三角函数与三角恒等变换(知识点)
三角函数的概念及三角恒等变换

三角函数专题复习知识点一:三角函数的概念、同角三角函数的关系式及诱导公式一.考试要求二.基础知识1.角的概念的推广:按逆时针方向旋转所形成的角叫 角,按顺时针方向旋转所形成的角叫_______角,一条射线没有作任何旋转时,称它形成一个 角。
射线的起始位置称为始边,终止位置称为终边。
2、象限角(1)定义:在直角坐标系中,使角的顶点与原点重合,角的始边与轴的非负半轴重合,角的终边在第几象限,就说这个角是第几象限的角。
如果角的终边在坐标轴上,就认为这个角 任何象限。
(2)象限角的集合:第一象限角的集合为第二象限角的集合为第三象限角的集合为___________________________________第四象限角的集合为___________________________________终边在轴上的角的集合为终边在轴上的角的集合为______________________终边在坐标轴上的角的集合为_____________________(3)终边相同的角:与终边相同的角注意:相等的角的终边一定________,终边相同的角_____________.3、与的终边关系:若是第二象限角,则是第_____象限角4.弧度制:弧度与角度互换公式:1rad=、1°=(rad)。
弧长公式:(是圆心角的弧度数),扇形面积公式:【典例】已知扇形周长为10,面积为4,求扇形的圆心角.5、任意角的三角函数的定义:设是任意一个角,是的终边上的任意一点(异于原点),它与原点的距离是,那么,,.注:三角函数值与角的大小关,与终边上点P的位置关。
思考:判断各三角函数在每个象限的符号?【典型例题】1.(2014全国)已知角的终边经过点,则=()A.B.C.D.2.已知角的顶点与原点重合,始边与轴的正半轴重合,终边在直线上,则=____________,=____________,=____________3.(2011江西)已知角的顶点为坐标原点,始边为轴的正半轴,若是角终边上一点,且,则=_____________.【变式训练】1.(2014湖北孝感)点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.若,且,则所在的象限为_______________.3.已知角的终边上一点,且,求的值.6.特殊角的三角函数值:7.同角三角函数的基本关系式:(1)平方关系:(2)商数关系:【典型例题】1.已知,,则()A.B.C.D.无法确定2:已知,,则__________3.(2012江西)若,则=_________.【变式训练】1.(2011全国)已知,,则=______.2.如果,且,那么的值是()A.B.或C.D.或3.若,则=____________,=_______,=_____________.8、三角函数的诱导公式(重难点)【规律总结】奇偶(对而言,取奇数或偶数),符号___________(看原函数,同时把看成是锐角).诱导公式的应用的一般步骤:(1)负角变正角,再写成+,;(2)转化为锐角三角函数.【典型例题】1.(2013广东)已知,那么()A.B.C.D.2.如果为锐角,()A.B.C.D.3.的值等于()A.B.-C.D.-4.+的值是 .【变式训练】1.=_________;2.已知的值等于___________.3.已知.(1)化简;(2)若角的终边在第二象限且,求.【迁移应用】1.下列各命题正确的是()A.终边相同的角一定相等B.第一象限的角都是锐角C.锐角都是第一象限的角D.小于的角都是锐角2.等于()ABCD3.(2013山东诸城)集合中的角的终边所在的范围(阴影部分)是()4.化为弧度等于()A.B.C.D.5.点在第()象限.A.第一象限 B.第二象限 C.第三象限 D.第四象限6.点在第三象限,则角的终边在()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.点从(1,0)出发,沿单位圆逆时针方向运动弧长到达Q点,则Q的坐标为()A.B.C.D.8.设,角的终边经过点,那么的值等于( )A.B.C.D.9.已知,且,则的值为( )A.B.[C.D.10.化简的结果是()A.B.1 C.D.11.已知角的顶点在坐标原点,始边与轴正半轴重合,终边在直线上,则=()A.B.2 C.0 D.12.(2014山东济南质检)已知角的顶点与原点重合,始边与轴的正半轴重合,终边在直线上,则=_________.13.(2011全国)已知,,则__________.14.已知,则____________.15..扇形的圆心角是,半径为20cm,则扇形的面积为16.(2012山东)如图,在平面直角坐标系中,一单位圆的圆心的初始位置在,此时圆上一点的位置在,圆在轴上沿正向滚动.当圆滚动到圆心位于时,的坐标为__________________.17.化简:(1)(2)18.已知,求(1);(2)的值19.(2013江苏启东中学测试)已知是关于的方程的两个根.(1)求的值.(2)求的值.知识点二:三角恒等变换1.考试要求二.基础知识(1)两角和与差的三角函数(正余余正号相同)(余余正正号相反)(2).二倍角公式______________=_____________=______________.(3)降幂公式;____________;___________.(4)辅助角公式。
三角函数与三角恒等变换复习PPT优秀课件

偶函数
A sin( x ) 的图象(A>0, 2、函数 y
第一种变换:
>0 )
y sin( x )
y sin x
图象向左( 向右(
0
)或
1 1)或缩短( 1)到原来的 横坐标伸长( 0 纵坐标不变
纵坐标伸长(A>1 )或缩短( 0<A<1 )到原来的A倍
