题的关键是边角要统一.20.在△ABC中,已知B=45°,D是BC边上的一点,AD=10,AC=14,DC=6,求AB的长.【答案】AB=.【解析】先根据余弦定理求出∠ADC的值,即可得到∠ADB的值,最后根据正弦定理可得答案.解:在△ADC中,AD=10,AC=14,DC=6,由余弦定理得cos∠ADC==,∴∠ADC=120°,∠ADB=60°在△ABD中,AD=10,∠B=45°,∠ADB=60°,由正弦定理得,∴AB=.【考点】余弦定理;正弦定理.21.(2015秋•醴陵市校级期末)正弦函数y=sinx在x=处的切线方程为.【答案】【解析】先求导函数,利用导函数在x=处可知切线的斜率,进而求出切点的坐标,即可求得切线方程.解:由题意,设f(x)=sinx,∴f′(x)=cosx当x=时,∵x=时,y=∴正弦函数y=sinx在x=处的切线方程为即故答案为:【考点】利用导数研究曲线上某点切线方程.22.在△ABC中,内角A,B,C的对边分别是a,b,c,若a2﹣b2=bc,sinC=2sinB,则A= .【答案】30°【解析】已知sinC=2sinB利用正弦定理化简,代入第一个等式用b表示出a,再利用余弦定理列出关系式,将表示出的c与a代入求出cosA的值,即可确定出A的度数.解:将sinC=2sinB利用正弦定理化简得:c=2b,代入得a2﹣b2=bc=6b2,即a2=7b2,∴由余弦定理得:cosA===,∵A为三角形的内角,∴A=30°.故答案为:30°【考点】正弦定理.23.在△ABC中,所对的边分别为,且,则.【答案】【解析】由得【考点】正弦定理24.△ABC的内角A,B,C的对边分别为a,b,c,若,则a等于()A.B.2C.D.【答案】D【解析】先根据正弦定理求出角C的正弦值,进而得到角C的值,再根据三角形三内角和为180°确定角A=角C,所以根据正弦定理可得a=c.解:由正弦定理,∴故选D.【考点】正弦定理的应用.25.在中, 角的对边分别是,且则的形状是()A.等腰三角形B.等腰直角三角形C.直角三角形D.等边三角形【答案】C【解析】,三角形为直角三角形【考点】余弦定理及二倍角公式26.已知中,角所对的边分别,且.(Ⅰ)求;(Ⅱ)若,求面积的最大值.【答案】(Ⅰ);(Ⅱ).【解析】对于问题(Ⅰ),首先根据余弦定理把关于边的问题转化为关于角的问题,再结合降次公式以及三角函数的诱导公式,即可求得;对于问题(Ⅱ)可以根据(Ⅰ)的结论并结合基本不等式和三角形的面积公式即可求得面积的最大值.试题解析:(Ⅰ)(Ⅱ)且,,又,,,面积的最大值注:求法不唯一,只要过程、方法、结论正确,给满分。
高三数学三角函数三角恒等变换解三角形试题答案及解析

高三数学三角函数三角恒等变换解三角形试题答案及解析1.已知函数的图象上关于轴对称的点至少有3对,则实数的取值范围是()A.B.C.D.【答案】A【解析】原函数在轴左侧是一段正弦型函数图象,在轴右侧是一条对数函数的图象,要使得图象上关于轴对称的点至少有对,可将左侧的图象对称到轴右侧,即,应该与原来轴右侧的图象至少有个公共点如图,不能满足条件,只有此时,只需在时,的纵坐标大于,即,得.【考点】分段函数,函数图象,正弦型函数,对数函数2.若,则函数的最大值是___________.【答案】【解析】由题意因为,所以,所以函数的最大值是.【考点】求最大值.3.已知,,则下列不等式一定成立的是A.B.C.D.【答案】D【解析】,【考点】三角函数的性质4.若,且为第二象限角,则()A.B.C.D.【答案】B【解析】由得又为第二象限角,所以,选B.【考点】两角差余弦公式5.设函数对任意的,都有,若函数,则的值是()A.1B.-5或3C.-2D.【答案】C【解析】根据题意有是函数图像的对称轴,从而有,所以有,故选C.【考点】三角函数的性质.6.设的最小值为,则.【答案】【解析】,根据题意,结合二次函数在某个区间上的最值问题,对参数进行讨论,当时,其最小值为,所以不合题意,当时,其最小值为,解得,当时,其最小值为,无解,所以.【考点】倍角公式,二次函数在给定区间上的最值问题.7.设函数对任意的,都有,若函数,则的值是()A.1B.-5或3C.D.-2【答案】D【解析】根据题意有是函数图像的对称轴,从而有,所以有,故选D.【考点】三角函数的性质.8.下列函数中,以为最小正周期的偶函数是()A.y=sin2x+cos2xB.y=sin2xcos2xC.y=cos(4x+)D.y=sin22x﹣cos22x【答案】D【解析】因为A项为非奇非偶函数,B项是奇函数,C项是奇函数,只有D项是符合题意的,故选D.【考点】诱导公式,倍角公式,三角函数的奇偶性和周期.9.函数的最大值为.【答案】【解析】解析式表示过的直线的斜率,由几何意义,即过定点(4,3)与单位圆相切时的切线斜率为最值.所以设切线得斜率为k,则直线方程为,即 ,【考点】三角函数最值【方法点睛】本题主要考查三角函数最值问题及转化的思想,解决问题的根据是根据所给函数式子转化为直线与圆的位置关系问题,即将所给式子看做定点与单位圆上点的连线的斜率的范围问题,通过模型转化使问题定点巧妙解决,属于经典试题.10.(本题满分12分)如图,在中,边上的中线长为3,且,.(1)求的值;(2)求边的长.【答案】(1)(2)4【解析】(1)利用角的关系,再结合两角差正弦公式展开就可求解(2)先在三角形ABD中,由正弦定理解出BD长,即CD长:由正弦定理,得,即,解得…故;再在三角形ADC中由余弦定理解出AC:;AC= 4试题解析:(1)(2)在中,由正弦定理,得,即,解得…故,从而在中,由余弦定理,得;AC= 4 ;【考点】正余弦定理11.中,,则的最大值为.【答案】【解析】设,由余弦定理的推论,所以,设,代入上式得,,故,当时,此时,符合题意,因此最大值为,故答案为:.【考点】解三角形.【思路点睛】首先假设,然后再根据余弦定理的推论,可得,找到与的关系,再设,代入上式得,利用根的判别式,进而求出结果.本题的关键是利用余弦定理的推论.12.已知函数的部分图象如图所示.(1)求函数的解析式;(2)若,求函数在区间上的单调减区间.【答案】(1);(2),.【解析】(1)由图象中的最高点和最低点的纵坐标得到关于的方程组求得,再利用图象得到函数的周期,进而得到值,最后代入最低点坐标或最高点坐标结合的范围求出,即得到函数的解析式;(2)先求出,利用两角和差的正弦公式将其化为的形式,再利用整体思想求其单调递减区间.试题解析:(1)由图知,解得,又,所以,所以,将点代入,得,再由,得,所以;(2)因为由,解得;又,故所求的单调减区间为,.【考点】1.三角函数的图象与性质;2.三角恒等变形.13.已知角的终边经过点(-4,3),则= ,= ;【答案】;【解析】由题意可得.【考点】任意角三角函数的定义.14.在△ABC中,a、b、c分别是角A、B、C的对边,且.(Ⅰ)求角B的大小;(Ⅱ)若,求△ABC的面积.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)在解三角形的背景下,考查正弦定理,余弦定理,知值求值.(Ⅱ)综合余弦定理,求三角形的面积公式,需要把作为整体求之.试题解析:(Ⅰ)由正弦定理得将上式代入已知即,即.∵∵∵B为三角形的内角,∴.(Ⅱ)由余弦定理得,结合,可得,所以△ABC的面积.【考点】正弦定理,余弦定理,三角形的面积公式.15.在△中,角,,所对的边分别为,,,表示△的面积,若,,则.【答案】【解析】∵,∴,∴,∴,.∵,∴,∴,∴,∴.【考点】解三角形.【思路点睛】先利用余弦定理和三角形的面积公式可得,可得,再用正弦定理把中的边换成角的正弦,利用两角和公式化简整理可求得,最后根据三角形内角和,进而求得.16.中,角A,B,C的对边分别为a,b,c,若的面积,则 .【答案】【解析】由余弦定理,,又,,,即,,.【考点】1、余弦定理;2、同角三角函数的基本关系;3、三角形面积公式.【思路点睛】本题主要考查的是余弦定理、同角三角函数基本关系、三角形的面积公式,属于容易题.因为题目求,且的面积,边的平方的形式一般想到余弦定理,面积展开后利用余弦定理即可求得与的关系,从而利用同角三角函数的基本关系求得.17.(2012•安徽)设△ABC的内角A、B、C所对边的长分别为a、b、c,且有2sinBcosA=sinAcosC+cosAsinC.(Ⅰ)求角A的大小;(Ⅱ)若b=2,c=1,D为BC的中点,求AD的长.