函数、三角函数、三角恒等变换公式
三角恒等变换所有公式

三角恒等变换所有公式
三角恒等变换是一种重要的数学思想,它是一种重要的数学变换,它可以将函数或形式转换成另一种形式。
它具有良好的几何意义,包括积分,平方,幂和三角函数。
这种变换可以帮助我们理解数学概念,解决数学问题,更好地应用数学的思想。
三角恒等变换的公式有很多种,其中最受欢迎的是“反三角变换”,它的公式如下:
反三角变换:f(x) = sinx和 cosx反三角变换是
Acos(x)+Bsin(x)。
它的反三角变换表示式是:
Acos(x)+Bsin(x) = f(x)
利用反三角变换可以将函数 f(x)换成 Acos(x)+Bsin(x),其中A和B是任意实数。
也可以把它看成是三角函数的线性组合。
反射恒等变换:反射恒等变换是另一种常用的三角变换,它的公式是:
Csin(x)+Scos(x) = f(x)
反射恒等变换表示上式函数 f(x)以用 Csin(x)+Scos(x)表示,其中C和S是任意实数。
反射恒等变换也可以看成是三角函数的线性组合。
另外,三角恒等变换还有其他公式,例如求导公式:
f(x)=Acosx + Bsinx
反三角变换也可以应用于求积分,其求积分公式为:
F(x) = Asin(x)+Bcos(x)
F(x) =f (x) dx
上述就是三角恒等变换的所有公式,它们是数学的重要变换,有着无限的应用空间,被广泛应用在科学中和工程中。
他可以帮助我们更快地理解数学概念,解决数学问题,更好地运用数学思想。
(完整版)三角恒等变换公式大全,推荐文档

三角函数cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α+β)=sinα·cosβ+cosα·sinβsin(α-β)=sinα·cosβ-cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)二倍角sin(2α)=2sinα·cosα=2tan(α)/[1-tan^2(α)]cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)=[1-tan^2(α)]/[1+tan^2(α)]tan(2α)=2tanα/[1-tan^2(α)]三倍角sin3α=3sinα-4sin^3(α)cos3α=4cos^3(α)-3cosαtan3α=(3tanα-tan^3(α))÷(1-3tan^2(α))sin3α=4sinα×sin(60-α)sin(60+α)cos3α=4cosα×cos(60-α)cos(60+α)tan3α=tanα×tan(60-α)tan(60+α)半角公式sin^2(α/2)=(1-cosα)/2cos^2(α/2)=(1+cosα)/2tan^2(α/2)=(1-cosα)/(1+cosα)tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα半角变形sin^2(α/2)=(1-cosα)/2sin(a/2)=√[(1-cosα)/2] a/2在一、二象限=-√[(1-cosα)/2] a/2在三、四象限cos^2(α/2)=(1+cosα)/2cos(a/2)=√[(1+cosα)/2] a/2在一、四象限=-√[(1+cosα)/2] a/2在二、三象限tan^2(α/2)=(1-cosα)/(1+cosα)tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα=√[(1-cosα)/(1+cosα)] a/2在一、三象限=-√[(1-cosα)/(1+cosα)] a/2在二、四象限恒等变形tan(a+π/4)=(tana+1)/(1-tana)tan(a-π/4)=(tana-1)/(1+tana)asinx+b cosx=[√(a^2+b^2)]{[a/√(a^2+b^2)]sinx+[b/√(a^2+b^2)]cosx}=[√(a^2+b^2)]sin(x+y)(辅助角公式)tan y=b/a万能代换半角的正弦、余弦和正切公式(降幂扩角公式)sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]积和化差sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ= -(1/2)[cos(α+β)-cos(α-β)](注:留意最前面是负号)和差化积sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]内角公式sinA+sinB+sinC=4cos(A/2)cos(B/2)cos(C/2)cosA+cosB+cosC=1+4sin(A/2)sin(B/2)sin(C/2)tanA+tanB+tanC=tanAtanBtanCcot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)tan(A/2)tan(B/2)+tan(B/2)tan(C/2)+tan(C/2)tan(A/2)=1cotAcotB+cotBcotC+cotCcotA=1证明方法首先,在三角形ABC中,角A,B,C所对边分别为a,b,c若A,B均为锐角,则在三角形ABC中,过C作AB边垂线交AB于D 