例3:已知函数
2 2 y sin x 2 sin x cos x 3 cos x , x R ,
求:⑴函数的最小正周期;⑵函数的单增区间;⑶函数的最大值 及相应的x的值; ⑷函数的图象可以由函数 的图象经过怎样的变换得到。 y 2 sin 2 x ,x R
2 2 2 y sin x 2 sin x cos x 3 cos x 1 sin 2 x 2 cos x 解: 1 sin 2 x cos 2 x 1 2 2 sin( 2 x ) 4 2 ⑴ T 2 3 k x k , k Z ⑵由 2 k 2 x 2 k , 得
3 函数的单增区间为 [ k , k ]( k Z ) 8 8 2 x 2 k , 即 x k ( k Z ) 时 , y 2 2 ⑶当 最大值 4 2 8 y 2 sin( 2 x ) 2x 图象向左平移 8 个单位 ⑷ y 2sin 4
1
2 -1
o
2
3 2
2 x
2 -1
3 2
2 x
R [-1,1] T=2
R
[-1,1] T=2
三角函数与三角恒等变换

三角函数与三角恒等变换三角函数是数学中的一个重要分支,它研究的是与三角形内角或者圆周上的角度之间的关系。
三角函数包括正弦函数、余弦函数和正切函数等。
正弦函数(sin)是一个周期为2π的周期函数,定义为直角三角形中对边与斜边的比值。
余弦函数(cos)也是一个周期为2π的周期函数,定义为直角三角形的邻边与斜边的比值。
正切函数(tan)是一个以π为周期的函数,定义为直角三角形的对边与邻边的比值。
在三角函数的研究中,常常会用到三角恒等变换。
三角恒等变换是指等式两边含有三角函数的等式,在一些条件下能够相互转换的变换关系。
以下是一些常见的三角恒等变换:1.度与弧度的转换:弧度=度数*π/180度数=弧度*180/π2.正弦函数的基本关系:sin²θ + cos²θ = 13.余弦函数的基本关系:1 + tan²θ = sec²θ1 + cot²θ = csc²θ4.正弦函数的正负关系:sin(-θ) = -sin(θ)5.余弦函数的正负关系:cos(-θ) = cos(θ)6.正切函数的正负关系:tan(-θ) = -tan(θ)7.三角函数的周期性:sin(θ + 2π) = sin(θ)cos(θ + 2π) = cos(θ)tan(θ + π) = tan(θ)此外,还有许多其他的三角恒等变换,包括和差公式、倍角公式、半角公式等等。
这些三角恒等变换在解决三角函数相关问题时非常有用,可以简化计算过程,拓宽解题思路。
三角函数与三角恒等变换在数学中有着广泛的应用,例如在解决三角方程、证明恒等式、描绘周期函数的图像等方面。
同时,它们也在物理学、工程学等应用科学中扮演着重要角色,如在振动、波动、电磁学等领域的研究中都会用到三角函数的知识。
总之,三角函数与三角恒等变换是数学中的重要知识点,它们的研究有助于我们更深入地理解角度与三角形之间的关系,并在实际问题中灵活运用这些知识。
00三角函数、三角恒等变换、解三角形知识点归纳

T
P
A
Mo
x
P A
oM x
(Ⅱ) T
(Ⅰ)
y
T
y
M
A
o
x
P (Ⅲ)
MA
o
x
(Ⅳ) P T
由四个图看出:
当角 的终边不在坐标轴上时,有向线段 OM x, MP y ,于是有
sin y y y MP , cos x x x OM , tan y MP AT AT
r1
r1
x OM OA
B.方法与要点 一个口诀 1、诱导公式的记忆口诀为:奇变偶不变,符号看象限.
2、四种方法
在求值与化简时,常用方法有:
(1)弦切互化法:主要利用公式 tan α=sin α化成正、余弦. cos α
(2)和积转换法:利用(sin θ±cos θ)2=1±2sin θcos θ的关系进行变形、转化.
( sin cos 、 sin cos 、 sin cos 三个式子知一可求二)
第一象限角的集合为 k 360 k 360 90, k 第二象限角的集合为 k 360 90 k 360 180, k 第三象限角的集合为 k 360 180 k 360 270, k 第四象限角的集合为 k 360 270 k 360 360, k 终边在 x 轴上的角的集合为 k 180, k 终边在 y 轴上的角的集合为 k 180 90, k 终边在坐标轴上的角的集合为 k 90, k
三角函数知识点总结
一、任意角、弧度制及任意角的三角函数
1.任意角 (1)角的概念的推广 ①按旋转方向不同分为正角、负角、零角.
正角:按逆时针方向旋转形成的角 任意角负角:按顺时针方向旋转形成的角
零角:不作任何旋转形成的角
三角恒等变换和三角函数性质专题

知识梳理 1.正弦、余弦、正切函数图像与性质
函数
y=sinx
y=cosx
y=tanx
图像
定义域 值域 奇偶性 最小正周期
单调性
R
[-1,1] 奇函数 2π
在[-������+2kπ,������+2kπ](k∈Z)上递增.
2
2
在[������+2kπ,3������+2kπ](k∈Z)上递减
2
x=-������+2kπ,k∈Z时,y取得最小值-1
2
x=2kπ,k∈Z时,y取得最大值1. 无最值
x=π+2kπ,k∈Z时,y取得最小值-1
对称中心:(kπ,0)(k∈Z). 对称轴:x=������+kπ(k∈Z)
2
对称中心:(������+kπ,0)(k∈Z).
2
对称轴:x=kπ(k∈Z)
2
2
R [-1,1] 偶函数 2π
在[-π+2kπ,2kπ](k∈Z)上递增. 在[2kπ,π+2kπ](k∈Z)上递减
{x|x≠������+kπ,k∈Z}
2
R 奇函数 π
在 ( - ������ + kπ , ������ + kπ)(k ∈ Z)
2
2
上递增
最值 对称性
x=������+2kπ,k∈Z时,y取得最大值1.