【答案】(Ⅰ);(Ⅱ)【解析】(Ⅰ)根据2sinBcosA=sinAcosC+cosAsinC,可得2sinBcosA=sin(A+C),从而可得2sinBcosA=sinB,由此可求求角A的大小;(Ⅱ)利用b=2,c=1,A=,可求a的值,进而可求B=,利用D为BC的中点,可求AD的长.解:(Ⅰ)∵2sinBcosA=sinAcosC+cosAsinC∴2sinBcosA=sin(A+C)∵A+C=π﹣B∴sin(A+C)=sinB>0∴2sinBcosA=sinB∴cosA=∵A∈(0,π)∴A=;(Ⅱ)∵b=2,c=1,A=∴a2=b2+c2﹣2bccosA=3∴b2=a2+c2∴B=∵D为BC的中点,∴AD=.【考点】余弦定理;三角函数的恒等变换及化简求值.18.在中,已知.(Ⅰ)求sinA与角B的值;(Ⅱ)若角A,B,C的对边分别为的值.【答案】(Ⅰ);(Ⅱ),.【解析】(I)给出了关于角的两个三角函数值,利用诱导公式和同角三角函数的基本关系式可求得其正弦、余弦,再根据三角形的性质可求得的值;(II)在第一问的基础上,利用正弦定理可求得边,再由余弦定理求边,注意利用三角形基本性质舍解.试题解析:(Ⅰ)∵,,又∵,.∵,且,.(Ⅱ)由正弦定理得,,另由得,解得或(舍去),,.【考点】三角函数的诱导公式,同角三角函数的基本关系式及利用正、余弦定理在解三角形.19.已知,则的值为.【答案】.【解析】,故填:.【考点】三角恒等变形.20.在中,角A,B,C的对边分别为,,,若,则角的值为()A.或B.或C.D.【答案】A.【解析】,,∴或,故选A.【考点】余弦定理.【思路点睛】由已知条件,可先将切化弦,再结合正弦定理,将该恒等式的边都化为角,然后进行三角函数式的恒等变形,找出角之间的关系;或将角都化成边,然后进行代数恒等变形,可一题多解,多角度思考问题,从而达到对知识的熟练掌握.21.为了得到函数的图象,只需把函数图象上的所有点()A.横坐标缩短到原来的倍,纵坐标不变B.横坐标伸长到原来的2倍,纵坐标不变C.纵坐标缩短到原来的倍,横坐标不变D.纵坐标缩短到原来的2倍,横坐标不变【答案】A【解析】这是一个三角函数的图象变换问题,一般的为了得到函数的图象,只需把函数的图象上所有点的横坐标伸长()或缩短()到原来的倍(纵坐标不变)即可,因此为了得到函数的图象,只需把函数图象上的所有点横坐标缩短到原来的倍,纵坐标不变,故选A.【考点】三角函数的图象变换.【方法点睛】本题是一个三角函数的图象变换问题,属于容易题.一般的要得到函数(其中)的图像可按以下步骤进行:先把的图象向左()或向右()平移个单位,再将所得函数的图象上各点的横坐标扩大()或缩小()为原来的(纵坐标不变),再把所得函数图象上各点的纵坐标扩大()或缩小()为原来的倍(横坐标不变),最后再将所得图像向上()或向下()平移个单位,即可得到函数的图象.22.如图,在中,,,点在边上,且,.(I)求;(II)求的长.【答案】(Ⅰ);(Ⅱ),.【解析】(Ⅰ)由图可知,所以,又,所以,再由两角差的正弦公式可求得;(Ⅱ)由题意可用正弦定理、余弦定理即可求出、的长,在中,有,又从而可求得;在中,由余弦定理得,,从而可求出.试题解析:(Ⅰ)在中,因为,所以,所以(Ⅱ)在中,由正弦定理得,在中,由余弦定理得,所以【考点】1.解三角形;2.两角差的正弦公式.23.设的内角对边分别为,已知,且.(1)求角的大小;(2)若向量与共线,求的值.【答案】(1);(2)。
三角恒等变换专题复习带答案

三角恒等变换专题复习教学目标:1、能利用单位圆中的三角函数线推导出 απαπ±±,2的正弦、余弦、正切的诱导公式;2、理解同角三角函数的基本关系式:;3、可熟练运用三角函数见的基本关系式解决各种问题; 教学重难点:可熟练运用三角函数见的基本关系式解决各种问题 基础知识一、同角的三大关系:① 倒数关系 tan α•cot α=1 ② 商数关系 sin cos αα= tan α ; cos sin αα= cot α ③ 平方关系 22sin cos 1αα+=温馨提示:1求同角三角函数有知一求三规律,可以利用公式求解,最好的方法是利用画直角三角形速解;来源:学+科+网2利用上述公式求三角函数值时,注意开方时要结合角的范围正确取舍“±”号;二、诱导公式口诀:奇变偶不变,符号看象限用诱导公式化简,一般先把角化成,2k z α+∈的形式,然后利用诱导公式的口诀化简如果前面的角是90度的奇数倍,就是 “奇”,是90度的偶数倍,就是“偶”;符号看象限是,把α看作是锐角,判断角2k πα+在第几象限,在这个象限的前面三角函数的符号是 “+”还是“--”,就加在前面;用诱导公式计算时,一般是先将负角变成正角,再将正角变成区间0(0,360)的角,再变到区间00(0,180)的角,再变到区间00(0,90)的角计算;三、和角与差角公式 :sin()sin cos cos sin αβαβαβ±=±; cos()cos cos sin sin αβαβαβ±=;tan tan tan()1tan tan αβαβαβ±±=变 用 tan α±tan β=tan α±β1 tan αtan β四、二倍角公式:sin 2α= 2sin cos αα.2222cos 2cos sin 2cos 112sin ααααα=-=-=-.22tan tan 21tan ααα=-五、注意这些公式的来弄去脉这些公式都可以由公式cos()cos cos sin sin αβαβαβ±=推导出来;六、注意公式的顺用、逆用、变用;如:逆用sin cos cos sin sin()αβαβαβ±=± 1sin cos sin 22ααα=变用22cos 1cos 2αα+=22cos 1sin 2αα-= 21cos 4cos 22αα+= 七、合一变形辅助角公式把两个三角函数的和或差化为“一个三角函数,一个角,一次方”的 B x A y ++=)sin(ϕϖ形式;()22sin cos αααϕA +B =A +B +,其中tan ϕB=A. 八、万能公式ααα2tan 1tan 22sin += ααα22tan 1tan 12cos +-= ααα2tan 1tan 22tan -=九、用αsin ,αcos 表示2tanααααααsin cos 1cos 1sin 2tan-=+=十、积化和差与和差化积积化和差 )]sin()[sin(cos sin βαβαβα-++=; )]sin()[sin(sin cos βαβαβα--+=;)]cos()[cos(cos cos βαβαβα-++=; )]cos()[cos(sin sin βαβαβα--+=.和差化积 2cos2sin2sin sin ϕθϕθϕθ-+=+2sin 2cos 2sin sin ϕθϕθϕθ-+=- 2cos 2cos 2cos cos ϕθϕθϕθ-+=+ 2sin 2sin 2cos cos ϕθϕθϕθ-+=-十一、方法总结1、三角恒等变换方法观察角、名、式→三变变角、变名、变式1 “变角”主要指把未知的角向已知的角转化,是变换的主线,如α=α+β-β=α-β+β, 2α=α+β+ α-β, 2α=β+α-β-α,α+β=2·错误! , 错误! = α-错误!-错误!-β等.2“变名”指的是切化弦正切余切化成正弦余弦sin cos tan ,cot cos sin αααααα==, 3“变式’指的是利用升幂公式和降幂公式升幂降幂,利用和角和差角公式、合一变形公式展开和合并等; 2、恒等式的证明方法灵活多样①从一边开始直接推证,得到另一边,一般地,如果所证等式一边比较繁而另一边比较简时多采用此法,即由繁到简.②左右归一法,即将所证恒等式左、右两边同时推导变形,直接推得左右两边都等于同一个式子. ③比较法, 即设法证明: "左边-右边=0" 或" 错误! =1";④分析法,从被证的等式出发,逐步探求使等式成立的充分条件,一直推到已知条件或显然成立的结论成立为止,则可以判断原等式成立.例题精讲例1 已知α为第四象限角,化简:ααααααcos 1cos 1sin sin 1sin 1cos +-++-解:1因为α为第四象限角所以原式=αααααα2222cos 1)cos 1(sin sin 1)sin 1(cos --+-- ()ααααααααααsin cos cos 1sin 1sin cos 1sin cos sin 1cos -=---=--+-=例2 已知360270<<α,化简α2cos 21212121++ 解:360270<<α,02cos,0cos <>∴αα所以原式2111cos211cos 22222αα++=+21cos cos cos 222ααα+===- 例3 tan20°+4sin20°解:tan20°+4sin20°=0020cos 40sin 220sin +=0sin(6040)2sin 40cos 20-+00003340sin 403cos 20223cos 20+=== 例4 05天津已知727sin()2425παα-==,求sin α及tan()3πα+.