由CD=asinB=bsinA(做另两边的垂线,同理)可证明正弦定理:a/sinA=b/sinB=c/sinC于是有:AD+BD=cAD=bcosA,BD=acosB AD+BD=c代入正弦定理,可得sinC=sin(180-C)=sin(A+B)=sinAcosB+sinBcosA 即在A,B均为锐角的情况下,可证明正弦和的公式。
三角函数的三角恒等式总结

三角函数的三角恒等式总结三角函数是数学中重要的概念之一,广泛应用于几何、物理学等领域。
三角恒等式是指一类等式,其中包含三角函数的关系,它们在解决三角函数相关问题中起到重要的作用。
本文旨在对常见的三角恒等式进行总结,以帮助读者更好地理解和应用三角函数。
一、正弦函数的三角恒等式1. 反正弦函数的三角恒等式:arcsin(x) + arccos(x) = π/22. 正弦函数的平方和的三角恒等式:sin²(x) + cos²(x) = 13. 正弦函数的和差角三角恒等式:sin(x + y) = sin(x)cos(y) + cos(x)sin(y)sin(x - y) = sin(x)cos(y) - cos(x)sin(y)二、余弦函数的三角恒等式1. 反余弦函数的三角恒等式:arccos(x) + arcsin(x) = π/22. 余弦函数的平方和的三角恒等式:cos²(x) + sin²(x) = 13. 余弦函数的和差角三角恒等式:cos(x + y) = cos(x)cos(y) - sin(x)sin(y)cos(x - y) = cos(x)cos(y) + sin(x)sin(y)三、正切函数的三角恒等式1. 反正切函数的三角恒等式:arctan(1/x) + arctan(x) = π/22. 正切函数的平方和的三角恒等式:tan²(x) + 1 = sec²(x)3. 正切函数的和差角三角恒等式:tan(x + y) = (tan(x) + tan(y)) / (1 - tan(x)tan(y))tan(x - y) = (tan(x) - tan(y)) / (1 + tan(x)tan(y))四、其他三角恒等式1. 余切函数和正切函数的恒等式:csc²(x) = 1 + cot²(x)2. 正割函数和余割函数的恒等式:sec²(x) = 1 + tan²(x)综上所述,三角函数的三角恒等式是解决三角函数相关问题的有力工具。
三角恒等变换换元法

三角恒等变换换元法三角恒等变换是高等数学中的一个重要概念,它在解决三角函数方程和简化三角函数表达式中起着重要的作用。
本文将介绍三角恒等变换的定义、常见的三角恒等变换公式以及如何利用三角恒等变换来简化三角函数表达式。
一、三角恒等变换的定义三角恒等变换是指等式两边同时进行恒等变换,使等式仍然成立。
其中,恒等变换是指对一个三角函数进行某种运算后,仍然得到一个等价的三角函数。
三角恒等变换的目的是将复杂的三角函数表达式转化为简单的形式,从而更方便地进行计算和分析。
二、常见的三角恒等变换公式1. 余弦函数的恒等变换:- 和差角公式:cos(A ± B) = cosAcosB ∓ sinAsinB- 二倍角公式:cos2A = cos²A - sin²A = 2cos²A - 1 = 1 - 2sin²A- 半角公式:cos(A/2) = ±√[(1 + cosA)/2]2. 正弦函数的恒等变换:- 和差角公式:sin(A ± B) = sinAcosB ± cosAsinB- 二倍角公式:sin2A = 2sinAcosA- 半角公式:sin(A/2) = ±√[(1 - cosA)/2]3. 正切函数的恒等变换:- 和差角公式:tan(A ± B) = (tanA ± tanB)/(1 ∓ tanAtanB) - 二倍角公式:tan2A = (2tanA)/(1 - tan²A)三、利用三角恒等变换简化三角函数表达式的方法1. 利用和差角公式:当一个三角函数的参数是两个角度的和或差时,可以利用和差角公式将其转化为两个三角函数的乘积或商,从而简化表达式。
2. 利用二倍角公式:当一个三角函数的参数是一个角度的两倍时,可以利用二倍角公式将其转化为一个三角函数的平方或两个三角函数的差,从而简化表达式。
三角恒等变换公式大全