例4.已知f ������
= sin
������
+
������ 6
+ sin
������
−
������ 6
+������������������������ + ������的最大值为1
三角恒等变换-知识点+例题+练习

三角恒等变换-知识点+例题+练习编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(三角恒等变换-知识点+例题+练习)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为三角恒等变换-知识点+例题+练习的全部内容。
两角和与差的正弦、余弦和正切基础梳理1.两角和与差的正弦、余弦、正切公式(1)C(α-β):cos(α-β)=cos_αcos_β+sin_αsin_β;(2)C(α+β):cos(α+β)=cos_αcos_β-sin_αsin_β; (3)S(α+β):sin(α+β)=sin_αcos_β+cos_αsin_β;(4)S(α-β):sin(α-β)=sin_αcos_β-cos_αsin_β;(5)T(α+β):tan(α+β)=错误!;(6)T(α-β):tan(α-β)=错误!。
2.二倍角的正弦、余弦、正切公式(1)S2α:sin 2α=2sin_αcos_α;(2)C2α:cos 2α=cos2α-sin2α=2cos2α-1=1-2sin2α;(3)T2α:tan 2α=2tan α1-tan2α.3.有关公式的逆用、变形等(1)tan α±tan β=tan(α±β)(1∓tan_αtan_β);(2)cos2α=错误!,sin2α=错误!;(3)1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2,sin α±cos α=错误!sin错误!。
4.函数f(α)=a cos α+b sin α(a,b为常数),可以化为f(α)=a2+b2sin (α+φ)或f(α)=a2+b2cos(α-φ),其中φ可由a,b的值唯一确定.两个技巧(1)拆角、拼角技巧:2α=(α+β)+(α-β);α=(α+β)-β;β=错误!-错误!;错误!=错误!-错误!.(2)化简技巧:切化弦、“1”的代换等.三个变化(1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”.(2)变名:通过变换函数名称达到减少函数种类的目的,其手法通常有“切化弦”、“升幂与降幂”等.(3)变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有:“常值代换”、“逆用变用公式”、“通分约分"、“分解与组合"、“配方与平方”等.双基自测1.(人教A 版教材习题改编)下列各式的值为14的是( ). A .2cos 2 错误!-1B .1-2sin 275°C 。
三角函数与三角恒等变换讲义

三角函数、解三角形第一节 任意角和弧度制及任意角的三角函数一、基础知识1.角的概念的推广(1)定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.(2)分类⎩⎪⎨⎪⎧按旋转方向不同分为正角、负角、零角.按终边位置不同分为象限角和轴线角.(3)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+2k π,k ∈Z }.终边相同的角不一定相等,但相等的角其终边一定相同. 2.弧度制的定义和公式(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad. (2)公式:有关角度与弧度的两个注意点(1)角度与弧度的换算的关键是π=180°,在同一个式子中,采用的度量制度必须一致,不可混用.(2)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度. 3.任意角的三角函数(1)定义:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么sin α=y ,cos α=x ,tan α=yx (x ≠0).(2)几何表示:三角函数线可以看作是三角函数的几何表示.正弦线的起点都在x 轴上,余弦线的起点都是原点,正切线的起点都是(1,0).如图中有向线段MP ,OM ,AT 分别叫做角α的正弦线、余弦线和正切线.二、常用结论汇总——规律多一点(1)一个口诀三角函数值在各象限的符号:一全正、二正弦、三正切、四余弦. (2)三角函数定义的推广设点P (x ,y )是角α终边上任意一点且不与原点重合,r =|OP |,则sin α=y r ,cos α=xr ,tan α=yx(x ≠0).(3)象限角(4)轴线角考点一 象限角及终边相同的角[典例] (1)若α是第二象限角,试分别确定2α,2α,3α的终边所在的位置。
(2)终边在直线y =3x 上,且在[-2π,2π)内的角α的集合为________.[题组训练]1.集合⎩⎨⎧⎭⎬⎫α⎪⎪k π≤α≤k π+π4,k ∈Z 中的角所表示的范围(阴影部分)是( )2.在-720°~0°范围内所有与45°终边相同的角为________.3.(1)用弧度表示顶点在原点,始边重合于x 轴的非负半轴,终边落在阴影部分内的角的集合,如图所示(不包括边界)。
高考数学复习:三角函数恒等变换求值

知识点一.两角和与差的正余弦与正切①sin()sin cos cos sin αβαβαβ±=±;②cos()cos cos sin sin αβαβαβ±= ;③tan tan tan()1tan tan αβαβαβ±±=;知识点二.二倍角公式①sin22sin cos ααα=;②2222cos 2cos sin 2cos 112sin ααααα=-=-=-;③22tan tan 21tan ααα=-;补充:2倍角公式变形(扩角降幂)221cos 21cos 2sin cos 22αααα-+==;;知识点三.辅助角公式)sin(cos sin 22ϕααα++=+b a b a (其中a bb a a b a b =+=+=ϕϕϕtan cos sin 2222,,).