解:解法一:由题设条件,应用两角差的正弦公式得)cos (sin 22)4sin(1027ααπα-=-=,即57cos sin =-αα ①由题设条件,应用二倍角余弦公式得)sin (cos 57)sin )(cos sin (cos sin cos 2cos 25722ααααααααα+-=+-=-== 故51sin cos -=+αα ② 由①和②式得53sin =α,54cos -=α因此,43tan -=α,由两角和的正切公式11325483343344331433tan 313tan )3tan(-=+-=+-=-+=+ααπα 解法二:由题设条件,应用二倍角余弦公式得αα2sin 212cos 257-==, 解得 259sin 2=α,即53sin ±=α 由1027)4sin(=-πα可得57cos sin =-αα由于0cos 57sin >+=αα,且057sin cos <-=αα,故α在第二象限于是53sin =α,从而5457sin cos -=-=αα 以下同解法一小结:1、本题以三角函数的求值问题考查三角变换能力和运算能力,可从已知角和所求角的内在联系均含α进行转换得到.2、在求三角函数值时,必须灵活应用公式,注意隐含条件的使用,以防出现多解或漏解的情形. 例 5 已知,,A B C 为锐角ABC ∆的三个内角,两向量(22sin ,cos sin )p A A A =-+,(sin cos ,q A A =-1sin )A +,若p 与q 是共线向量.1求A 的大小;2求函数232sin cos()2C By B -=+取最大值时,B 的大小. 解:122// 2(1)(1+)- p q sinA sinA sin A cos A ∴-=22220 120cos A cos A cos A ∴+=∴+= 1cos 2A 2∴=-0<2A<π,002A 120 A=60∴=∴200A=60 B+C=120∴ 2013y=2sin B+cos(602B)1cos 2B+cos 2B sin 2B 22-=-+31 =sin 2B cos 2B+1=sin(2B )1226π--+ , 2B B 623πππ-=当时,即=. 小结:三角函数与向量之间的联系很紧密,解题时要时刻注意例6 设关于x 的方程sinx +3cosx +a =0在0, 2π内有相异二解α、β.1求α的取值范围; 2求tan α+β的值. 解: 1∵sinx +3cosx =221sinx +23cosx =2 sinx +3π, ∴方程化为sinx +3π=-2a.∵方程sinx +3cosx +a =0在0, 2π内有相异二解, ∴sinx +3π≠sin 3π=23 .又sinx +3π≠±1 ∵当等于23和±1时仅有一解, ∴|-2a |<1 . 且-2a≠23. 即|a |<2且a ≠-3.∴ a 的取值范围是-2, -3∪-3, 2.2 ∵α、 β是方程的相异解, ∴sin α+3cos α+a =0 ①. sin β+3cos β+a =0 ②. ①-②得sin α- sin β+3 cos α- cos β=0. ∴ 2sin2βα-cos2βα+-23sin2βα+sin2βα-=0, 又sin2βα+≠0, ∴tan2βα+=33.∴tan α+β=2tan22tan22βαβα+-+=3.小结:要注意三角函数实根个数与普通方程的区别,这里不能忘记0, 2π这一条件. 例7 已知函数()x x m x f cos sin 2-=在区间⎪⎭⎫⎝⎛2,0π上单调递减,试求实数m 的取值范围.解:已知条件实际上给出了一个在区间⎪⎭⎫⎝⎛2,0π上恒成立的不等式. 任取∈21,x x ⎪⎭⎫⎝⎛2,0π,且21x x <,则不等式()()21x f x f >恒成立,即>-11cos sin 2x x m 22cos sin 2x x m -恒成立.化简得()()2112sin 2cos cos x x x x m ->- 由2021π<<<x x 可知:0cos cos 12<-x x ,所以()1221cos cos sin 2x x x x m --<上式恒成立的条件为:()上的最小值,在区间⎪⎭⎫⎝⎛⎪⎪⎭⎫⎝⎛--<20cos cos sin 21221πx x x x m . 由于()2sin 2cos 22sin 2sin 22cos 2sin4cos cos sin 22121212121211221x x x x x x x x x x x x x x x x +-=-+--=-- 2sin2cos 2cos 2sin 2sin 2sin 2cos 2cos 221212121x x x x x x x x +⎪⎭⎫ ⎝⎛+=2tan2tan 2tan 2tan 122121x x x x +⎪⎭⎫ ⎝⎛+=且当2021π<<<x x 时,42,2021π<<x x ,所以 12tan ,2tan 021<<x x , 从而 02tan 12tan 12tan 2tan 2tan 2tan1212121>⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+x x x x x x , 有 22tan2tan 2tan 2tan 122121>+⎪⎭⎫ ⎝⎛+x x x x , 故 m 的取值范围为]2,(-∞.基础精练1.已知α是锐角,且sin 错误!=错误!,则sin 错误!的值等于A.错误! B .-错误! C.错误! D .-错误!2.若-2π<α<-错误!,则 错误!的值是A .sin 错误!B .cos 错误!C .-sin 错误!D .-cos 错误!3.错误!·错误!等于A.-sinαB.-cosαC.sinαD.cosα4.已知角α在第一象限且cosα=错误!,则错误!等于A.错误!B.错误!C.错误!D.-错误!5.定义运算错误!=ad -bc.若cosα=错误!,错误!=错误!,0<β<α<错误!,则β等于A.错误!B.错误!C.错误!D.错误!6.已知tanα和tan 错误!-α是方程ax 2+bx +c =0的两个根,则a 、b 、c 的关系是A.b =a +cB.2b =a +cC.c =b +aD.c =ab7.设a =错误!sin56°-cos56°,b =cos50°cos128°+cos40°cos38°,c =错误!,d =错误!cos80°-2cos 250°+1,则a,b,c,d 的大小关系为A.a >b >d >cB.b >a >d >cC.d >a >b >cD.c >a >d >b8.函数y =错误!sin2x +sin 2x,x ∈R 的值域是A.错误!B.错误!C.错误!D.错误!9.若锐角α、β满足1+错误!tanα1+错误!tanβ=4,则α+β= .10.设α是第二象限的角,tanα=-错误!,且sin 错误!<cos 错误!,则cos 错误!= .11.已知sin-4πx=135,0<x<4π,求)4cos(2cos x x +π的值;12.若),0(,πβα∈,31tan ,507cos -=-=βα,求α+2β;拓展提高1、设函数fx =sin 错误!-错误!-2cos 2错误!+11求fx 的最小正周期.2若函数y =gx 与y =fx 的图像关于直线x =1对称,求当x ∈0,错误!时y =gx 的最大值2.已知向量a =cosα,sinα,b =cosβ,sinβ,|a -b|=错误!1求cosα-β的值;2若0<α<错误!,-错误!<β<0,且sinβ=-错误!,求sinα.3、求证:αβαsin 2sin )(+-2cos α+β=αβsin sin .基础精练参考答案4.C 解析原式=错误!=错误!=错误!=2×cosα+sinα=2×错误!+错误!=错误!. 5.D 解析依题设得:sinα·cosβ-cosα·sinβ=sin α-β=错误!.∵0<β<α<错误!,∴cosα-β=错误!. 又∵cosα=错误!,∴sinα=错误!.sinβ=sinα-α-β=sinα·cosα-β-cosα·sinα-β =错误!