电阻器常见的失效模式与 失效机理

合集下载

片状电阻器开短路失效模式浅析

片状电阻器开短路失效模式浅析

片状电阻器开短路失效模式浅析发布时间:2022-10-30T07:57:47.005Z 来源:《科技新时代》2022年第12期6月作者:邢美丽高帅范诚[导读] 片式电阻器广泛用于控制器中,与传统电阻器相比,片状电阻具有重量轻、体积小、组装密度高、易于自动化装配等优点,在电子产品中应用越来越多邢美丽高帅范诚陕西华星电子集团有限公司陕西咸阳 712000摘要:片式电阻器广泛用于控制器中,与传统电阻器相比,片状电阻具有重量轻、体积小、组装密度高、易于自动化装配等优点,在电子产品中应用越来越多。

本文重点对片状电阻失效机理进行浅析。

关键词:热敏电阻;失效分析;可靠性片状电阻等片式元件作为电子电路中的基础元件,因SMT技术的发展广泛应用在各类型电子产品中。

片状电阻优点众多:体积小、重量轻、组装密度高、易标准化装配、成本低等,但是在实际应用中常出现很多问题,当片状电阻器出现开短路及值大、值小等性能问题时,会导致主控板检测电压信号不稳定,进而造成显示器上显示故障代码,直接影响用户对产品运行状态的错误判断,因此,结合过程和售后数据对片状电阻器失效机理及工作可靠性进行研究分析,具有非常重要的意义。

1片状电阻结构和主要失效模式1.1片状电阻的结构片状电阻一般由陶瓷基片、电阻膜、玻璃釉保护层和端电极组成[3]。

片状电阻端电极一般分为三层:①端电极外层,一般为电镀锡(Sn),保证良好的焊接;②中间电极阻挡层,一般为电镀镍(Ni),它起到隔离作用,能有效防止在焊接期间发生“锡吃银”;③端电极内层,端电极内层一般分为面电极、侧电极和背电极,面电极主要成分为银(Ag)或银钯(Ag/Pd)浆料,高温烧结而成,与陶瓷基板及电阻膜有良好的结合力和优良的导电性能。

侧电极一般是真空溅射镍铬(Ni/Cr)合金。

背电极一般为银(Ag)浆料。

电阻膜大多应用钌系浆料,例如二氧化钌浆料、钌酸盐浆料等等。

玻璃釉保护层主要是为了保护电阻膜,一是起到机械保护作用,并在电镀中间电极阻挡层过程中,防止电镀液对电阻膜侵蚀导致阻性变化;二是起到绝缘作用,防止电阻膜与周围导体接触而产生阻值变化。

表贴电阻典型的失效模式及机理分析

表贴电阻典型的失效模式及机理分析

表贴电阻典型的失效模式及机理分析范士海【摘要】针对表贴电阻典型的失效模式,选取了几个案例进行分析,通过磨抛制样,X 射线检查,扫描电镜及能谱分析等手段,对各种失效模式,阐述了其失效机理,并有针对性提出了控制失效发生的具体措施.【期刊名称】《环境技术》【年(卷),期】2019(037)004【总页数】6页(P75-79,99)【关键词】表贴电阻;失效机理;失效分析【作者】范士海【作者单位】航天科工防御技术研究试验中心,北京 100854【正文语种】中文【中图分类】TN605引言表贴电阻器具有轻重量、小体积、高组装密度、性能优良和易于装配自动化等优点,随着表面组装技术(Surface Mount Technology, SMT)的迅猛发展与大量应用,以及对电子产品轻量化、小型化和高可靠性要求的不断提高,表贴电阻在电子产品中的应用越来越多、越来越广。

