4-4组合逻辑电路
《数字电子技术基础》第五版:第四章 组合逻辑电路

74HC42
二-十进制译码器74LS42的真值表
序号 输入
输出
A3 A2 A2 A0 Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9
0 0 000 0 111111111
1 0 001 1 011111111
2 0 010 1 101111111
3 0 011 1 110111111
4 0 100 1 111011111
A6 A4 A2
A0
A15 A13 A11 A9
A7 A5 A3
A1
I7 I6 I5 I4 I3 I2 I1 I00
S
74LS 148(1)
YS
YEE Y2 Y1
Y0
XX
I7 I6 I5 I4 I3 I2 I1 I0
S
74LS 148(2)
YS
YE Y2 Y1
Y0
X
&
G3
&
G2
&
G3
Z3
Z2
Z1
&
G3
0时1部分电路工作在d0a1a0d7d6d5d4d3d2d1d074ls153d22d20d12d10d23d21s2d13d11s1y2y1a1a0在d4a0a1a2集成电路数据选择器集成电路数据选择器74ls15174ls151路数据输入端个地址输入端输入端2个互补输出端74ls151的逻辑图a2a1a02274ls15174ls151的功能表的功能表a2a1a0a将函数变换成最小项表达式b将使能端s接低电平c地址a2a1a0作为函数的输入变量d数据输入d作为控制信号?实现逻辑函数的一般步骤cpcp000001010011100101110111八选一数据选择器三位二进制计数器33数据选择器数据选择器74ls15174ls151的应用的应用加法器是cpu中算术运算部件的基本单元
第四章组合逻辑电路的分析与设计

=1
S
C = AB 画出逻辑电路图。 画出逻辑电路图。
S = AB + AB = A ⊕ B
&
C
2.全加器——能同时进行本位数和相邻低位的进位信号的加法运算。 全加器 能同时进行本位数和相邻低位的进位信号的加法运算。
由真值表直接写出逻辑表达式,再经代数法化简和转换得: 由真值表直接写出逻辑表达式,再经代数法化简和转换得:
每一个输出变量是全部或部分 输入变量的函数: 输入变量的函数: L1=f1(A1、A2、…、Ai) 、 L2=f2(A1、A2、…、Ai) 、 …… Lj=fj(A1、A2、…、Ai) 、
4.1 组合逻辑电路的分析方法
分析过程一般包含4个步骤: 分析过程一般包含4个步骤:
例4.1.1:组合电路如图所示,分析该电路的逻辑功能。 组合电路如图所示,分析该电路的逻辑功能。
第四章 组合逻辑电路的分析与设计
组合逻辑电路的概念: 组合逻辑电路的概念: 电路任一时刻的输出状态只决定于该时刻 各输入状态的组合,而与电路的原状态无关。 各输入状态的组合,而与电路的原状态无关。
组合电路就是由门电路组合而成, 组合电路就是由门电路组合而成 , 电路中没有记 忆单元,没有反馈通路。 忆单元,没有反馈通路。
= Ai Bi + ( Ai ⊕ Bi )C i- 1
S i = Ai ⊕ Bi ⊕ C i 1
C i = Ai Bi + ( Ai ⊕ Bi )C i- 1
根据逻辑表达式画出全加器的逻辑电路图: 根据逻辑表达式画出全加器的逻辑电路图:
& Ai Bi Ci-1 =1 Si ≥1 =1 Ci
Ai Bi Ci-1 CI ∑ CO Si Ci
4.3.3 译码器
第4章 组合逻辑电路

25
4.3 编码器
主要内容:
编码器的概念 由门电路构成的三位二进制编码器 由门电路构成的二-十进制编码器 优先编码器的概念 典型的编码器集成电路74LS148及74LS147
26
4.3.1 编码器的概念
在数字电路中,通常将具有特定含义的信息( 数字或符号)编成相应的若干位二进制代码的过程 ,称为编码。实现编码功能的电路称为编码器。 编码器功能框图如下图所示。
A B C D 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
F 0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 1
30
根据上述各表达式可直接画出3位二进制编码 器的逻辑电路图如图所示。
31
2.优先编码器
优先编码器事先对输入端进行优先级别排序,在任何时 刻仅对优先级别高的输入端信号响应,优先级别低的输入端 信号则不响应。如图所示是8-3线优先编码器74LS148的逻辑 符号和引脚图。功能表见表4-10(P86)。
13
4.2.2组合逻辑电路的设计举例
1.用与非门设计组合逻辑电路 例4-4 用与非门设计一个三变量“多数表决电路”。 解:(1)进行逻辑抽象,建立真值表: 用A、B、C表示参加表决的输入变量,“1”代表 赞成,“0”代表反对,用F表示表决结果,“1”代表 多数赞成,“0”代表多数反对。根据题意,列真值表。