三角恒等变换公式大全1.正弦和余弦的平方和差关系:sin²x + cos²x = 1sin²x = 1 - cos²xcos²x = 1 - sin²x2.正弦和余弦的和差关系:sin(x + x) = sin x cos x + cos x sin xsin(x - x) = sin x cos x - cos x sin xcos(x + x) = cos x cos x - sin x sin xcos(x - x) = cos x cos x + sin x sin x3.正切和余切的和差关系:tan(x + x) = (tan x + tan x) / (1 - tan x tan x)tan(x - x) = (tan x - tan x) / (1 + tan x tan x)cot(x + x) = (cot x cot x - 1) / (cot x + cot x)cot(x - x) = (cot x cot x + 1) / (cot x - cot x)4.正弦和余弦的二倍角关系:sin(2x) = 2sin x cos xcos(2x) = cos²x - sin²x = 2cos²x - 1 = 1 - 2sin²x 5.正切和余切的二倍角关系:tan(2x) = (2tan x) / (1 - tan²x)cot(2x) = (cot²x - 1) / (2cot x)6.正弦和余弦的三倍角关系:sin(3x) = 3sin x - 4sin³xcos(3x) = 4cos³x - 3cos x7.正切和余切的三倍角关系:tan(3x) = (3tan x - tan³x) / (1 - 3tan²x)cot(3x) = (cot³x - 3cot x) / (3cot²x - 1)8.正弦和余弦的半角关系:sin(x/2) = ± √(1 - cos x) / 2cos(x/2) = ± √(1 + cosx) / 29.正切和余切的半角关系:tan(x/2) = (1 - cos x) / sin x = sin x / (1 + cos x) cot(x/2) = (1 + cos x) / sin x = sin x / (1 - cos x) 10.和差的三角函数关系:sin x + sin x = 2 sin((x + x)/2) cos((x - x)/2) sin x - sin x = 2 cos((x + x)/2) sin((x - x)/2) cos x + cos x = 2 cos((x + x)/2) cos((x - x)/2) cos x - cos x = -2 sin((x + x)/2) sin((x - x)/2)这些是一些常见的三角恒等变换公式,应用在不同的数学问题和物理公式的推导中。
高中数学三角恒等变换

Page
1
知识梳理
1.两角和与差的余弦、正弦、正切公式 cos(α-β)=cos αcos β+sin αsin β,(C(α-β))
cos(α+β)=cos αcos β-sin αsin β ,(C(α+β))
sin(α-β)= sin αcos β-cos αsin β ,(S(α-β))
7 - 5
.
答案
解析
2 2 cos α - sin α cos 2α = =cos α-sin α, π 2 2 2sinα+ 2 sin α+ cos α 4 2 2 3 π ∵sin α= ,α∈( ,π), 5 2 4 7 ∴cos α=- ,∴原式=- . 5 5
Page 6
(2)在△ABC中,若tan Atan B=tan A+tan B+1,则cos C的值为 答案
2 A.- 2 2 B. 2 1 C. 2 1 D.- 2
解析
由tan Atan B=tan A+tan B+1,
tan A+tan B 可得 =-1,即 tan(A+B)=-1, 1-tan Atan B 3π 又 A+B∈(0,π),所以 A+B= , 4 π 2 则 C= ,cos C= . 4 2
Page 16
引申探究
θ θ 1+sin θ-cos θsin -cos 2 2 化简: (0<θ<π). 解答 2-2cos θ
θ π θ ∵0< < ,∴ 2-2cos θ=2sin , 2 2 2
例2 2 5 A. 25 5 3 (1)设 α、β 都是锐角,且 cos α= ,sin(α+β)= ,则 cos β 等于 5 5
答案 解析
三角恒等变换公式大全