【常见式子变形】①2221cos 22cos 1cos 22sin 1sin 2(sin cos )ααααααα+=-=±=±;;②sin cos cos cos cos 22p p αβααβæöæö=Þ-=-=ç÷ç÷èøèø,具体是选2p α-还是2p α-要看题目给出的范围③sin cos tan 1tan sin cos tan 14βββp ββββ--æöÞ=+ç÷++èø高考数学复习:三角函数恒等变换求值2023新高考二卷T7:配完全平方公式【详解】因为cos 1α=-α为锐角,解得:sin2α==2023·新高考I 卷T8——和差公式+二倍角公式【分析】根据给定条件,利用和角、差角的正弦公式求出sin()αβ+,再利用二倍角的余弦公式计算作答.【详解】因为1sin()sin cos cos sin 3αβαβαβ-=-=,而1cos sin 6αβ=,因此1sin cos 2αβ=,则2sin()sin cos cos sin 3αβαβαβ+=+=,所以2221cos(22)cos 2()12sin ()12(39αβαβαβ+=+=-+=-´=.2022·新高考II 卷T6——和差公式【分析】由两角和差的正余弦公式化简,结合同角三角函数的商数关系即可得解.【详解】[方法一]:直接法由已知得:()sin cos cos sin cos cos sin sin 2cos sin sin αβαβαβαβααβ++-=-,即:sin cos cos sin cos cos sin sin 0αβαβαβαβ-++=,即:()()sin cos 0αβαβ-+-=所以()tan 1αβ-=-故选:C[方法二]:特殊值排除法解法一:设β=0则sinα +cosα =0,取=2pα,排除A, B ;再取α=0则sinβ +cosβ= 2sinβ,取β=4p,排除D ;选C.[方法三])cos()]44cos sin sin 444p pβαβαβαβp p pαβαβαβ+++++++=++++()()((cos sin 44p pαβαβ+=+()()sin cos cos sin =044p p αβαβ+-+()()即sin =04pαβ+-()sin =sin cos cos sin =0444p p p αβαβαβαβαβ\-+-+---()()()()()sin =cos αβαβαβ\----()()即t an()=-1,2018全国II 卷(理)T15——一题多解【答案】12-【分析】方法一:将两式平方相加即可解出.【详解】[方法一]:【最优解】两式两边平方相加得22sin()1αβ++=,1in()s 2αβ+=-.[方法二]: 利用方程思想直接解出sin 1αα=-=-1cos 2β=,则1sin 2α=.又cos sin αβìïïíïïîcos sin αβì=ïïíï=ïî,所以1in()s 2αβ+=-.[方法三]: 诱导公式+二倍角公式由cos sin 0αβ+=,可得3sin cos sin 2p βααæö=-=+ç÷èø,则322k pβp α=++或32()2k k p βp p αæö=+-+Îç÷èøZ .若32()2k k pβp α=++ÎZ ,代入得sin cos 2sin 1αβα+==,即2131sin ,sin()sin 22cos22sin 1222k p ααβp αααæö=+=++=-=-=-ç÷èø.若2()2k k pβp α=--ÎZ ,代入得sin cos 0αβ+=,与题设矛盾.综上所述,1in()s 2αβ+=-.[方法四]:平方关系+诱导公式由2222cos sin (1sin )(cos )22sin 1ββααα+=-+-=-=,得1sin 2α=.又sin 1cos tan tan tan cos sin 22αβββααβ-æö===-=-ç÷-èø,()2k k βαp =-ÎZ ,即22k αp β=-,则2()k k αβp α+=-ÎZ .从而1sin()sin(2)sin 2k αβp αα+=-=-=-.[方法五]:和差化积公式的应用由已知得1(sin cos )(cos sin )(sin 2sin 2)cos()2αβαβαβαβ++=++-sin()cos()cos()0αβαβαβ=+-+-=,则cos()0αβ-=或sin()1αβ+=-.若cos()0αβ-=,则()2k k pαβp -=+ÎZ ,即()2k k pαβp =++ÎZ .当k为偶数时,sin cos αβ=,由sin cos 1αβ+=,得1sin cos 2αβ==,又23cos sin 0,cos sin sin 4αβαββ+==-=-,所以131sin()sin cos cos sin 442αβαβαβ+=+=-=-.当k 为奇数时,sin cos αβ=-,得sin cos 0αβ+=,这与已知矛盾.若sin()1αβ+=-,则2()2k k pαβp +=-ÎZ .则sin sin 2cos 2k p αp ββæö=--=-ç÷èø,得sin cos 0αβ+=,这与已知矛盾.综上所述,1in()s 2αβ+=-.【整体点评】方法一:结合两角和的正弦公式,将两式两边平方相加解出,是该题的最优解;方法二:通过平方关系利用方程思想直接求出四个三角函数值,进而解出;方法三:利用诱导公式寻求角度之间的关系,从而解出;方法四:基本原理同方法三,只是寻找角度关系的方式不同;方法五:将两式相乘,利用和差化积公式找出角度关系,再一一验证即可解出,该法稍显麻烦.题型一 知1求2长沙市明德中学2023-2024学年高三上学期入学考试T8【分析】由已知条件算出tan ,tan αβ即可求解.【详解】因为3πsin ,,π52ααæö=Îç÷èø,所以4sin 3cos ,tan 5cos 4αααα==-==-,因为()sin sin cos cos sin 34sin cos tan tan 4cos cos 55αβαβαβααββββ++==+=-=g ,所以17tan 4β=-,所以()317tan tan 1644tan 3171tan tan 7144αβαβαβ--++===-æöæö--´-ç÷ç÷èøèø.2024届·重庆市西南大学附中、重庆育才中学九月联考T15,【答案】4p【分析】根据已知得4sin 5α=,sin ββ==且π02αβ<-<,应用差角正弦公式求角的大小.【详解】由题设4sin 5α=,sin ββ==π0,2βæöÎç÷èø,而sin sin αβ>,故π02βα<<<,则π02αβ<-<,所以sin()sin cos cos sin αβαβαβ-=-=,则π4αβ-=题型二 结合平方公式sin cos q q ±,2sin 2q ±2024届·湖南长郡中学阶段考T73.