15
16
2.用或非门设计组合逻辑电路
例4-6 用或非门设计例4-5(见课本)的逻辑电路。 F(A,B,C,D)=∑m(3,7,11,13,15)
(完整版)组合逻辑电路

3. 选用小规模SSI器件 4. 化简 Z R' A'G'RA RG AG
5. 画出逻辑图
Z RAG.RA.RG.AG
用与或门实现
用与非门实现
(第4章-16)
多输出组合逻辑电路的设计
多输出组合逻辑电路是指具有两个或两个以上的输出逻 辑变量的组合逻辑电路。
例2: 设计一个故障指示电路,具体要求为: (1)两台电动机同时工作时,绿灯亮; (2)一台电动机发生故障时,黄灯亮; (3)两台电动机同时发生故障时,红灯亮。
(第4章-17)
解:1. 设定A、B分别表示两台电动机这两个逻辑变量,F绿、 F黄、F红分别表示绿灯、黄灯、红灯;且用0表示电动机正常
工作,1表示电动机发生故障;1表灯亮,0表示灯灭 2.建立真值表: 按设计要求可得下表所列的真值表
A
B
F绿
F黄
F红
0
0
1
0
0
0
1
0
1
0
1
0
0
1
0
1
1
0
0
1
F绿 A B
第四章 组合逻辑电路
§ 4.1 概述 § 4.2 组合逻辑电路的分析方法和设计方法 § 4.3 若干常用的组合逻辑电路 § 4.4 组合逻辑电路中的竞争-冒险现象
(第4章-1)
第四章 组合逻辑电路
本章要求: 1.熟练掌握组合逻辑电路的分析方法和设计方法; 2.掌握标准化的中规模集成器件的逻辑功能、使
F黄 AB AB A B
逻辑电路图
F绿 A B
F红 AB
(第4章-20)
4.3 若干常用组合逻辑电路 4.3.1 编码器 • 编码:将输入的每个高/低电平信号变成一
组合逻辑电路

E 为使能端,表示低电平有效。
列真值表 分析逻辑功能
输入
E A1 A0 1 任意
输出 F
0
E 为选通端、低电平有效。 0 0 0 D0
操作端A1A0为00、01、
0 0 1 D1
10、11时,分别选中D0、
0 1 0 D2
D1、D2、D3到输出F 。
0 1 1 D3
4选1数据选择器。
由传输门构成的4选1数据选择器
设两个四位二进制数分别为C3C2C1C0和 D3D2D1D0,输出为S3S2S1S0
S3S2S1S0 A3 A2 A1A0 B3B2B1B0 CI
M=0时 B3B2B1B0 M (D3D2D1D0 )
S3S2S1S0 C3C2C1C0 D3D2D1D0 0
M=1时 B3B2B1B0 M (D3 ?D2 D1 D0 )
0 1 1 1 1 0 F1 101110
110110
111010 1 1 1 1 1 1 F2
其他
A B CD
00
ABCD中:
F1 A多BC数为AB1D时,ACFD1=B1C;D 表F决2 电A全B路C部D:为1时,F2 = 1。
多数通过和一致通过
常用组合电路及其分析
1 加法器
由5个逻辑门组成的2 输入、2 输出逻辑
这种加法运算称为“半加〞运算,完成半加
运算的电路称为“半加器〞。
半加器逻辑符号如图
A
Σ
S
B
CO C
两个二进制数相加时,
还需要考虑低位的进位, A i
Bi
称为“全加〞运算。 C i-1
Σ
Si
CI CO C i
完成全加运算的电路称为“全加器〞
组合逻辑电路分析

组合逻辑电路分析
1.1 组合逻辑电路的定义
Fi fi ( X1, X 2 , X n )
输 入
X1 X2
信
号 Xn
组合逻辑 电路
( i=1,2,…,m)
F1 输 F2 出信
号 Fm
图4-1 组合逻辑电路框图
特点
由逻辑门电路组成 输出与输入之间不存在反馈回路
1.1 组合逻辑电路的定义
Y1 A Y3 Y1 Y2 A B
Y2 B Y4 A B
A
B
Y
0
0
1
0
1
0
1Leabharlann 0011
1
Y Y3 Y4
(4)该电路实现的是同或逻辑功能。
2.多输出组合逻辑电路的分析 【例4-2】已知逻辑电路如图4-3所示,分析该电路的逻辑功能。
图4-3 多输出组合逻辑电路图(来自QuartusII)
解:(1)写出所有输出逻辑函数表达式,并对其进行化简。
1.3 组合逻辑电路分析
1.单输出组合逻辑电路的分析
【例4-1】已知逻辑电路如图4-2所示,分析该电路逻辑功能。
A
Y1 Y3
Y
B
Y2
Y4
图4-2 单输出组合逻辑电路图
(2)化简逻辑电路的输出函数表达式:
Y Y3 Y4 A B A B
(3)列出真值表 表4-1 例4-1 真值表
解:(1)写出各输出的逻辑函数表达式:
1
1
0
1
1
L1
L2
L3
0
1
0
0
0
1
1
0
0
0
1
0
(3)逻辑功能说明。 该电路是一位二进制数比较器,
组合逻辑电路在任一时刻的输出信号仅仅与当时的输入信...