×错误!-错误!×错误!=错误!,∴β=错误!.6.C 解析tan tan()4,tan tan(),4b a c a πααπαα⎧+-=-⎪⎪⎨⎪-=⎪⎩∴tan 错误!=tan 错误!-α+α=错误!=1,∴-错误!=1-错误!,∴-b =a -c,∴c =a +b.7.B 解析a =sin56°-45°=sin11°,b =-sin40°cos52°+cos40°sin52°=sin52°-40°=sin12°,c =错误!=cos81°=sin9°,d =错误!2cos 240°-2sin 240°=cos80°=sin10°∴b >a >d >c.8.C 解析y =错误!sin2x +sin 2x =错误!sin2x -错误!cos2x +错误!=错误!sin 错误!+错误!,故选择C. 9. 错误!解析由1+错误!tanα1+错误!tanβ=4,可得错误!=错误!,即tanα+β=错误!. 又α+β∈0,π,∴α+β=错误!.10. -错误!解析:∵α是第二象限的角,∴错误!可能在第一或第三象限,又sin 错误!<cos 错误!,∴错误!为第三象限的角, ∴cos 错误!<0.∵tanα=-错误!,∴cosα=-错误!,∴cos 错误!=- 错误!=-错误!.12.解析∵),0(,πβα∈,507cos -=α∴),0,33(71tan -∈-=α),0,33(31tan -∈-=β∴),65(,ππβα∈,α+2β)3,25(ππ∈,又tan2β=43tan 1tan 22-=-ββ,12tan tan 12tan tan )2tan(-=-+=+βαβαβα,来源:Zxxk ∴α+2β=411π拓展提高参考答案1、解析 1fx =sin 错误!cos 错误!-cos 错误!sin 错误!-cos 错误!x =错误!sin 错误!x -错误!cos 错误!x=错误!sin 错误!x -错误!,故fx 的最小正周期为T =错误!=82法一:在y =g x 的图象上任取一点 x,gx,它关于x =1的对称点2-x,gx.由题设条件,点2-x ,gx 在y =fx 的图象上,从而gx =f2-x =错误!sin 错误!2-x -错误! =错误!sin 错误!-错误!x -错误!=错误!cos 错误!x +错误!,当0≤x≤错误!时, 错误!≤错误!x +错误!≤错误!,因此y =gx 在区间0,错误!上的最大值为gx max =错误!cos 错误!=错误!.法二:因区间0,错误!关于x =1的对称区间为错误!,2,且y =gx 与y =fx 的图象关于x =1对称,故y =gx 在0,错误!上的最大值为y =fx 在错误!,2上的最大值,由1知fx =错误!sin 错误!x -错误!, 当错误!≤x ≤2时,-错误!≤错误!x -错误!≤错误!,因此y =gx 在0,错误!上的最大值为gx max =错误!sin 错误!=错误!.2、解析1∵a =cos α,sinα,b =cosβ,sinβ, ∴a -b =cosα-cosβ,sinα-sinβ. ∵|a -b|=错误!,∴错误!=错误!, 即2-2cosα-β=错误!,∴cosα-β=错误!.2∵0<α<错误!,-错误!<β<0,∴0<α-β<π,∵cosα-β=错误!,∴sinα-β=错误! ∵sin β=-错误!,∴cosβ=错误!,∴sinα=sinα-β+β=sinα-βcosβ+cosα-βsinβ=错误!·错误!+错误!·-错误!=错误!。
三角恒等变换(含答案)

2
4
4
4
从而 sin
−
4
=
−
4 5
,因此
tan
−
4
=
−
4 3
.故填
−
4 3
.
评注:此处的角还可由 cos
−
4
=
3 5
缩小至 2k +
2
−
4
2k
+
7 4
(k
Z)
,但没必要.
另外,还可利用
tan
−
π 4
tan
+
π 4
=
−1 来进行处理,或者直接进行推演,即由题意
cos
+
4
4
5
(A) 7 25
(B) 1 5
(C) − 1 5
(D) − 7 25
【解析】因为
cos
π 4
−
=
3 5
,
2 (cos + sin ) = 3,所以 cos + sin = 3
2
5
5
2 ,两边平方得,
1+sin 2 = 18 sin 2 = 7 .故选 D.
25
25
2
解法二:
cos 2
4
= − 1 .选 A 2
2
1+
cos
2
22
2
2
2
4.【2010 新课标文 10】若 sin = − 4 , 是第三象限的角,则 sin( + ) = ( )
5
4
(A) − 7 2 10
(B) 7 2 10
(C) − 2 10
三角函数、三角恒等变换、解三角形(含答案)

三角函数、三角恒等变换、解三角形学校:___________姓名:___________班级:___________考号:___________1.已知1sin 2α=,则cos()2πα-=( )A. 2-B. 12-C. 12D. 2 2.200︒是( )A. 第一象限角B. 第二象限角C. 第三象限角D. 第四象限角3.已知()1cos 03ϕϕπ=-<<,则sin 2ϕ=( )A.9B.9-C.9D.9-4.函数 )321sin(π+=x y 的图像可由函数x y 21sin =的图像( ) A .向左平移32π个单位得到 B .向右平移3π个单位得到C .向左平移6π个单位得到 D .向左平移3π个单位得到5.函数5sin(2)2y x π=+图像的一条对称轴方程是( ) A .2π-=x B . 4π-=x C . 8π=x D .45π=x6.函数())24x f x π=-,x R ∈的最小正周期为( )A .2πB .πC .2πD .4π7.给出以下命题:①若α、β均为第一象限角,且βα>,且βαsin sin >;②若函数⎪⎭⎫⎝⎛-=3cos 2πax y 的最小正周期是π4,则21=a ; ③函数1sin sin sin 2--=x xx y 是奇函数;④函数1|sin |2y x =-的周期是π; ⑤函数||sin sin x x y +=的值域是]2,0[. 其中正确命题的个数为( )A . 3B . 2C . 1D . 0 8.函数()sin()(0,0,||)2f x A x A πωϕωϕ=+>><的部分图像如图示,则将()y f x =的图像向右平移6π个单位后,得到的图像解析式为( )A .x y 2sin = B.x y 2cos = C.)322sin(π+=x y D.)62sin(π-=x y 9.函数()sin 2f x x =的最小正周期是 .10.300tan 480sin +的值为________.11.在ABC ∆中,已知内角3A π=,边BC =,则ABC ∆的面积S 的最大值为 .12.比较大小:sin1 cos1(用“>”,“<”或“=”连接).13.已知角α的顶点在坐标原点,始边在x 轴的正半轴,终边经过点(1,,则cos ____.α=14.已知3cos()(,)41024x x πππ-=∈. (Ⅰ)求sin x 的值; (Ⅱ)求sin(2)3x π+的值.15.已知x x x x x f 424cos 3)cos (sin sin 3)(-++=.(1)求()f x 的最小值及取最小值时x 的集合; (2)求()f x 在[0,]2x π∈时的值域;(3)在给出的直角坐标系中,请画出()f x 在区间[,]22ππ-上的图像(要求列表,描点).16.已知3cos()(,)424x x πππ-=∈. (1)求sin x 的值; (2)求sin(2)3x π+的值.17.(1)化简:︒--︒︒︒-20sin 1160sin 20cos 20sin 212;(2)已知α为第二象限角,化简ααααααcos 1cos 1sin sin 1sin 1cos +-++-.18.函数(其中)的图象如图所示,把函数)(x f 的图像向右平移4π个单位,再向下平移1个单位,得到函数)(x g y =的图像.(1)若直线m y =与函数)(x g 图像在]2,0[π∈x 时有两个公共点,其横坐标分别为21,x x ,求)(21x x g +的值;(2)已知ABC ∆内角AB C 、、的对边分别为a b c 、、,且0)(,3==C g c .若向量(1,sin )m A = 与(2,sin )n B =共线,求a b 、的值.19.已知函数()4cos sin()16f x x x π=+-.