已知π0,2αæöÎç÷èøπ2sin 4ααæö=+ç÷èø,则sin 2α=( )A .34-B .34C .1-D .1【答案】B【分析】法1:展开,结合平方公式;法2:换元+诱导公式.【详解】π2sin()4αα=+Q ,)22cos )cos sin αααα=+-Q ,1(cos sin )(cos sin )02αααα\+--=,又π0,2αæöÎç÷èø,则sin 0,cos 0αα>>,即cos sin 0αα+>所以1cos sin 2αα-=,因为π0,2αæöÎç÷èø,所以2(0,π)αÎ,sin20α>.由1cos sin 2αα-=平方可得11sin 24α-=,即3sin 24α=,符合题意.综上,3sin 24α=.湖北省部分学校2024届高三上学期10月联考·T7【分析】由倍角公式结合同角三角函数关系计算化简即可.πcos 2sin 4αααæö===-=-ç÷èø,且π3π,24αæöÎç÷èø,则π2π4π,4αæö-Îç÷èø,可得πsin 04αæö->ç÷èø,)π2sin sin cos 4αααæö=--ç÷èø;cos α=,且π3π,24αæöÎç÷,可得cos 0α<,α=;)sin cos αααα=-=.5.已知22ppαβ-<-<,sin 2cos 1αβ+=,cos 2sin αβ-=sin(3pβ+=A B C D 【答案】A【分析】先由sin 2cos 1αβ+=,cos 2sin αβ-=αβ、的关系式,代入sin 3p βæö+ç÷èø,即可求出结果.【详解】由sin 2cos 1αβ+=,cos 2sin αβ-=将两个等式两边平方相加,得()543sin αβ+-=,()12sin αβ-=-,22p p αβ-<-<Q ,6pαβ\-=-,即6p αβ=-,代入sin 2cos 1αβ+=,得13p βæö+=ç÷èø,即sin 3p βæö+ç÷èø故选A 2023·浙江杭州二模T15【分析】将sin cos 2sin q q α+=平方,结合2sin cos sin q q β=可得22124sin 0sin βα+=-,利用二倍角余弦公式将224cos 2cos 2αβ-化简求值,可得答案.【详解】将sin cos 2sin q q α+=平方得212sin cos 4sin q q α+=,结合2sin cos sin q q β=可得221i s n 2i 4s n αβ+=,即22124sin 0sin βα+=-,则224cos 2cos 2(2cos 2cos 2)(2cos 2cos 2)αβαβαβ-=-+()()2214sin 2sin 2cos 2cos 20αβαβ=-++=2024届·浙江省Z20名校联盟第一次联考题T7【分析】利用和差公式和同角三角函数关系以及二倍角即可得出结论.【详解】将1sin cos 5αα-=平方得112sin cos 25αα-=,所以242sin cos 25αα=,则π0,2αæöÎç÷èø.所以()22449sin cos 12sin cos 12525αααα+=+=+=,从而7sin cos 5αα+=.联立1sin cos 57sin cos 5ααααì-=ïïíï+=ïî,得4sin 53cos 5ααì=ïïíï=ïî.所以24sin 22sin cos 25ααα==,2222347cos 2cos sin5525αααæöæö=-=-=-ç÷ç÷èø.故)π247sin 2sin 2cos 242525éùæöæö-=---=ç÷ç÷êúèøèøëûααα题型三 和差公式2024届·长沙一中校月考(三)T78.已知角(),0,παβÎ,且()()sin cos 0,sin sin 3cos cos 0αβαβαβαβ++-=-=,则()tan αβ+=( )A .2-B .12-C .12D .2【答案】D【分析】由两角和与差公式化简后求解.【详解】由()()sin cos 0αβαβ++-=,可得sin cos cos sin cos cos sin sin 0αβαβαβαβ+++=,即sin cos cos sin 1cos cos sin sin αβαβαβαβ+=-+,故tan tan 11tan tan αβαβ+=-+.又sin sin 3cos cos 0αβαβ-=,故sin sin αβ3cos cos αβ=,即tan tan 3αβ=,代入tan tan 11tan tan αβαβ+=-+可得tan tan 4αβ+=-.故()tan tan tan 21tan tan αβαβαβ++==-云南师范大学附属中学2024届高三高考适应性月考卷(一)数学试题T7A .()sin 31αβ-=B .()sin 31αβ+=-C .()sin 21αβ-=D .()sin 21αβ+=-【答案】C【分析】对题中条件进行变化化简,可以得到π22αβ-=,进一步即可判断正确答案.【详解】tan cos 1sin ,αββ×=+Q sin cos 1sin ,cos αββα\×=+即sin cos cos sin cos ,αβαβα×=+×sin cos sin cos cos ,αββαα×-×=即πsin()cos sin(),2αβαα-==-又0,2p αæöÎç÷èø,0,2p βæöÎç÷èø,则ππππ,0,2222αβα-<-<<-<所以π2,sin(2)1,2αβαβ-=\-=,故C 正确.2024届·重庆市西南大学附中、重庆育才中学十月联考T7【分析】根据题意,由同角的平方关系可得()cos αβ+,再由余弦的和差角公式,即可得到结果.【详解】因为(),0,παβÎ,且1cos 7α=,所以sin α因为()sin αβ+=,所以()sin sin ααβ>+,所以()αβ+为钝角,所以()11cos 14αβ+==-,则()()()cos cos cos cos sin sin βαβααβααβα=+-=+++=éùû11111472-´+=,且()0,βp Î,则π3β=2024届·重庆市第八中学校适应性月考(一)T7【分析】根据两角和与差的正弦公式,化简得到sin 1sin tan βαα=,得到πsin sin()2βα=-,再由π,0,2αβæöÎç÷èø,结合正弦函数的性质,即可求解【详解】由()()()sin 2sin[()]2cos 2cos sin sin αβααβαβαβαα+++-+=-+()sin cos()cos sin()2cos sin ααβααβαβα+++=-+cos sin()cos sin()sin cos()cos()sin sin ααβααβααβαβαα++-+=-+=sin[()]sin sin sin αβαβαα+-==,所以sin 1sin tan βαα=,可得sin cos sin sin βααα=,即sin cos βα=,即πsin sin()2βα=-,因为π,0,2αβæöÎç÷èø,可得ππ0,22αæö-Îç÷èø,所以π2βα=-,所以π2αβ+=【分析】法一:利用两角和与差的三角函数公式求解;法二:利用特殊值法求解.