图
边沿 JK 触发器的波形图
4.3 触发器的逻辑功能及其描述方法 4.3.1 触发器按逻辑功能的分类
一、RS 触发器 表 4.3.1 同步 RS 触发器的功能表
J 0 0 0 0 1 1 1 1 K 0 0 1 1 0 0 1 1
特性方程
Q
n
Q
n +1
功 能 保 持 置 “0” 置 “1” 计 数
V CC 2R D 2D 2CP 2S D 2Q 2Q 14 74LS74 1 7 8
1R D 1D 1CP 1S D 1Q 1Q GND
集成负边沿 JK 触发器 这两种 常用的集成负边沿 JK 触发器有 74S112(T3112)和 74LS112(T4112)等, 触发器均为双 JK 触发器。它们有相同的逻辑功能和相同的管脚排列。
4.2 触发器的电路结构与动作特点 4.2.1 基本 RS 触发器的电路结构与动作特点
一、电路结构与工作原理
Q
Q
&
&
R S
Q
Q
S
R
图 4.1 两与非门组成的基本 RS 触发器 (a)逻辑符号 (b)逻辑图 两与非门构成,低电平有效。 逻辑表达式
Q n +1 = S Q n
Q n +1 = RQ n
逻辑功能
Q
n
Q
n +1
功 能 保 持 置 “0” 置 “1” 计 数
J =0 K =×
Q n +1 = J Q n + KQ n
J =1 K =×
0 1 0 1 0 1 0 1
0 1 0 0 1 1 1 0
0
1
J =× K =0
J =×
电子技术实验报告4—组合逻辑电路的设计与测试 (1)

电子技术实验报告4—组合逻辑电路的设计与测试系别课程名称电子技术实验班级实验名称实验四组合逻辑电路的设计与测试姓名实验时间学号指导教师报告内容一、实验目的和任务1.掌握组合逻辑电路的分析与设计方法。
2.加深对基本门电路使用的理解。
二、实验原理介绍1、组合电路是最常用的逻辑电路,可以用一些常用的门电路来组合完成具有其他功能的门电路。
例如,根据与门的得知,可以用两个非门和一个或非门组合成一个与门,还可以组合成更复杂的逻辑关系。
逻辑表达式Z= AB =A B2、分析组合逻辑电路的一般步骤是:(1)由逻辑图写出各输出端的逻辑表达式;(2)化简和变换各逻辑表达式;(3)列出真值表;(4)根据真值表和逻辑表达式对逻辑电路进行分析,最后确定其功能。
3、设计组合逻辑电路的一般步骤与上面相反,是:(1)根据任务的要求,列出真值表;(2)用卡诺图或代数化简法求出最简的逻辑表达式;(3)根据表达式,画出逻辑电路图,用标准器件构成电路;(4)最后,用实验来验证设计的正确性。
4、组合逻辑电路的设计举例(1) 用“与非门”设计一个表决电路。
当四个输入端中有三个或四个“1”时,输出端才为“1”。
设计步骤:根据题意,列出真值表如表13-1所示,再填入卡诺图表13-2中。
表13-1 表决电路的真值表表13-2 表决电路的卡诺图然后,由卡诺图得出逻辑表达式,并演化成“与非”的形式: ABD CDA BCD ABC Z +++=最后,画出用“与非门”构成的逻辑电路如图13-1所示:图13-1 表决电路原理图输入端接至逻辑开关(拨位开关)输出插口,输出端接逻辑电平显示端口,自拟真值表,逐次改变输入变量,验证逻辑功能。
三、实验内容和数据记录1、设计一个四人无弃权表决电路(多数赞成则提议通过,即三人以上包括三人),要求用2四输入与非门来实现。
用74LS20实现逻辑函数的接线图实验测得真值表如下:D C B A Z0 0 0 0 00 0 0 1 00 0 1 0 00 0 1 1 00 1 0 0 00 1 0 1 00 1 1 0 10 1 1 1 01 0 0 0 01 0 0 1 01 0 1 0 01 0 1 1 11 1 0 0 01 1 0 1 11 1 1 0 11 1 1 1 1四、实验结论与心得1. 该实验存在一定测量误差,误差来源于电路箱中得误差,但是误差实验允许范围内,故该实验有效。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1)真值表