三角函数cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α+β)=sinα·cosβ+cosα·sinβsin(α-β)=sinα·cosβ-cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)二倍角sin(2α)=2sinα·cosα=2tan(α)/[1-tan^2(α)]cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)=[1-tan^2(α)]/[1+tan^2(α)]tan(2α)=2tanα/[1-tan^2(α)]三倍角sin3α=3sinα-4sin^3(α)cos3α=4cos^3(α)-3cosαtan3α=(3tanα-tan^3(α))÷(1-3tan^2(α))sin3α=4sinα×sin(60-α)sin(60+α)cos3α=4cosα×cos(60-α)cos(60+α)tan3α=tanα×tan(60-α)tan(60+α)半角公式sin^2(α/2)=(1-cosα)/2cos^2(α/2)=(1+cosα)/2tan^2(α/2)=(1-cosα)/(1+cosα)tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα半角变形sin^2(α/2)=(1-cosα)/2sin(a/2)=√[(1-cosα)/2] a/2在一.二象限=-√[(1-cosα)/2] a/2在三.四象限cos^2(α/2)=(1+cosα)/2cos(a/2)=√[(1+cosα)/2] a/2在一.四象限=-√[(1+cosα)/2] a/2在二.三象限tan^2(α/2)=(1-cosα)/(1+cosα)tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα=√[(1-cosα)/(1+cosα)] a/2在一.三象限=-√[(1-cosα)/(1+cosα)] a/2在二.四象限恒等变形tan(a+π/4)=(tana+1)/(1-tana)tan(a-π/4)=(tana-1)/(1+tana)asinx+bcosx=[√(a^2+b^2)]{[a/√(a^2+b^2)]sinx+[b/√(a^2+b^2)]cosx}=[√(a^2+b^2)]sin(x+y)(帮助角公式)tan y=b/a全能代换半角的正弦.余弦和正切公式(降幂扩角公式)sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]积和化差sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ= -(1/2)[cos(α+β)-cos(α-β)](注:留心最前面是负号)和差化积sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]内角公式sinA+sinB+sinC=4cos(A/2)cos(B/2)cos(C/2)cosA+cosB+cosC=1+4sin(A/2)sin(B/2)sin(C/2)tanA+tanB+tanC=tanAtanBtanCcot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot (C/2)tan(A/2)tan(B/2)+tan(B/2)tan(C/2)+tan(C/2)tan(A/2)=1 cotAcotB+cotBcotC+cotCcotA=1证实办法起首,在三角形ABC中,角A,B,C所对边分离为a,b,c若A,B均为锐角,则在三角形ABC中,过C作AB边垂线交AB于D 由CD=asinB=bsinA(做另双方的垂线,同理)可证实正弦定理:a/sinA=b/sinB=c/sinC于是有:AD+BD=c AD=bcosA,BD=acosB AD+BD=c代入正弦定理,可得sinC=sin(180-C)=sin(A+B)=sinAcosB+sinBcosA 即在A,B均为锐角的情形下,可证实正弦和的公式.应用正弦和余弦的界说及周期性,可证实该公式对随意率性角成立.于是有 cos(A+B)=sin(90-A-B)=sin (90-A)cos(-B)+cos(90-A)sin(-B)=cosAcosB-sinAsinB由此易得以上全体公式。
三角恒等变换公式大全

三角恒等变换公式大全三角函数恒等变换是指将一个三角函数用其他三角函数表示的等式,称为三角函数的恒等变换公式。
通过恒等变换可以将复杂的三角函数表达式转化为简化的形式,从而方便计算和求解。
以下是一些常用的三角函数恒等变换公式:1.正弦函数的恒等变换公式:- 正余弦关系:$\sin^2x+\cos^2x=1$- 正弦的平方变换:$1-\cos^2x=\sin^2x$- 余弦的平方变换:$1-\sin^2x=\cos^2x$- 和差化积:$\sin(x\pm y)=\sin x\cos y\pm \cos x\sin y$2.余弦函数的恒等变换公式:- 正余弦关系:$\sin^2x+\cos^2x=1$- 余弦的平方变换:$1-\sin^2x=\cos^2x$- 正弦的平方变换:$1-\cos^2x=\sin^2x$- 和差化积:$\cos(x\pm y)=\cos x\cos y\mp \sin x\sin y$3.