但是由于其本身的材料特性及结构特点等多方面的原因,表贴电阻在实际应用中容易发生失效。

例如,表贴电阻器陶瓷基体脆弱,容易开裂,导致电阻器开路失效。

在筛选、焊装以及装机使用时,要尽量避免使其受到过大的温度冲击应力与机械应力。

下面针对表贴电阻的典型失效模式进行归纳总结,分析其失效机理。

为进一步提高表贴电阻器的应用可靠性提供有益的依据。

在介绍具体的失效案例之前,先简要介绍一下表贴电阻的结构。

表贴电阻的结构如图1所示,形状为长方体。

当它们焊装在PCB板上时,与传统的轴向电阻相比,占用不到50 %的空间。

表贴电阻两端为端电极,从里到外为三层结构,最内层为银或银钯合金,中间层为镍或铬金属,最外层电极为电镀锡或锡铅。

电阻体的中间部分也是三层结构,最下一层为电阻膜,电阻膜之上为两层玻璃釉保护膜。

1 表贴电阻典型失效案例表贴电阻的主要失效模式是阻值增大甚至开路。

造成电阻失效原因包括:氧化铝陶瓷基体开裂,以及端电极开路失效等,下面通过案例详细说明。

图1 表贴电阻结构示意图1.1 瓷体基体开裂失效某整机所用的RMK3216型表贴电阻是国内厂家生产的产品,整机进行调试时,发现一只该规格表贴电阻失效(在测量其顶部两端电阻时,开路;测量其侧部两端电阻时,阻值正常)。

电容器失效模式和失效机理

电容器失效模式和失效机理
B、引线断裂失效
金属化纸介电容器在高湿环境中工作时,电容器正端引线根部会遭到严重腐蚀,这种电解性腐蚀导致引线机械强度降低,严重时可造成引线断裂失效.
(6)、铝电解电容器的失效机理
铝电解电容器正极是高纯铝,电介质是在金属表面形成的三氧化二铝膜,负极是黏稠状的电解液,工作时相当一个电解槽.铝电解电容器常见失效模式有:漏液、爆炸、开路、击穿、电参数恶化等,有关失效机理分析如下.
产生低电平失效的原因主要在于电容器引出线与电容器极板接触不良,接触电阻增大,造成电容器完全开路或电容量幅度下降.
精密聚苯乙烯薄膜电容器一般采用铝箔作为极板,铜引出线与铝箔极板点焊在一起.铝箔在空气中极易氧化;极板表面生成一层氧化铝半导体薄膜,在低电平条件下氧化膜层上的电压不足以把它击穿,因而铝箔间形成的间隙电容量的串联等效容量,间隙电容量愈小,串联等效容量也愈小.因此,低电平容量取决于极板表面氧化铝层的厚薄,氧化铝层愈厚,低电平条件下电容器的电容量愈小.此外,电容器在交流电路中工作时,其有效电容量会因接触电阻过大而下降,接触电阻很大时有效电容量可减小到开路的程度.即使极板一引线间不存在导电不良的间隔层,也会产生这种后果.
② 电解液沿引线渗漏,使引线遭受化学腐蚀;
③ 引线在电容器制造过程中受到机械损伤;
④ 引线的机械强度不够.
(6) 引起电容器绝缘子破裂的主要原因
① 机械损伤;
② 玻璃粉绝缘子烧结过程中残留热力过大;
③ 焊接温度过高或受热不均匀.
(7) 引起绝缘子表面飞弧的主要原因
① 绝缘了表面受潮,使表面绝缘电阻下降;
⑧ 在机械应力作用下电介质瞬时短路.
(2) 引起电容器开路的主要失效机理
① 引线部位发生“自愈“,使电极与引出线绝缘;