【详解】法1:()tan tan tan 11tan tan αβαβαβ++==--Q .tan tan tan tan 1αβαβ\+=-,()()()()cos sin 1tan tan tan tan 1tan tan 1tan tan 2cos cos βααβαβαβαβαβαβ--+\=-++=--+=.2=èø题型四 2倍角公式2023届广州市一模T7【分析】由,2p αp æöÎç÷èø及二倍角的余弦公式可得()sin 1sin cos cos αβαβ+=,根据两角和的余弦公式可得()sin cos ααβ=+,由诱导公式及,αβ的范围即可求解.【详解】,,2p αβp æöÎç÷èøQ ,sin 0α\¹.由()()1cos 21sin sin 2cos αβαβ-+=,可得()22sin 1sin 2sin cos cos αβααβ+=,即()sin 1sin cos cos αβαβ+=.()sin cos cos sin sin cos ααβαβαβ\=-=+,()cos cos 2p αβαæö\+=-ç÷èø,,,2p αβp æöÎç÷èøQ ,2p αβp \<+<,且022pp α-<-<,根据函数cos y x =易知:22pαβαp +=-+,即得:522pαβ+=.【分析】利用降幂升角公式和诱导公式化简即可得到结果.【详解】221cos 21cos 222cos sin 4422x x x x p p p p æöæö++--ç÷ç÷æöæöèøèø++-=+ç÷ç÷èøèø1111sin 2sin 21sin 22222x x x =-+-=-【分析】利用正弦、余弦的二倍角公式先化已知角x 为2x,然后再由正切的二倍角公式求tan x .【详解】2222112sin 2sin cos 2sin 2sin cos 1cos sin 22222221cos sin 2cos 2sin cos 12cos 12sin cos222222x x x x x x x x x x x x x x x x æö--++ç÷-+èø-===++æö++-+ç÷èø2sin (sin cos )222tan 22cos (cos sin )222x x x x x x x +==+,∴222tan2(2)42tan 1(2)31tan 2xx x ´-===---.2024届广东实验中学校考T1516.若两个锐角α,β满足1cos21cos22cos sin2sin2αβααβ+-=+,则cos 23p αβæö++=ç÷èø.【答案】【分析】根据二倍角的正弦、余弦公式,化简可得角α,β的关系,代入cos 23p αβæö++ç÷èø即可求解.【详解】因为1cos21cos22cos sin2sin2αβααβ+-=+,所以()22112sin 12cos 12cos 2sin cos 2sin cos βααααββ--+-=+所以22cos sin cos sin cos sin cos αβαααββ=+,因为α,β为锐角,所以有cos sin 1sin cos αβαβ=+,所以()cos cos sin 1sin αββα=+,即cos cos sin sin sin αβββα=+,所以cos cos cos cos sin αβαββ-=,即()cos +sin αββ=,因为α,β为锐角,所以有+2pαββ+=,即+22pαβ=,所以cos 2cos sin 3233p p p p αβæöæö++=+=-=ç÷ç÷èøèø2024届·广州市越秀区高三月考(十月)T7【分析】由倍角余弦公式并整理得23sin 2sin 10αα+-=,结合角的范围得1sin 3α=,进而求tan α,应用倍角正切公式求值即可.【详解】由23cos24sin 36sin 4sin 1αααα-=--=,即23sin 2sin 1(3sin 1)(sin 1)0αααα+-=-+=,所以1sin 3α=或sin 1α=-,又π,π2αæöÎç÷èø,则1sin 3α=,所以cos α=,则tanα=由22tan tan 21tan ααα==-2024届·广州市天河区高三综合测试(一)T7【分析】由商数关系及两角差的正切公式将已知化为ππtan 2tan 34αβæöæö-=-ç÷ç÷èøèø,得出ππ2π34k αβ-=-+,再根据二倍角的余弦公式即可得解.【详解】由πtan tanπsin cos tan 1π4tan 2tan π3sin cos tan 141tan tan 4ββββαβββββ---æöæö-====-ç÷ç÷++èøèø+,所以ππ2π34k αβ-=-+,即π2π,Z 12k k αβ=++Î,()()2π12cos 2cos 22cos 2π12k αβαβββæö--=--=-++-ç÷èøπππcos 2πcos 2πcos 1266k k æöæö=-+=-+=-=ç÷ç÷èøèø武汉市硚口区2024届高三上学期起点质量检测T15【答案】9798【分析】根据辅助角公式可得π1 sin614qæö-=ç÷èø,再根据二倍角与诱导公式求解即可.【详解】17cosq q=+即114cos12q qö-=÷÷ø,故π1sin614qæö-=ç÷èø.故2ππ97cos212sin3698q qæöæö-=--=ç÷ç÷èøèø.则97sin2sin2cos2632398p p p pq q qæöæöæö+=-+=-=ç÷ç÷ç÷èøèøèø.题型五统一角度化简2024届·重庆市第一中学校高三上学期9月月考·T15【分析】利用和角的正余弦公式化简,再利用诱导公式及齐次式求法求解即可.