正切函数的恒等变换公式:- 正切的定义:$\tan x=\frac{\sin x}{\cos x}$- 正切的倒数关系:$\tan x=\frac{1}{\cot x}$- 倍角公式:$\tan 2x=\frac{2\tan x}{1-\tan^2x}$- 和差化积:$\tan(x\pm y)=\frac{\tan x\pm \tan y}{1\mp \tan x\tan y}$4.余切函数的恒等变换公式:- 余切的定义:$\cot x=\frac{1}{\tan x}$- 余切的倒数关系:$\cot x=\frac{1}{\tan x}$- 倍角公式:$\cot 2x=\frac{\cot^2 x - 1}{2\cot x}$- 和差化积:$\cot(x\pm y)=\frac{\cot x\cot y \mp 1}{\cot y \pm \cot x}$5.正割函数的恒等变换公式:- 正割的定义:$\sec x=\frac{1}{\cos x}$- 正割的倒数关系:$\sec x=\frac{1}{\cos x}$- 平方关系:$\sec^2x=1+\tan^2x$6.余割函数的恒等变换公式:- 余割的定义:$\csc x=\frac{1}{\sin x}$- 余割的倒数关系:$\csc x=\frac{1}{\sin x}$- 平方关系:$\csc^2x=1+\cot^2x$7.和差化积公式:- $\sin(x\pm y)=\sin x\cos y\pm \cos x\sin y$- $\cos(x\pm y)=\cos x\cos y\mp \sin x\sin y$- $\tan(x\pm y)=\frac{\tan x\pm \tan y}{1\mp \tan x\tan y}$ - $\cot(x\pm y)=\frac{\cot x\cot y \mp 1}{\cot y \pm \cot x}$8.二倍角公式:- $\sin 2x=2\sin x\cos x$- $\cos 2x=\cos^2 x - \sin^2 x$- $\tan 2x=\frac{2\tan x}{1-\tan^2 x}$9.平方关系公式:- $\sin^2 x+\cos^2 x=1$- $1+\tan^2 x=\sec^2 x$- $1+\cot^2 x=\csc^2 x$10.二分公式:- $\sin^2 x=\frac{1-\cos 2x}{2}$- $\cos^2 x=\frac{1+\cos 2x}{2}$- $\tan^2 x=\frac{1-\cos 2x}{1+\cos 2x}$以上是一些常用的三角函数恒等变换公式,这些公式在三角函数的计算和求解中经常被使用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数、三角函数、三角恒等变换重要公式
1. B A = {|,}x x A x B ∈∈或 ;B A = {|,}x x A x B ∈∈且; {|,}U C A x x U x U =∈∉且 2、 当n 为奇数时,
a a n
n =;当n 为偶数时,a a n n =.
3、 ⑴m n m
n a a
=()1,,,0*>∈>m N n m a ; ⑵()01
>=
-n a
a n n ; 4、 运算性质: ⑴()Q s r a a
a a s
r s
r
∈>=+,,0;⑵()()Q s r a a a rs s
r ∈>=,,0;⑶()()Q r b a b a ab r r r
∈>>=,0,0.
5、指数函数解析式:()1,0≠>=a a a y x
6、指数函数性质:
7、指数与对数互化式:log x
a a N x N =⇔=; 8、对数恒等式:log a N
a
N =
9、基本性质:01log =a ,1log =a a .
10、运算性质:当0,0,1,0>>≠>N M a a 时:
⑴()N M MN a a a log log log +=;⑵N M N M a a a log log log -=⎪⎭
⎫
⎝⎛;⑶M n M a n
a log log =. 11、换底公式:a
b
b c c a log log log =
()0,1,0,1,0>≠>≠>b c c a a .
12、重要公式:log log n m
a a m
b b n
= 13、倒数关系:a
b b a log 1
log =
()1,0,1,0≠>≠>b b a a .
14、对数函数解析式:()1,0log ≠>=a a x y a
15、对数函数性质:
16、几种幂函数的图象:
17、 与角α终边相同的角的集合: {}Z k k ∈+=,2παββ.
18、弧长公式:l
R α=.(α为弧度制下角)
19、扇形面积公式:211
=||22
S lR R α=
. 20、 设α是一个任意角, 设点(),P x y 为角α终边上任意一点,那么: sin y r α=
,cos x r α=,tan y
x
α=,
(设r =
21、 αsin ,αcos ,αtan 在四个象限的符号和三角函数线的画法.