细叙各类电子元器件的失效模式与机理

细叙各类电子元器件的失效模式与机理

细叙各类电子元器件的失效模式与机理
电子元器件的主要失效模式包括但不限于开路、短路、烧毁、爆炸、漏电、功能失效、电参数漂移、非稳定失效等。

对于硬件工程师来讲电子元器件失效是个非常麻烦的事情,比如某个半导体器件外表完好但实际上已经半失效或者全失效会在硬件电路调试上花费大把的时间,有时甚至炸机。

硬件工程师调试爆炸现场
所以掌握各类电子元器件的实效机理与特性是硬件工程师比不可少的知识。

下面分类细叙一下各类电子元器件的失效模式与机理。

电阻器失效模式与机理失效模式:各种失效的现象及其表现的形式。

失效机理:是导致失效的物理、化学、热力学或其他过程。

1、电阻器的主要失效模式与失效机理为1) 开路:主要失效机理为电阻膜烧毁或大面积脱落,基体断裂,引线帽与电阻体脱落。

2) 阻值漂移超规范:电阻膜有缺陷或退化,基体有可动钠离子,保护涂层不良。

3) 引线断裂:电阻体焊接工艺缺陷,焊点污染,引线机械应力损伤。

4) 短路:银的迁移,电晕放电。

2、失效模式占失效总比例表
(1)、线绕电阻
失效模式占失效总比例开路90%阻值漂移2%引线断裂7%其它1%
(2)、非线绕电阻
失效模式占失效总比例开路49%阻值漂移22%引线断裂17%其它7%
3、失效机理分析
电阻器失效机理是多方面的,工作条件或环境条件下所发生的各种理化过程是引起电阻器老化的原因。

(1)、导电材料的结构变化
薄膜电阻器的导电膜层一般用汽相淀积方法获得,在一定程度上存在无定型结构。

按热力。

电子元器件的失效机理和失效模式分析

电子元器件的失效机理和失效模式分析

电子元器件的失效机理和失效模式分析摘要:电子元器件在运行过程中,经常由于失效与故障的发生影响到电子设备的正常运转。

元器件不仅是电子设备最为基础的组成结构,而且也是提高系统性能的主要载体。

一般来说,电子设备中的许多问题都是由电子元件的问题引起的。

为了确保电子设备可以正常工作,我们必须对常见设备中电子元器件的失效机理与常见故障情况有一个清晰的认知。

关键词:电子元器件;失效;机理;缺陷;故障1.电子元器件的失效机理一般来说,设计方案存在破绽,制作工艺不完善,使用方法不当,以及环境方面存在问题都会导致电子元器件出现故障。

我们将通过以下几个方面来分析探索电子元器件发生故障的缘由。

(一)电阻器的失效原理电阻作为电子设备的加热元件,是电子设备中使用时间最长的设备。

在电子设备的使用过程中,因电阻器故障造成电子设备发生故障的缘由占总数的15%。

电阻器的失效机理,对电子设备的结构和工艺特性有着决定性的意义。

当电阻出现问题后,人们通常不会将其修复,而是会思考:我们为什么不用一条新的电阻线代替呢?当电阻丝烧毁时,在某些情况下,烧毁的区域可以重新焊接,然后使用。

电阻劣化大多是由于其散热性差、湿度过大或制造存在漏洞等缘由引起的,而烧坏则是由于电路异常引起的,如短路、过载等缘由。

常见的电阻烧坏情形有两种:一种是电流过载和电阻高温引发的电阻烧坏,此时很轻易便可以发觉电阻表面出现损伤。

另一种则是瞬时高压加到电阻上引起的电阻开路或电阻值增大,一般情况下,此时电阻的表面变化不明显,这种故障电阻在高压电路中经常出现[1]。

电阻失效通常是因为致命故障和漂移参数故障。

结合电子设备的实际使用情况我们发现,由前者原因引发电阻器故障的占比可高达90%,包含了短路,机械损伤,接触损坏等等情形,而一般只有10%的电阻故障是由漂移参数故障引起的。