MNPQ Z 0000 0001 0010 0011 0 1 0 1
MNPQ Z 0100 0101 0110 0111 1 0 0 1
MNPQ Z 1000 1001 1010 1011 1 1 0 1
MNPQ Z 1100 1101 1110 1111 0 0 0 0
《数字逻辑电路》
《数字逻辑电路》
例: 试用非门和四选一数据选择器74LS153设计 一个逻辑不一致电路,要求3个输入逻辑变量取值 不一致时输出为1,取值一致时输出为0。
解: 1.真值表: A B CY 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1 0 2.表达式
S ( A' B 'CI ' A' B CI AB'CI ABCI' )' CO ( A' B ' B 'CI ' A'CI ' )'
1
1
1
1
0
1
0
1
1
1
S A B CI CO A B (A B)CI
74LS183 74HC183
《数字逻辑电路》
Y = A2 A1 A0 D0 + A2 A1 A0 D1 + A 2 A1 A0 D2 + A 2 A1 A0 D3 +A2 A1 A0 D4 + A2 A1 A0 D5 + A2 A1 A0 D6 + A2 A1 A0 D7
《数字逻辑电路》
解:以MN表示输血者的4种血型,以PQ表示受血者的4种血型 Z 表示判断结果,Z=0表示符合图中要求,Z=1表示不符合要求。
2)输出函数表达式
Z MNPQ MNPQ MNPQ MNPQ MNPQ MNPQ+MNPQ
3)令
A2 = M,A1 = N,A0 = P, 并使D0 = D1 = D3 = D5 = Q, D2 = Q,D4 = 1,D6 = D7 = 0
《数字逻辑电路》
4.3.4 加法器
产
生尖峰脉冲的现象,称 为
“竞争-冒险”。
《数字逻辑电路》
三、2线—4线译码器中的竞争-冒险现象
当AB从10 01时, 在动态过程中可能出现 00或11 所以 Y3和Y0 输出端可能产生尖峰脉 冲。
《数字逻辑电路》
4.4.2 * 略 4.4.3 消除竞争-冒险现象的方法 一、接入滤波电容 尖峰脉冲很窄,用很小的电容就可将尖峰削弱到 VTH 以下。 二、引入选通脉冲 取选通脉冲作用时间,在电路达到稳定之后,P的高电平期的 输出信号不会出现尖峰。
Z R ' A'G ' R ' AG RA'G RAG' RAG R ' ( A'G ' ) R( A'G ) R( AG ' ) 1 ( AG )
' ' Y1 D0 (A1 A'0 ) D1 (A1 A0 ) D2 (A1 A'0 ) D3 (A1 A0 )
二、多位加法器
1. 串行进位加法器
(CI ) i (CO ) i 1 S i Ai Bi (CI ) i
优点:简单
缺点:慢
(CO ) i Ai Bi ( Ai Bi )(CI ) i
《数字逻辑电路》
2. 超前进位加法器
• 基本原理:加到第i位 的进位输入信号是两 个加数第i位以前各位 (0 ~ j-1)的函数, 可在相加前由A,B两数确定。
•用来比较两个二进制数的数值大小 一、1位数值比较器 A,B比较有三种可能结果
A B(A 1, B 0)则AB 1, Y(AB) AB
'
'
A B(A 0, B 1)则A B 1, Y(AB) A B
' '
A B(A, B同为0或1), Y(AB) (A B)
《数字逻辑电路》
四、用译码器设计组合逻辑电路
1. 基本原理 3位二进制译码器给出3变量的全部最小项; 。。。 n位二进制译码器给出n变量的全部最小项; 任意函数 将n位二进制译码输出的最小项组合起来,可获 得任何形式的输入变量不大于n的组合函数
Y ∑ mi
《数字逻辑电路》
集成译码器实例:74HC138
《数字逻辑电路》
三、用加法器设计组合电路
• 基本原理: 若能生成函数可变换成输入变量与输入变量相加 若能生成函数可变换成输入变量与常量相加 例:将BCD的8421码转换为余3码
反过来?