【详解】πtan9α=,7π7ππππcos cos sin sin cos sin sin cos tan tan1818999πππππsin cos cos sin sin cos cos sin tan tan99999αααααααααα---==+++3=.2023届·江苏省七市三模·T7【分析】利用和差角公式展开,得到2cos40cos cos80cos sin80sin0q q q°+°+°=,即可得到2cos40cos80tansin80q°+°=-°,再利用两角差的余弦公式计算可得.【详解】因为()()()cos40cos40cos800q q q°-+°++°-=,所以cos 40cos sin 40sin cos 40cos sin 40sin cos80cos sin 80sin 0q q q q q q °+°+°-°+°+°=,所以2cos 40cos cos80cos sin80sin 0q q q °+°+°=,所以2cos 40cos80sin80tan 0q °+°+°=,所以2cos 40cos80tan sin 80q °+°=-°()2cos 12080cos80sin 80°-°+°=-°()2cos120cos80sin120sin 80cos80sin 80°°+°°+°=-==°2022届·广东省汕头二模·T7【分析】根据诱导公式、同角三角函数基本关系、两角差的正弦公式和正弦的二倍角公式化简即可求解.【详解】因为sin160tan 20cos 70l ++=o o o 即()(sin 18020tan 20cos 9020l -++-o o o o o所以sin 20sin 20sin 20cos 20l ++=ooo o所以sin 20cos 20sin 20sin 20cos 20l ++=o o o o o o ,所以()11sin 20cos 2020sin 20220sin 202l ö+-=-÷÷øo o o oo o ,所以()()1sin 402sin 60cos 20cos 60sin 202sin 60202sin 402l +=-=-=o o o o o o o o ,所以122l +=,所以3l =题型六 和差公式+倍角公式2023湖南省五市十校高二下期末·T15【答案】19-【分析】化切为弦,然后逆用两角和正弦公式,求得1cos cos 2αβ=,再利用两角和与差的余弦公式求得()2cos 3αβ-=,根据二倍角公式即可得结果.【详解】()()sin sin cos sin cos 2sin tan tan cos cos cos cos αβαββααβαβαβαβ+++=+==,因为()1cos 3αβ+=,则()sin 0αβ+¹,因此1cos cos 2αβ=,而()1cos cos cos sin sin 3αβαβαβ+=-=,从而111sin sin 236αβ=-=,因此()112cos cos cos sin sin 263αβαβαβ-=+=+=,则()()21cos22cos 19αβαβ-=--=-.故答案为:19-.2024届·重庆市巴蜀中学适应性月考(二)·T11【分析】根据3cos25α=-,判断α的范围,再根据cos 2α,求出tan α,再由cos()αβ+=sin()αβ+,tan()βα-,cos()βα-,从而得出答案.【详解】因为0πα<<,所以022πα<<,又3cos 205α=-<,所以π3π222α<<,π3π44<<α,由3cos25α=-,得tan 2α=±.对于A 选项,若tan 2α=-,则π3π24α<<,又3ππ2β<<,所以3π9π24αβ<+<,而cos()0αβ+=<矛盾,所以tan 2α¹-.故A 错误;对于B 选项,根据A 选项知, tan 2α=,则ππ42α<<,又3ππ2β<<,所以5π2π4αβ<+<,而cos()0αβ+=<,所以5π3π42αβ<+<,这样sin()αβ+=B 正确;对于C 选项,根据A 2=,再根据B 选项中sin()αβ+=cos()αβ+=知tan()7αβ+=,从而tan()tan 1tan tan()1tan()tan 3αβαβαβααβα+-=+-==++,则tan tan tan()11tan tan βαβαβα--==-+,又3ππ2β<<,ππ24α-<-<-,π5π24βα<-<,所以3π4βα-=,故C 正确;对于D 选项,根据C 选项知3π4βα-=,所以cos()cos cos sin sinβαβααβ-=+=又cos()cos cos sinsin αβαβαβ+=-=解得cos cos αβ=D 错误2024·江苏省海安高级中学高三上学期10月月考·T6A .53-B .【答案】C【分析】根据三角函数的定义可得πtan 4,4q æö+=-ç÷èø进而又和差角公式得5tan θ3=,又二倍角和齐次式即可求解.【详解】由图可知πtan 4,4q æö+=-ç÷èø所以ππtan tan544tan ππ31tan tan44q q q æö+-ç÷èø==æö++ç÷èø,则()()()2sin cos 1sin 2sin cos tan 14cos 2cos sin cos sin cos sin 1tan q q q q q q q q q q q q q q++++====-+---【分析】注意到2236ππαβαβæö+=++-ç÷èø,后结合()0,πα,ππ,22βæöÎ-ç÷èø,利用二倍角,两角和的正弦公式可得答案.【详解】因()0,παÎ,则4333πππ,αæö+Îç÷è,又π1πsin sin 333æö+=<=ç÷èøα,则3πα+Îπ,π2æöç÷èø,得3πcos αæö+=ç÷èø.因πcos 6βæö-=ç÷èø22221663ππcos cosββéùæöæö-=--=-êúç÷ç÷èøèøëû.又ππ,22βæöÎ-ç÷èø,则π2ππ,633æö-Î-ç÷èøβ,结合π1πcos cos 623æö-=<=ç÷èøβ,则ππ,062æö-Î-ç÷èøβ,得6πsi n βæö-=-ç÷èø则22666πππsi n cos si n βββéùæöæöæö-=--=-êúç÷ç÷ç÷èøèøèøëû又注意到2236ππαβαβæö+=++-ç÷èø,则()ππππsin 2sin cos 2cos sin 23636éùéùæöæöæöæö+=+-++-ç÷ç÷ç÷ç÷êúêúøøèøëûαβαβαβ1233ææö=´-+´-=çç÷çèøè.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数与三角恒等变换(知识点)
1.⑴ 角度制与弧度制的互化:π弧度180=,1180
π
=弧度,1弧度180
(
)π
='5718≈.