另外接触不良非常容易引起故障,而出现接触不良的情形主要是因为:(1)接触压力太大导致弹簧片松弛,接触点偏离轨道。

常见的电子元器件失效机理与分析

常见的电子元器件失效机理与分析

常见的电子元器件失效机理与分析电子元器件的主要失效模式包括但不限于开路、短路、烧毁、爆炸、漏电、功能失效、电参数漂移、非稳定失效等。

对于硬件工程师来讲电子元器件失效是个非常麻烦的事情,比如某个半导体器件外表完好但实际上已经半失效或者全失效会在硬件电路调试上花费大把的时间,有时甚至炸机。

硬件工程师调试爆炸现场所以掌握各类电子元器件的实效机理与特性是硬件工程师比不可少的知识。

下面分类细叙一下各类电子元器件的失效模式与机理。

电阻器失效失效模式:各种失效的现象及其表现的形式。

失效机理:是导致失效的物理、化学、热力学或其他过程。

电阻器的失效模式与机理▶开路:主要失效机理为电阻膜烧毁或大面积脱落,基体断裂,引线帽与电阻体脱落。

▶阻值漂移超规范:电阻膜有缺陷或退化,基体有可动钠离子,保护涂层不良。

▶引线断裂:电阻体焊接工艺缺陷,焊点污染,引线机械应力损伤。

▶短路:银的迁移,电晕放电。

失效模式占失效总比例表▶线绕电阻:▶非线绕电阻:失效模式机理分析电阻器失效机理是多方面的,工作条件或环境条件下所发生的各种理化过程是引起电阻器老化的原因。

▶导电材料的结构变化:薄膜电阻器的导电膜层一般用汽相淀积方法获得,在一定程度上存在无定型结构。

按热力学观点,无定型结构均有结晶化趋势。

在工作条件或环境条件下,导电膜层中的无定型结构均以一定的速度趋向结晶化,也即导电材料内部结构趋于致密化,能常会引起电阻值的下降。

结晶化速度随温度升高而加快。

电阻线或电阻膜在制备过程中都会承受机械应力,使其内部结构发生畸变,线径愈小或膜层愈薄,应力影响愈显著。

一般可采用热处理方法消除内应力,残余内应力则可能在长时间使用过程中逐步消除,电阻器的阻值则可能因此发生变化。

结晶化过程和内应力清除过程均随时间推移而减缓,但不可能在电阻器使用期间终止。

可以认为在电阻器工作期内这两个过程以近似恒定的速度进行。

与它们有关的阻值变化约占原阻值的千分之几。

电负荷高温老化:任何情况,电负荷均会加速电阻器老化进程,并且电负荷对加速电阻器老化的作用比升高温度的加速老化后果更显著,原因是电阻体与引线帽接触部分的温升超过了电阻体的平均温升。

简述片式厚膜电阻器的典型失效模式、机理及原因

简述片式厚膜电阻器的典型失效模式、机理及原因

简述片式厚膜电阻器的典型失效模式、机理及原因摘要:首先,本文对片式厚膜电阻器的工艺流程及片式薄膜电阻器薄膜层形成原理进行了简单的介绍;然后;对片式厚膜电阻器典型的失效模式和失效机理进行了总结;最后,通过案例,对片式厚膜电阻器两种典型的失效现象的原因进行了分析,对于相关工作人员了解片式厚膜电阻器的失效原因和机理,从而改善其工艺过程具有一定的参考价值。

关键词:片式厚膜电阻器;工艺流程;形成原理;失效模式;失效机理;失效分析引言近年来,随着电子设备朝短小轻薄的方向发展,片式电阻器行业也得到了迅速的发展,其可靠性问题也引起了人们越来越多的关注。

虽然片式电阻器的工艺流程得到了很大的改善,但当产品投入市场使用时,其失效现象仍时有发生,因此,本文对片式厚膜电阻器的典型失效模式、机理和原因进行了研究,以供相关工作人员参考。

一、片式厚膜电阻器工艺简述片式厚膜电阻器的工艺流程为:在已预制沟槽的陶瓷基板上印刷背电极→ 印刷面电极→ 高温烧结→ 印刷电阻体→ 高温烧结→ 印刷保护玻璃→ 高温烧结→激光调阻→ 印刷保护玻璃→ 印刷标记→ 折条→端电极溅射→折粒→ 电镀镍锡→成品测量→ 筛选→质量一致性检验→ 测试和包装→入库交付。

二、片式薄膜电阻器薄膜层形成原理目前世界上合金薄膜层的制备方法包括离子镀、真空蒸镀和溅射镀膜,其中溅射镀膜主要是离子束溅射。

离子束溅射的方法具有溅射薄膜纯度高、质量好,可溅射金属或者合金,并且多数离子以离子态沉积使得薄膜层与衬底附着力强,采用离子束溅射的优势还包括可以分别精准控制离子源的电流和能量等参数指标。