(1)求()f x 的最小正周期; (2)求()f x 在区间[,]64ππ-上的最大值与最小值.参考答案1.C 【解析】 试题分析:由1cos()sin 22παα-==,故选C. 考点:诱导公式. 2.C 【解析】试题分析:因为第一象限角α的范围为36036090,k k k z α⋅<<⋅+∈ ; 第二象限角α的范围为36090360180,k k k z α⋅+<<⋅+∈ ; 第三象限角α的范围为360180360270,k k k z α⋅+<<⋅+∈ ; 第四象限角α的范围为360270360360,k k k z α⋅+<<⋅+∈ ;200∴︒是第三象限角,故选C.考点:象限角的概念. 3.D 【解析】试题分析:0ϕπ<< ,sin 0ϕ∴>,故sin ϕ===,因此sin 2ϕ=12sin cos 2339ϕϕ⎛⎫=⨯-=- ⎪⎝⎭,故选D. 考点:1.同角三角函数的基本关系;2.二倍角公式4.A 【解析】试题分析:因为1sin()23y x π=+可化为12sin ()23y x π=+.所以将x y 21sin =向左平移32π.可得到12sin ()23y x π=+.故选 A.本小题关键是考查1ω≠的三角函数的平移,将0x ωϕ+=时的x 的值,与0x =是对比.即可知道是向左还是向右,同时也可以知道移了多少单位.考点:1.三角函数的平移.2.类比的思想. 5.A 【解析】试题分析:5sin(2)sin(22)sin(2)cos 2222y x x x x ππππ=+=++=+= ,由c o s y x =的对称轴()x k k Z π=∈可知,所求函数图像的对称轴满足2()x k k Z π=∈即()2k x k Z π=∈,当1k =-时,2x π=-,故选A. 考点:1.三角函数图像与性质中的余弦函数的对称性;2.诱导公式. 6.C 【解析】 试题分析:这是三角函数图像与性质中的最小正周期问题,只要熟悉三角函数的最小正周期的计算公式即可求出,如sin(),cos()y A x k y A x k ωϕωϕ=++=++的最小正周期为2||T πω=,而t a n ()y A x k ωϕ=++的最小正周期为||T πω=,故函数()tan()24x f x π=-的最小正周期为212T ππ==,故选C.考点:三角函数的图像与性质. 7.D 【解析】试题分析:对于①来说,取390,60αβ=︒=︒,均为第一象限,而1sin 60390sin 3022=︒=︒=,故s i n s i n αβ<;对于②,由三角函数的最小正周期公式214||2T a a ππ==⇒=±;对于③,该函数的定义域为{}|s i n 10|2,2x x x x k k Zππ⎧⎫-≠=≠+∈⎨⎬⎩⎭,定义域不关于原点对称,没有奇偶性;对于④,记1()|sin |2f x x =-,若T π=,则有()()22f f ππ-=,而1()|1| 1.522f π-=--=,1()|1|0.522f π=-=,显然不相等;对于⑤,0sin sin ||2sin y x x x ⎧=+=⎨⎩(0)(0)x x <≥,而当()2sin (0)f x x x =≥时,22sin 2x -≤≤,故函数sin sin ||y x x =+的值域为[2,2]-;综上可知①②③④⑤均错误,故选D.考点:1.命题真假的判断;2.三角函数的单调性与最小正周期;3.函数的奇偶性;4.函数的值域. 8.D 【解析】试题分析:通过观察图像可得1A =,311341264T πππ=-=,所以T π=,所以222T ππωπ===,又因为函数()f x 过点(,1)6π,所以s i n ()12()332k k Z πππϕϕπ+=⇒+=+∈,而||2πϕ<,所以当0k =时,6πϕ=满足要求,所以函数()sin(2)6f x x π=+,将函数向右平移6π个单位,可得()s i n [2()]s i n (2)666f x x x πππ=-+=-,故选D.考点:1.正弦函数图像的性质.2.正弦函数图像的平移.3.待定系数确定函数的解析式. 9.π 【解析】试题分析:直接利用求周期公式2T πω=求得.考点:周期公式.10. 【解析】 试题分析:sin 480tan 300sin(120360)tan(36060)sin120tan 60sin 60tan 60+=︒+︒+︒-︒=︒-︒=︒-︒,故sin 480tan 300+==考点:1.诱导公式;2.三角恒等变换.11.【解析】试题分析:∵2222cos a b c bc A =+-,∴2212b c bc =+-,∵222b c bc +≥,∴122b c b c +≥,∴12bc ≤,∴1sin 2S bc A ∆==≤ 考点:1.余弦定理;2.基本不等式;3.三角形面积.12.>. 【解析】试题分析:在单位圆中,做出锐角1的正切线、正弦线、余弦线,观察他们的长度,发现正切线最长,余弦线最短,故有 tan1>sin1>cos1>0. 考点:三角函数线.13.-12. 【解析】试题分析:由题意可得 x=-1,r 2=x 2+y 2=4,r=2,故cos =x r =-12. 考点:任意角的三角函数的定义.14.(1)45;(2)2450+-.【解析】试题分析:(1)先判断4x π-的取值范围,然后应用同角三角函数的基本关系式求出sin()4x π-,将所求进行变形sin sin[()]44x x ππ=-+,最后由两角和的正弦公式进行计算即可;(2)结合(1)的结果与x 的取值范围,确定cos x 的取值,再由正、余弦的二倍角公式计算出sin 2x 、cos2x ,最后应用两角和的正弦公式进行展开计算即可.试题解析:(1)因为3(,)24x ππ∈,所以(,)442x πππ-∈,于是sin()410x π-==sin sin[()]sin()cos cos()sin444444x x x x ππππππ=-+=-+-41021025=⨯+=(2)因为3(,)24x ππ∈,故3cos 5x ===-2247sin 22sin cos ,cos 22cos 12525x x x x ==-=⨯-=-所以中24sin(2)sin 2coscos 2sin33350x x x πππ++=+=-. 考点:1.同角三角函数的基本关系式;2.两角和与差公式;3.倍角公式;4.三角函数的恒等变换.15.(1)当1-,},12|{Z k k x x ∈-=ππ;(2)[1,3];(3)详见解析. 【解析】试题分析:先根据平方差公式、同角三角函数的基本关系式、二倍角公式化简所给的函数()2sin(2)13f x x π=-+.(1)将23x π-看成整体,然后由正弦函数sin y x =的最值可确定函数()f x 的最小值,并明确此时x 的值的集合;(2)先求出23x π-的范围为2[,]33ππ-,从而sin(2)13x π≤-≤,然后可求出]2,0[π∈x 时,函数()f x 的值域;(3)根据正弦函数的五点作图法进行列表、描点、连线完成作图.试题解析:化简424()(sin cos )f x x x x x =++222222cos )(sin cos )sin 2sin cos cos x x x x x x x =-++++22cos )2sin cos 1x x x x =-++sin 221x x =+2sin(2)13x π=-+ 4分(1)当sin(2)13x π-=-时,()f x 取得最小值211-+=-,此时22,32x k k Z πππ-=-+∈即,12x k k Zππ=-∈,故此时x 的集合为},12|{Z k k x x ∈-=ππ 6分(2)当]2,0[π∈x 时,所以]32,3[32πππ-∈-x ,所以sin(2)13x π≤-≤,从而12sin(2)133x π+≤-+≤即]3,13[)(+-∈x f 9分(3)由()2sin(2)1f x x π=-+知故()f x 在区间[,]22ππ-上的图象如图所示:13分.考点:1.三角恒等变换;2.三角函数的图像与性质.16.(1)45;(2).【解析】试题分析:(1)先判断4x π-的取值范围,然后应用同角三角函数的基本关系式求出sin()4x π-,将所求进行变形sin sin[()]44x x ππ=-+,最后由两角和的正弦公式进行计算即可;(2)结合(1)的结果与x 的取值范围,确定cos x 的取值,再由正、余弦的二倍角公式计算出sin 2x 、cos2x ,最后应用两角和的正弦公式进行展开计算即可.