出
Y1 1 0 0 1 1 0 0 1 1 0 Y0 1 0 1 0 1 0 1 0 1 0
Y3Y2Y1Y0 DCBA 0011
Z 3 A' B AB'C m ( 2,3,5)
Z 4 A BC B C ABC
' ' ' ' ' Z m ( 0 , 2 , 4 , 7 ) ( m m m m 0 2 4 7) m(0,2,4,7) 4
' ' ' ' Z 3 m ( 2,3,5) ( m 2 m3 m5 )
《数字逻辑电路》
4.3.3 、数据选择器(Data Selector)
• 功能:用n位地址码把 2 n 个输入信号中的一个选择送往 输出端。
Y = m0 D0 + m1 D1 + m2 -1 D2 -1
n n
2n个 数据输入
=
2 n -1 i=0
mi Di
n位 地址 输入
4.3.3 数据选择器 一、工作原理
Y = ABC + ABC + ABC + ABC + ABC + ABC
= A BC + 1 BC + 1 BC + A BC
令
A1 B
D0 A , D1 1, D2 1, D3 A
A0 C
《数字逻辑电路》
例:人的血型有A、B、AB、O四种,要求输血者与受血者血型必 须满足图中箭头指示的接受关系,设计一个逻辑电路,判断输 血者与受血者血型是否一致,要求:1)列出真值表(4分)。 2)写出设计电路的输出函数表达式(4分)。 3)用图中所示的8选1数据选择器实现(4分)。 (已知8选1数据选择器输出逻辑式为:
S S3 S 2 S1
Yi' ( S m i )'
《数字逻辑电路》
2. 举例
例:利用74HC138设计一个多输出的组合逻辑电路,输出 逻辑函数式为: Z1 AC ' A' BC AB'C
Z 2 BC A' B 'C Z 3 A' B AB'C Z 4 A' BC ' B 'C ' ABC
一、1位加法器 1. 半加器,不考虑来自低位的进位,将两个1位的二进制 数相加
输 A 入 B 输 S 出 CO
0
0 1 1
0
1 0 1
0
1 1 0
0
0 0 1
S A B CO AB
《数字逻辑电路》
2. 全加器:将两个1位二进制数及来自低位的进位相加
输 A 0 0 0 0 1 1 B 0 0 1 1 0 0 入 输 CI 0 1 0 1 0 1 S 0 1 1 0 1 0 出 CO 0 0 0 1 0 1
'
二、多位数值比较器
《数字逻辑电路》
1. 原理:从高位比起,只有高位相等,才比较下一位。 例如:
比较A3 A2 A1 A0 和B3 B2 B1 B0
' Y(A<B) = A'3B3 +(A3 ⊕ B3 )' A'2B2 +(A3 ⊕ B3 )' (A2 ⊕ B2 )' A1 B1
+(A3 ⊕ B3 )' (A2 ⊕ B2 )' (A1 ⊕ B1 )' A'0B0
Y(A=B) = (A3 B3 ) (A2 B2 )(A1 B1 )(A0 B0 )
Y(A>B) = (Y(A<B) + Y(A=B) )
'
《数字逻辑电路》
2. 集成电路CC14585 实现4位二进制数的比较 I ( A B ) , I ( A B )和I ( A B )为附加端,用于扩展
' ' ' ' ' Z1 AC ' A' BC AB'C m (3,4,5,6) Z1 m(3,4,5,6) ( m3 m4 m5 m6 )
Z 2 BC A' B 'C m (1,3,7)
' ' ' '
' ' ' ' Z 2 m (1,3,7 ) ( m1 m3 m7 )
I ( A B ) , 来自低位的比较结果 I ( A B ) , 来自低位的比较结果 I ( A B ) , A B输出允许信号
《数字逻辑电路》
3. 比较两个8位二进制数的大小
《数字逻辑电路》
4.4 组合逻辑电路中的竞争-冒险现象
4.4.1 竞争-冒险现象及成因 一、什么是“竞争” 两个输入“同时向相反的逻辑电平变化”,称存在“竞争” 二、因“竞争”而可能在输出
《数字逻辑电路》