因此采用离子束溅射方式是目前制备片式薄膜电阻器薄膜层最理想的一种方式。

离子束溅射的原理是让工作气体(Ar气)进入离子束溅射镀膜机中的离子枪中,电离后产生离子流Ar+。

当离子流Ar+经屏栅栅网加速后,持续轰击合金靶材,溅射出的靶材原子飞出靶材后沉积在衬底(基板)上,然后晶粒逐渐生长形成连续的薄膜层。

电阻失效分析精选全文完整版

电阻失效分析精选全文完整版

片式厚膜电阻器—电极断裂开路1) 样品名称:片式厚膜电阻器2) 背景:型号为5.6K Ω/1206和47K Ω/1206,在使用一年后发现失效。

3) 失效模式:阻值超差和开路。

4) 失效机理:面电极的银层断裂是样品开路和阻值增大的原因。

5) 分析结论:电极的银层断裂是由于焊接时,在Pb-Sn 焊料边缘的面电极Ag 大量熔于焊料中,形成边缘的Ag 层空洞,在长期工作过程Ag 的迁移和腐蚀造成空洞的扩大甚至断开而导致电子开路。

6) 分析说明:失效品外观显示,端电极焊接不良(图1)。

X-RAY 观察分析,在端电极和面电极相连的区域发现面电极有断裂空洞(图2),在与端电极焊料边缘相连的面电极Ag 层部分,都有不连续的现象,形成一条把银层断开的空洞;同时,样品研磨切面也可见到银层空隙,开封都能观察到面电极银层不连续带状空隙(图3),因此,面电极在焊料边缘的空隙造成银层不连续是造成样品电阻增大和开路的真正原因。

面电极在焊料边缘出现不连续或空洞的原因是在焊接过程中,靠近端电极的面电极中的Ag 在焊接过程中大量损耗掉,“熔化”在焊料之中,形成边缘面电极局部区域的Ag 层空洞。

在长时间的使用过程中,由于Ag 迁移或者被腐蚀,空洞的扩大导致银层开路。

图1 样品的典型外貌 图2面电极有断裂空洞图3 面电解银层不连续带状空隙端电极面电极厚膜浆料陶瓷基片面电极断裂面电极端电极断裂处氧化膜电阻器—电解腐蚀开路1) 样品名称:氧化膜电阻器2) 背景:标称值为22KΩ±5%/2W,使用过程中出现开路。

3) 失效模式:电阻开路。

4) 失效机理:在水汽和直流电场作用下,镍铬膜被电解腐蚀开路。

5) 分析结论:电阻器镍铬膜在水汽和直流电场作用下,发生电解腐蚀开路,包封料中有少量的K+、Cl-加速了电解腐蚀的发生。

6) 分析说明:10只样品具有相同的失效模式-开路。

开封表明:电阻膜由于局部被腐蚀而导致电阻开路。

具体的腐蚀过程如下:电阻器在潮湿环境工作时,水份透过包封材料吸附在导电膜或刻槽表面,在直流电场作用下会在导电膜有缺陷的地方首先产生电解腐蚀。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电阻器常见的失效模式与失效机理失效模式:各种失效的现象及其表现的形式。

失效机理:是导致失效的物理、化学、热力学或其他过程。

1、电阻器的主要失效模式与失效机理为:
1)开路:主要失效机理为电阻膜烧毁或大面积脱落,基体断裂,引线帽与电阻体脱落。

2)阻值漂移超规范:电阻膜有缺陷或退化,基体有可动钠离子,保护涂层不良。

3)引线断裂:电阻体焊接工艺缺陷,焊点污染,引线机械应力损伤。

4)短路:银的迁移,电晕放电。

2、失效模式占失效总比例表
(1)、线绕电阻
失效模式占失效总比例
开路90%
阻值漂移2%
引线断裂7%
其它1%
(2)、非线绕电阻
失效模式占失效总比例
开路49%
阻值漂移22%
引线断裂17%
其它7%
3、失效机理分析
电阻器失效机理是多方面的,工作条件或环境条件下所发生的各种理化过程是引起电阻器老化的原因。