试题解析:(1)因为3(,)24x ππ∈,所以(,)442x πππ-∈,于是sin()410x π-==sin sin[()]sin()cos cos()sin444444x x x x ππππππ=-+=-+-41021025=⨯+=(2)因为3(,)24x ππ∈,故3cos 5x ===-2247sin 22sin cos ,cos 22cos 12525x x x x ==-=⨯-=-所以中24sin(2)sin 2coscos 2sin33350x x x πππ++=+=-. 考点:1.同角三角函数的基本关系式;2.两角和与差公式;3.倍角公式;4.三角函数的恒等变换. 17.(1)1-;(2)0. 【解析】试题分析:本题主要考查同角三角函数基本关系式与诱导公式的应用.(1)将分子中的1变形为22sin 20cos 20︒+︒,从而分子进一步化简为cos20sin 20︒-︒,分母s i n 16n 20︒︒利用诱导公式与同角三角函数的基本关系式转化为s i n 20c o s 2︒-︒,最后不难得到答案;(2)1sin |cos |αα-=,1cos |sin |αα-=,然后根据三角函数在第二象限的符号去绝对值进行运算即可.试题解析:(1)原式=cos 20sin 201sin 20cos 20sin 20cos 20︒-︒==-︒-︒︒-︒6分(2)解:原式cos sin 1sin 1cos cos |sin |cos |sin |αααααα--=⨯+⨯ 1cos 1cos cos sin 0cos sin αααααα--=⨯+⨯=- 6分. 考点:1.同角三角函数的基本关系式;2.三角恒等变换;3.诱导公式.18.(1)123()2g x x +=-;(2)a b ⎧=⎨=⎩【解析】试题分析:本题主要考查三角函数的图像和性质,向量共线的充要条件以及解三角形中正弦定理余弦定理的应用,考查分析问题解决问题的能力和计算能力,考查数形结合思想和化归与转化思想.第一问,先由函数图像确定函数解析式,再通过函数图像的平移变换得到()g x 的解析式,由于y m =与()g x 在[0,]2π上有2个公共点,根据函数图像的对称性得到2个交点的横坐标的中点为3π,所以122()()3g x x g π+=得出函数值;第二问,先用()0g c =在ABC ∆中解出角C 的值,再利用两向量共线的充要条件得到sin 2sin B A =,从而利用正弦定理得出2b a =,最后利用余弦定理列出方程解出边,a b 的长.试题解析:(1)由函数)(x f 的图象,ωπππ2)3127(4=-=T ,得2=ω, 又3,32πϕπϕπ=∴=+⨯,所以)32sin()(π+=x x f 2分 由图像变换,得1)62sin(1)4()(--=--=ππx x f x g 4分由函数图像的对称性,有23)32()(21-==+πg x x g 6分 (Ⅱ)∵ ()sin(2)106f C C π=--=, 即sin(2)16C π-= ∵ 0C π<<,112666C πππ-<-<, ∴ 262C ππ-=,∴ 3C π=. 7分 ∵ m n 与共线,∴ sin 2sin 0B A -=.由正弦定理 sin sin a b A B=, 得2,b a = ① 9分 ∵ 3c =,由余弦定理,得2292cos 3a b ab π=+-, ② 11分解方程组①②,得a b ⎧=⎨=⎩ 12分 考点:1.函数图像的平移变换;2.函数图像的对称性;3.正弦定理和余弦定理;4.函数的周期性;5.两向量共线的充要条件.19.(1)T =π;(2)最大值2;最小值-1.【解析】试题分析:(1)本小题首先需要对函数的解析式进行化简()⎪⎭⎫ ⎝⎛+=62sin 2πx x f ,然后根据周期公式可求得函数的周期T =π;(2)本小题首先根据.32626,46πππππ≤+≤-≤≤-x x 所以,然后结合正弦曲线的图像分别求得函数的最大值和最小值.试题解析:(1)因为1)6sin(cos 4)(-+=πx x x f1)cos 21sin 23(cos 4-+=x x x 1cos 22sin 32-+=x xx x 2cos 2sin 3+=)62sin(2π+=x所以)(x f 的最小正周期为π(2)因为.32626,46πππππ≤+≤-≤≤-x x 所以于是,当6,262πππ==+x x 即时,)(x f 取得最大值2; 当)(,6,662x f x x 时即πππ-=-=+取得最小值—1. 考点:三角函数的图像与性质.。
高中数学三角函数及三角恒等变换精选题目(附解析)

高中数学三角函数及三角恒等变换精选题目(附解析) 一、三角函数的定义若角α的终边上任意一点P (x ,y )(原点除外),r =|OP |=x 2+y 2,则sin α=y r ,cos α=x r ,tan α=y x (x ≠0).1.已知角α的终边过点P (-3cos θ,4cos θ),其中θ∈⎝ ⎛⎭⎪⎫π2,π,则sin α=________,tan α=________.[解析] ∵θ∈⎝ ⎛⎭⎪⎫π2,π,∴cos θ<0,∴r =x 2+y 2=9cos 2θ+16cos 2θ=-5cosθ,故sin α=y r =-45,tan α=y x =-43.[答案] -45 -43 注:利用三角函数定义求函数值的方法当已知角的终边所经过的点或角的终边所在的直线时,一般先根据三角函数的定义求这个角的三角函数值,再求其他.但当角经过的点不固定时,需要进行分类讨论.求与正切函数有关问题时,不要忽略正切函数自身的定义域.2.已知点M ⎝ ⎛⎭⎪⎫13,a 在函数y =log 3x 的图象上,且角θ的终边所在的直线过点M ,则tan θ=( )A .-13 B .±13 C .-3D .±3解析:选C 因为点M ⎝ ⎛⎭⎪⎫13,a 在函数y =log 3x 的图象上,所以a =log 313=-1,即M ⎝ ⎛⎭⎪⎫13,-1,所以tan θ=-113=-3,故选C.3.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos 2θ=( )A .-45B .-35 C.35D.45解析:选B 在角θ的终边上任取一点P (a,2a )(a ≠0). 则r 2=|OP |2=a 2+(2a )2=5a 2. 所以cos 2θ=a 25a 2=15,cos 2θ=2cos 2 θ-1=25-1=-35.4.若θ是第四象限角,则点P (sin θ,tan θ)在第________象限. 解析:∵θ是第四象限角,则sin θ<0,tan θ<0, ∴点P (sin θ,tan θ )在第三象限. 答案:三二、同角三角函数的基本关系及诱导公式①牢记两个基本关系式sin 2α+cos 2α=1及sin αcos α=tan α,并能应用两个关系式进行三角函数的求值、化简、证明.②诱导公式可概括为k ·π2±α(k ∈Z)的各三角函数值的化简公式.记忆规律是:奇变偶不变,符号看象限.其中的奇、偶是指π2的奇数倍或偶数倍,变与不变是指函数名称的变化.5.已知2+tan (θ-π)1+tan (2π-θ)=-4,求(sin θ-3cos θ)(cos θ-sin θ)的值.[解] 法一:由已知得2+tan θ1-tan θ=-4,∴2+tan θ=-4(1-tan θ), 解得tan θ=2.∴(sin θ-3cos θ)(cos θ-sin θ ) =4sin θcos θ-sin 2θ-3cos 2θ =4sin θcos θ-sin 2θ-3cos 2θsin 2θ+cos 2θ=4tan θ-tan2θ-3tan2θ+1=8-4-34+1=15.法二:由已知得2+tan θ1-tan θ=-4,解得tan θ=2.即sin θcos θ=2,∴sin θ=2cos θ.∴(sin θ-3cos θ)(cos θ-sin θ)=(2cos θ-3cos θ)(cos θ-2cos θ)=cos2θ=cos2θsin2θ+cos2θ=1tan2θ+1=15.注:三角函数式的求值、化简、证明的常用技巧(1)化弦:当三角函数式中三角函数名称较多时,往往把三角函数化为弦,再化简变形.(2)化切:当三角函数式中含有正切及其他三角函数时,有时可将三角函数名称都化为正切,再变形化简.(3)“1”的代换:在三角函数式中,有些会含有常数1,常数1虽然非常简单,但有些三角函数式的化简却需要利用三角函数公式将“1”代换为三角函数式.6.