⑵ 弧长公式:||l R α=;扇形面积公式:211
||22
S R Rl α=
=.
2.三角函数定义:
⑴ 设α是一个任意角,终边与单位圆交于点P (x ,y ),那么y 叫作α的正弦,记作sin α;x 叫作α的
余弦,记作cos α;
y
x
叫作α的正切,记作tan α. ⑵ 角α中边上任意一点P 为(,)x y ,设||OP r =,则:
sin ,cos ,y x r r αα==tan y
x
α=.
三角函数符号规律:一全正,二正弦,三正切,四余弦.
3.三角函数线:
正弦线:MP ; 余弦线:OM ; 正切线: AT .
4
六组诱导公式统一为“()2
k Z α±∈”
,记忆口诀:奇变偶不变,符号看象限. 5.同角三角函数基本关系:22sin cos 1αα+=(平方关系);sin tan cos α
αα
=(商数关系).
6.两角和与差的正弦、余弦、正切:① sin()sin cos cos sin αβαβαβ±=±;
② cos()cos cos sin sin αβαβ
αβ±=; ③ tan tan tan()1tan tan αβ
αβαβ
±±=
.
7.二倍角公式:① sin22sin cos ααα=;
② 2222cos2cos sin 2cos 112sin ααααα=-=
-=-; ③ 22tan tan 21tan α
αα
=-.
变形:21cos2sin 2αα-=;21cos2cos 2
α
α+=. (降次公式)
8.化一:sin cos )y a x b x x x =+)x ϕ+.
9. 物理意义:物理简谐运动sin(),[0,)y A x x ωϕ=+∈+∞,其中0,0A ω>>. 振幅为A ,表示物体离开平衡位置的最大距离;周期为2T π
ω
=
,表示物体往返运动一次所需的时间;频率为12f T ω
π
=
=
,表示物体在单位时间内往返运动的次数;x ωϕ+为相位;ϕ为初相.
10.三角函数图象与性质: 函
数
sin y x =
cos y x = tan y x =
图象
作图:五点法
作图:五点法
作图:三点二线
定 义 域 (-∞,+∞) (-∞,+∞) {|,}2
x x k k Z π
π≠+
∈
值 域
[-1,1]
[-1,1]
(-∞,+∞)
极 值 当x =2k π+2π
,y max =1;
当x =2k π+32
π
y min =-1
当x =2k π,y max =1;
当x =2k π+π,y min =-1
无
奇
偶 奇函数 偶函数 奇函数 T
2π
2π
π
单 调
性 [2,2]22
k k ππ
ππ-+递增
3[2,2]22
k k ππ
ππ++递减
[2,2]k k πππ-递增 [2,2]k k πππ+递减
(,)22
k k π
π
ππ-
+递增
11. 正弦型函数sin()(0,0)y A x A ωϕω=+>>的性质及研究思路:
① 最小正周期2T π
ω
=,值域为[,]A A -.
② 五点法图:把“x ωϕ+”看成一个整体,取30,,,,222
x ππ
ωϕππ+=时的五个自变量值,相应的函
数值为0,,0,,0A A -,描出五个关键点,得到一个周期内的图象.
③ 三角函数图象变换路线:sin y x =ϕ−−−−−→左移个单位
sin()y x ϕ=+ ω
−−−−−→1
横坐标变为倍
sin()
y x ωϕ=+A −−−−−→
纵坐标变为倍
sin()y A x ωϕ=+. 或:sin y x = ω
−−−−−→1
横坐标变为倍
sin y x ω=ϕω
−−−−−
→左移个单位
sin ()y x ϕωω
=+A −−−−−
→纵坐标变为倍
sin()y A x ωϕ=+. ④ 单调性:sin()(0,0)y A x A ωϕω=+>>的增区间,把“x ωϕ+”代入到sin y x =增区间[2,2]()22k k k Z ππππ-++∈,即求解22()22
k x k k Z ππ
πωϕπ-+≤+≤+∈.
⑤ 整体思想:把“x ωϕ+”看成一个整体,代入sin y x =与tan y x =的性质中进行求解. 这种整体思想的运用,主要体现在求单调区间时,或取最大值与最小值时的自变量取值.。