(1)、导电材料的结构变化:
薄膜电阻器的导电膜层一般用汽相淀积方法获得,在一定程度上存在无定型结构。

按热力学观点,无定型结构均有结晶化趋势。

在工作条件或环境条件下,导电膜层中的无定型结构均以一定的速度趋向结晶化,也即导电材料内部结构趋于致密化,能常会引起电阻值的下降。

结晶化速度随温度升高而加快。

电阻线或电阻膜在制备过程中都会承受机械应力,使其内部结构发生畸变,线径愈小或膜层愈薄,应力影响愈显著。

一般可采用热处理方法消除内应力,残余内应力则可能在长时间使用过程中逐步消除,电阻器的阻值则可能因此发生变化。

结晶化过程和内应力清除过程均随时间推移而减缓,但不可能在电阻器使用期间终止。

可以认为在电阻器工作期内这两个过程以近似恒定的速度进行。

与它们有关的阻值变化约占原阻值的千分之几。

电负荷高温老化:任何情况,电负荷均会加速电阻器老化进程,并且电负荷对加速电阻器老化的作用比升高温度的加速老化后果更显著,原因是电阻体与引线帽接触部分的温升超过了电阻体的平均温升。

通常温度每升高10℃,寿命缩短一半。

如果过负荷使电阻器温升超过额定负荷时温升50℃,则电阻器的寿命仅为正常情况下寿命的1/32。

可通过不到四个月的加速寿命试验,即可考核电阻器在10年期间的工作稳定性。

直流负荷-电解作用:直流负荷作用下,电解作用导致电阻器老化。

电解发生在刻槽电阻器槽内,电阻基体所含的碱金属离子在槽间电场中位移,产生离子电流。

湿气存在时,电解过程更为剧烈。

如果电阻膜是碳膜或金属膜,则主要是电解氧化;如果电阻膜是金属氧化膜,则主要是电解还原。

对于高阻薄膜电阻器,电解作用的后果可使阻值增大,沿槽螺旋的一侧可能出现薄膜破坏现象。

在潮热环境下进行直流负荷试验,可全面考核电阻器基体材料与膜层的抗氧化或抗还原性能,以及保护层的防潮性能。

(2)、气体吸附与解吸:
膜式电阻器的电阻膜在晶粒边界上,或导电颗粒和黏结剂部分,总可能吸附非常少量的气体,它们构成了晶粒之间的中间层,阻碍了导电颗粒之间的接触,从而明显影响阻值。

合成膜电阻器是在常压下制成,在真空或低气压工作时,将解吸部分附气体,改善了导电颗粒之间的接触,使阻值下降。

同样,在真空中制成的热分解碳膜电阻器直接在正常环境条件下工作时,将因气压升高而吸附部分气体,
使阻值增大。

如果将未刻的半成品预置在常压下适当时间,则会提高电阻器成品的阻值稳定性。

温度和气压是影响气体吸附与解吸的主要环境因素。

对于物理吸附,降温可增加平衡吸附量,升温则反之。

由于气体吸附与解吸发生在电阻体的表面。

所以对膜式电阻器的影响较为显著。

阻值变化可达1%~2%。

(3)、氧化:
氧化是长期起作用的因素(与吸附不同),氧化过程是由电阻体表面开始,逐步向内部深入。

除了贵金属与合金薄膜电阻外,其他材料的电阻体均会受到空气中氧的影响。

氧化的结果是阻值增大。

电阻膜层愈薄,氧化影响就更明显。

防止氧化的根本措施是密封(金属、陶瓷、玻璃等无机材料)。

采用有机材料(塑料、树脂等)涂覆或灌封,不能完全防止保护层透湿或透气,虽能起到延缓氧化或吸附气体的作用,但也会带来与有机保护层有关的些新的老化因素。

(4)、有机保护层的影响:
有机保护层形成过程中,放出缩聚作用的挥发物或溶剂蒸气。

热处理过程使部分挥发物扩散到电阻体中,引起阻值上升。

此过程虽可持续1~2年,但显著影响阻值的时间约为2~8个月,为了保证成品的阻值稳定性,把产品在库房中搁置一段时间再出厂是比较适宜的。

(5)、机械损伤:
电阻的可靠很大程度上取决于电阻器的机械性能。

电阻体、引线帽和引出线等均应具有足够的机械强度,基体缺陷、引线帽损坏或引线断裂均可导致电阻器失效。

摘录《可靠性物理》姚立真
第10章阻容元件的失效模式和失效机理
MSN空间完美搬家到新浪博客!。

相关文档
最新文档