若sin(π+α)=35,且α是第三象限角,则sin⎝⎛⎭⎪⎫π2+α-cos⎝⎛⎭⎪⎫π2+αsin⎝⎛⎭⎪⎫π2-α-cos⎝⎛⎭⎪⎫π2-α=()A.1B.7 C.-7 D.-1解析:选B由sin(π+α)=35,得sin α=-35.又α是第三象限角,所以cos α=-4 5,所以sin⎝⎛⎭⎪⎫π2+α-cos⎝⎛⎭⎪⎫π2+αsin⎝⎛⎭⎪⎫π2-α-cos⎝⎛⎭⎪⎫π2-α=cos α+sin αcos α-sin α=-45+⎝ ⎛⎭⎪⎫-35-45-⎝ ⎛⎭⎪⎫-35=7.7.已知sin θ+cos θ=43,且0<θ<π4,则sin θ-cos θ的值为( )A.23 B .-23 C.13D .-13解析:选B ∵sin θ+cos θ=43,∴1+2sin θcos θ=169,则2sin θcos θ=79.又0<θ<π4,所以sin θ-cos θ<0,故sin θ-cos θ=-(sin θ-cos θ)2=-1-2sin θcos θ=-23,故选B.8.已知α为第三象限角,且sin α+cos α=2m,2sin αcos α=m 2,则m 的值为________.解析:由(sin α+cos α)2=1+2sin αcos α,得4m 2=1+m 2,即m 2=13.又α为第三象限角,所以sin α<0,cos α<0,则m <0,所以m =-33.答案:-339.已知sin(3π-α)=2cos ⎝ ⎛⎭⎪⎫3π2+β,cos(π-α)=63cos(π+β),且0<α<π,0<β<π,求sin α和cos β的值.解:由已知,得sin α=2sin β,① 3cos α=2cos β,②由①2+②2,得sin 2α+3cos 2α=2, 即sin 2α+3(1-sin 2α)=2,所以sin 2α=12. 又0<α<π,则sin α=22. 将sin α=22代入①,得sin β=12.又0<β<π,故cos β=±32.三、简单的三角恒等变换两角和与差的正弦、余弦、正切公式 ①sin(α±β)=sin αcos β±cos αsin β; ②cos(α±β)=cos αcos β∓sin αsin β; ③tan(α±β)=tan α±tan β1∓tan αtan β.二倍角的正弦、余弦、正切公式 ①sin 2α=2sin αcos α;②cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; ③tan 2α=2tan α1-tan 2α.10.已知tan α=2. (1)求tan ⎝ ⎛⎭⎪⎫α+π4的值;(2)求sin 2αsin 2α+sin αcos α-cos 2α-1的值.[解] (1)tan ⎝ ⎛⎭⎪⎫α+π4=tan α+tan π41-tan αtan π4=2+11-2×1=-3.(2)sin 2αsin 2α+sin αcos α-cos 2α-1=2sin αcos αsin 2α+sin αcos α-2cos 2α=2tan αtan 2α+tan α-2=2×24+2-2=1.注:条件求值的解题策略(1)分析已知角和未知角之间的关系,正确地用已知角来表示未知角. (2)正确地运用有关公式将所求角的三角函数值用已知角的三角函数值来表示.(3)求解三角函数中给值求角的问题时,要根据已知求这个角的某种三角函数值,然后结合角的取值范围,求出角的大小.11.若θ∈⎣⎢⎡⎦⎥⎤π4,π2,sin 2θ=378,则sin θ=( )A.35 B.45 C.74D.34解析:选D 因为θ∈⎣⎢⎡⎦⎥⎤π4,π2,所以2θ∈⎣⎢⎡⎦⎥⎤π2,π,所以cos 2θ<0,所以cos 2θ=-1-sin 22θ=-18.又cos 2θ=1-2sin 2θ=-18,所以sin 2θ=916,所以sin θ=34.12.已知sin ⎝ ⎛⎭⎪⎫α+π3+sin α=-435,-π2<α<0,则cos ⎝ ⎛⎭⎪⎫α+8π3等于( )A .-45 B .-35 C.35D.45解析:选D 因为sin ⎝ ⎛⎭⎪⎫α+π3+sin α=-435,所以sin ⎝ ⎛⎭⎪⎫α+π3+sin ⎝ ⎛⎭⎪⎫α+π3-π3=-435,所以sin ⎝ ⎛⎭⎪⎫α+π3+sin ⎝ ⎛⎭⎪⎫α+π3cos π3-cos ⎝ ⎛⎭⎪⎫α+π3sin π3=-435,所以32sin ⎝ ⎛⎭⎪⎫α+π3-32cos ⎝ ⎛⎭⎪⎫α+π3=-435,所以-3⎣⎢⎡⎦⎥⎤12cos ⎝ ⎛⎭⎪⎫α+π3-32sin ⎝ ⎛⎭⎪⎫α+π3=-435,即-3cos ⎝ ⎛⎭⎪⎫α+π3+π3=-435,cos ⎝ ⎛⎭⎪⎫α+2π3=45,所以cos ⎝ ⎛⎭⎪⎫α+8π3=cos ⎝ ⎛⎭⎪⎫α+2π3=45,故选D.13.(2017·全国卷Ⅲ)已知sin α-cos α=43,则sin 2α=( )A .-79B .-29 C.29D.79解析:选A 将sin α-cos α=43的两边进行平方,得sin 2 α-2sin αcos α+cos 2α=169,即sin 2α=-79.14.已知向量a =(1,-3),b =⎝ ⎛⎭⎪⎫sin x ,2cos 2x 2-1,函数f (x )=a ·b .(1)若f (θ)=0,求2cos 2θ2-sin θ-12sin ⎝ ⎛⎭⎪⎫θ+π4的值;(2)当x ∈[0,π]时,求函数f (x )的值域.解:(1)∵a =(1,-3),b =⎝ ⎛⎭⎪⎫sin x ,2cos 2x 2-1,∴f (x )=a ·b =sin x -3⎝ ⎛⎭⎪⎫2cos 2x 2-1=sin x -3cos x .∵f (θ)=0,即sin θ-3cos θ=0,∴tan θ=3,∴2cos 2θ2-sin θ-12sin ⎝ ⎛⎭⎪⎫θ+π4=cos θ-sin θsin θ+cos θ=1-tan θtan θ+1=1-33+1=-2+ 3.(2)由(1)知f (x )=sin x -3cos x =2sin ⎝ ⎛⎭⎪⎫x -π3,∵x ∈[0,π],∴x -π3∈⎣⎢⎡⎦⎥⎤-π3,2π3,当x -π3=-π3,即x =0时,f (x )min =-3; 当x -π3=π2,即x =5π6时,f (x )max =2,∴当x ∈[0,π]时,函数f (x )的值域为[-3,2].。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数与三角恒等变换(A)一、填空题(本大题共14小题,每题5分,共70分、不需写出解答过程,请把答案写在指定位置上)1、半径就就是r,圆心角就就是α(弧度)得扇形得面积为________、2、若,则tan(π+α)=________、3、若α就就是第四象限得角,则π-α就就是第________象限得角、4、适合得实数m得取值范围就就是_________、5、若tanα=3,则cos2α+3sin2α=__________、6、函数得图象得一个对称轴方程就就是___________、(答案不唯一)7、把函数得图象向左平移个单位,所得得图象对应得函数为偶函数,则得最小正值为___________、8、若方程sin2x+cos x+k=0有解,则常数k得取值范围就就是__________、9、1-sin10°·sin 30°·sin 50°·sin70°=__________、10、角α得终边过点(4,3),角β得终边过点(-7,1),则si n(α+β)=__________、11、函数得递减区间就就是___________、12、已知函数f(x)就就是以4为周期得奇函数,且f(-1)=1,那么__________、13、若函数y=sin(x+)+cos(x+)就就是偶函数,则满足条件得为_______、14、tan3、tan4、tan5得大小顺序就就是________、二、解答题(本大题共6小题,共90分、解答后写出文字说明、证明过程或演算步骤)15、(本小题满分14分)已知,求得值、16、(本小题满分14分)已知函数f(x)=2si nx(sinx+c osx)、(1) 求函数f(x)得最小正周期与最大值;(2) 在给出得直角坐标系中,画出函数y=f(x)在区间上得图象、17、(本小题满分14分)求函数y=4si n2x+6cos x-6()得值域、18、(本小题满分16分)已知函数得图象如图所示、(1) 求该函数得解析式;(2) 求该函数得单调递增区间、19、(本小题满分16分)设函数(x∈R)、(1) 求函数f(x)得值域;(2) 若对任意x∈,都有|f(x)-m|<2成立,求实数m得取值范围、20、(本小题满分16分)已知奇函数f(x)得定义域为实数集,且f(x)在[0,+∞)上就就是增函数、当时,就就是否存在这样得实数m,使对所有得均成立?