正弦线:MP; 余弦线:OM; 正切线:AT
22、 特殊角
23、同角三角函数的基本关系式 ⑴ 平方关系:1cos sin
22
=+αα;⑵ 商数关系:α
α
αcos sin tan =
.
24、三角函数的诱导公式(概括为Z k ∈) ⑴ 诱导公式一:()()()sin 2sin ;cos 2cos ;tan 2tan .k k k απααπααπα+=+=+=(其中:Z k ∈) ⑵ 诱导公式二:()()()sin sin ;cos cos ;tan tan .πααπααπαα+=-+=-+=
⑶诱导公式三:()()()sin sin ;cos cos ;tan tan .αααααα-=--=-=-
⑷诱导公式四:()()()sin
sin ;cos cos ;tan tan .πααπααπαα-=-=--=-
⑸诱导公式五:sin cos ;cos sin .22ππαααα⎛⎫⎛⎫
-=-=
⎪ ⎪⎝⎭⎝⎭
⑹诱导公式六:sin cos ;cos sin .22ππαααα⎛⎫⎛⎫
+=+=-
⎪ ⎪⎝⎭⎝⎭
25、正弦、余弦、正切函数的图像及其性质
x y sin =
x y cos = x y tan =
图象
定义域 R
R
},2
|{Z k k x x ∈+≠
ππ
值域
[-1,1]
[-1,1]
R
最值
max min 2,1
2
2,1
2
x k k Z y x k k Z y π
ππ
π=+
∈==-
∈=-时,时,
max min 2,12,1
x k k Z y x k k Z y πππ=∈==+∈=-时,时,
无
周期性 π2=T
π2=T
π=T
奇偶性
奇
偶
奇
单调性
Z k ∈ 在[2,2]22k k ππππ-+上单调递增 在3[2,2]2
2
k k ππππ++上单调递减 在[2,2]k k πππ-上单调递增
在[2,2]k k πππ+上单调递减
在(,)22
k k ππππ-+上单调递增
对称性 Z
k ∈
对称轴方程:2
x k π
π=+
对称中心(,0)k π
对称轴方程:x k π= 对称中心(,0)2
k ππ
+
无对称轴 对称中心,0)(
2
k π
26、函数x y sin =的图象与()sin y A x B ωϕ=++的图象之间的平移伸缩变换关系.
① 先平移后伸缩:
sin y x = 平移||
ϕ个单位
()sin y x ϕ=+ (左加右减)
横坐标不变
()sin y A x ϕ=+ 纵坐标变为原来的A 倍
纵坐标不变
()sin y A x ωϕ=+
横坐标变为原来的1
|
|ω
倍
平移||B 个单位 ()sin y A x B ωϕ=++
(上加下减)
② 先伸缩后平移:
sin y x = 横坐标不变 sin y A x =
纵坐标变为原来的A 倍
纵坐标不变
sin y A x ω=
横坐标变为原来的1
|
|ω
倍
()sin A x ωϕ+ (左加右减) 平移||B 个单位 ()sin y A x B ωϕ=++
(上加下减)
27、两角和与差的正弦、余弦、正切公式 ⑴()sin
sin cos cos sin αβαβαβ±=±; ⑵()cos
cos cos sin sin αβαβ
αβ±=;
⑶()tan tan 1tan tan tan αβ
αβα
β±±=.
28、二倍角的正弦、余弦、正切公式 ⑴ααα
cos sin 22sin =, 变形: 12sin cos sin 2ααα
=. ⑵ααα22
sin cos 2cos -=1cos 22-=αα2sin 21-=. 变形如下:
升幂公式:2
21cos 22cos 1cos 22sin αααα
⎧+=⎪⎨-=⎪⎩;降幂公式:22
1cos (1cos 2)
2
1sin (1cos 2)2
αααα=+=-⎧⎪⎨⎪⎩
⑶α
αα
2tan 1tan 22tan -=.
29、辅助角公式:)sin(cos sin 22ϕ++=+=x b a x b x a y (其中辅助角ϕ所在象限由点(,)a b 的象限决
定,tan b a
ϕ= ).。