若存在,求出所有适合条件得实数m;若不存在,请说明理由、第五章三角函数与三角恒等变换(B)一、填空题(本大题共14小题,每题5分,共70分、不需写出解答过程,请把答案写在指定位置上)1、______、2、_______、3、已知,则得值为_________、4、已知,则________、5、将函数y=sin2x得图象向左平移个单位, 再向上平移1个单位,所得图象得函数解析式就就是________、6、已知函数就就是R上得偶函数,则__________、7、函数得单调递减区间为________、8、已知函数,且,则函数得值域就就是_________、9、若,则得值就就是___________、10、已知都就就是锐角,且,则得值就就是_________、11、给出下列四个命题,其中不正确命题得序号就就是_______、①若,则,k∈Z;②函数得图象关于对称;③函数(x∈R)为偶函数;④函数y=sin|x|就就是周期函数,且周期为2π、12、已知函数得图象如图所示,,则f(0)=_________、13、若,且,则______、14、已知函数(x∈R,ω>0)得最小正周期为π、将y=f(x)得图象向左平移个单位长度,所得图象关于y轴对称,则得最小值就就是______、二、解答题(本大题共6小题,共90分、解答后写出文字说明、证明过程或演算步骤)15、(本小题满分14分)如图就就是表示电流强度I与时间t得关系在一个周期内得图象、(1) 写出得解析式;(2)指出它得图象就就是由I=si nt得图象经过怎样得变换而得到得、16、(本小题满分14分)化简、17、(本小题满分14分)已知函数y=sin x·cos x+sin x+cosx,求y得最大值、最小值及取得最大值、最小值时x得值、18、(本小题满分16分)设,曲线与有4个不同得交点、(1)求得取值范围;(2) 证明这4个交点共圆,并求圆得半径得取值范围、19、(本小题满分16分)函数f(x)=1-2a-2a cos x-2sin2x得最小值为g(a),a∈R、(1) 求g(a)得表达式;(2)若g(a)=,求a及此时f(x)得最大值、20、(本小题满分16分)已知定义在区间上得函数y=f(x)得图象关于直线对称,当x≥时,函数f(x)=si nx、(1)求得值;(2) 求y=f(x)得函数表达式;(3)如果关于x得方程f(x)=a有解,那么在a取某一确定值时,将方程所求得得所有解得与记为M a,求M a得所有可能取值及相对应得a得取值范围、第五章三角函数与三角恒等变换(A)1、2、±3、三4、5、6、x=【解析】对称轴方程满足2x+=kπ+,所以x=(k∈Z)、7、8、9、【解析】∵sin10°·sin30°·sin50°·sin70°==∴原式=1-10、-11、12、-1 【解析】f(5)=-f(-5)=-f(-1)=-1,∴原式=sin=-1、13、=kπ+(k∈Z) 14、tan5<tan3<tan415、2+sinθcosθ-cos2θ=2+=16、(1) f(x)=2sin2x+2sinxcos x=1-cos2x+sin2x=1+(sin2x cos-cos2xsin)=1+sin(2x-)、所以函数f(x)得最小正周期为π,最大值为1+、(2)列表、x0y 1 11故函数y=f(x)在区间上得图象就就是17、y=4sin2x+6cos x-6=4(1-cos2x)+6cosx-6=-4cos2x+6cosx-2=-4∵-≤x≤,∴-≤cosx≤1,∴y∈、18、(1)由图象可知:T=2=πω==2、A==2,∴y=2sin(2x+)、又∵为“五点画法”中得第二点,∴2×+==、∴所求函数得解析式为y=2sin(2) ∵当2x+∈(k∈Z)时,f(x)单调递增,∴2x∈x∈(k∈Z)、19、(1) f(x)=4sinx·+cos2x=2sinx(1+sinx)+1-2sin2x=2sin x+1、∵x∈R,∴sinx∈[-1,1],故f(x)得值域就就是[-1,3]、(2)当x∈时,sinx∈,∴f(x)∈[2,3]、由|f(x)-m|<2-2<f(x)-m<2,∴f(x)-2<m<f(x)+2恒成立、∴m<[f(x)+2]min=4,且m>[f(x)-2]max=1、故m得取值范围就就是(1,4)、20、因为f(x)为奇函数,所以f(-x)=-f(x)(x∈R),所以f(0)=0、所以f(4m-2m cosθ)-f(2sin2θ+2)>0,所以f(4m-2mcosθ)>f(2sin2θ+2)、又因为f(x)在[0,+∞)上就就是增函数,且f(x)就就是奇函数,所以f(x)就就是R上得增函数,所以4m-2m cosθ>2sin2θ+2、所以cos2θ-m cosθ+2m-2>0、因为θ∈,所以cosθ∈[0,1]、令l=cosθ(l∈[0,1])、满足条件得m应使不等式l2-ml+2m-2>0对任意l∈[0,1]均成立、设g(l)=l2-ml+2m-2=-+2m-2、由条件得解得,m>4-2、第五章三角函数与三角恒等变换(B)1、2、3、【解析】原式=4、25、y=2c os2x 6、7、(k∈Z) 【解析】∵sin>0,且y=就就是减函数,∴2kπ<2x+≤+2kπ,(k∈Z),∴x∈(k∈Z)、8、【解析】y=sinx+cosx=2sin,又≤x+≤∴sin∈,∴y∈[-,2]、9、【解析】tanθ=,∴cos2θ+sin2θ=10、【解析】由题意得cosα=,sin(α+β)=、∴sinβ=sin[(α+β)-α]=sin(α+β)·cosα-cos(α+β)·sinα=、11、①②④12、13、【解析】tanα=tan(α-β+β)=,∴tan(2α-β)=tan[(α-β)+α]=、∵β∈(0,π),且tanβ=-∈(-1,0),∴β∈,∴2α-β∈∴2α-β=-、14、【解析】由已知,周期为π=,∴ω=2、则结合平移公式与诱导公式可知平移后就就是偶函数,sin=±cos2x,故min=、15、(1)I=300sin、(2) I=sintI=sin I=sinI=300sin、16、原式=sin6°·cos48°·c os24°·cos12°===…=17、令sin x+cos x=t、由sinx+cosx=sin,知t∈[-,],∴sinx·cos x=,t∈[-,]、所以y=+t=(t+1)2-1,t∈[-,]、当t=-1,即2sin=-1,x=2kπ+π或x=2kπ+π(k∈Z)时,y min=-1;当t=,即sin=, x=2kπ+(k∈Z)时,y max=、18、(1) 解方程组故两条已知曲线有四个不同得交点得充要条件为∵0<θ<,∴0<θ<、(2)设四个交点得坐标为(x i,y i)(i=1,2,3,4),则+=2cosθ∈(,2)(i=1,2,3,4)、故此四个交点共圆,并且这个圆得半径r=、19、f(x)=1-2a-2acos x-2sin2x=1-2a-2acos x-2(1-cos2x)=2cos2x-2a cos x-1-2a=2-1-2a-(a∈R)、(1)函数f(x)得最小值为g(a)、①当<-1,即a<-2时,由cos x=-1,得g(a)=2-1-2a-=1;②当-1≤≤1,即-2≤a≤2时,由cos x=,得g(a)=-1-2a-;③当>1,即a>2时,由cos x=1,得g(a)=2-1-2a-=1-4a、综上所述,(2) ∵g(a)=,∴-2≤a≤2,∴-1-2a-=,得a2+4a+3=0,∴a=-1或a=-3(舍)、将a=-1代入f(x)=2-1-2a-,得f(x)=2+、∴当cosx=1,即x=2kπ(k∈Z)时,f(x)max=5、20、(1) f=f(π)=sinπ=0,f=f=sin=、(2)当-≤x<时,f(x)=f=sin=cos x、∴f(x)=(3)作函数f(x)得图象(如图),显然,若f(x)=a有解,则a∈[0,1]、①当0≤a<时,f(x)=a有两解,且,∴x1+x2=,∴Ma=;②当a=时,f(x)=a有三解,且x1+x2+x3=+=,∴M a=;③当<a<1时,f(x)=a有四解,且x1+x2+x3+x4=x1+x4+x2+x3=+=π,∴Ma=π;④当a=1时,f(x)=a有两解,且x1=0,x2=,∴x1+x2=,∴M a=、综上所述,Ma=。