失效模式

合集下载

FMEA失效分析与失效模式分析 (2)全

FMEA失效分析与失效模式分析 (2)全

23
失效分析的要点?之三
在一级失效原因正确的基础上,探讨和分析二级失效原 因。例如设计原因引起的失效还可细分为设计思想、结 构、对载荷分析的准确性、选材等二级失效原因。
3.机理清楚
失效机理是指失效的物理、化学变化本质,微观过程可 以追溯到原子、分子尺度和结构的变化,但与此相对的 是它迟早也要表现出一系列宏观(外在的)的性能、性 质变化。
16
什么是失效分析?
失效分析:考察失效的构件及失效的情景(模式), 以确定失效的原因。
失效分析的目的:在于明确失效的机理与原因。改 进设计、改进工艺过程、正确地使用维护。
失效分析的主要内容:包括明确分析对象,确定失 效模式,研究失效机理,判定失效原因,提出预防 措施(包括设计改进)。
17
失效分析的要点?
24
失效分析的要点?之四
通常可将失效原因分为内因和外因。失效机理即失效的 内因,它是导致发生失效零件或材料的物理、化学或机 械损伤过程等。
4.措施得力,模拟再现,举一反三
措施得力,模拟再现,举一反三是建立在前面对失效模 式、失效原因和失效机理深入分析和准确把握的基础上。 当然制定预防措施需考虑长远的措施和产品使用问题以 及工程上的可行性、经济性等。模拟再现则要分析模拟 的可能性和必要性。同时,随着计算机技术的高速发展, 计算机模拟也成为模拟再现的一个重要手段。
故障原因:直接导致故障或引起性能降低并进一步发展成 故障的那些物理或化学过程、设计缺陷、工艺缺陷、零件 使用不当和其它过程等因素。
故障(失效)机理:引起故障(失效)的物理、化学和生 物等变化的内在原因。
FMEA方法的根本目的
按规定的规则记录产品设计中所有可能的故障模式; 分析每种故障模式对系统的工作及状态(包括战备状态、

设备失效模式及后果分析

设备失效模式及后果分析
生产停顿
设备失效可能导致生产线的停 顿,影响生产效率和产品质量

安全风险
设备失效可能引发安全事故, 对人员和环境造成伤害或损失 。
经济损失
设备失效可能导致维修、替换 等额外费用,增加企业成本。
声誉损害
设备失效可能影响企业的声誉 和客户信任度,降低市场竞争
力。
02
设备失效模式分析
疲劳失效
总结词
疲劳失效是指设备在循环应力或交变应力的作用下,经过一定次数的循环后发生 的断裂或损伤。
断裂失效
总结词
断裂失效是指设备在受到外力作用时,发生的断裂或开裂现 象。
详细描述
断裂失效通常发生在设备的承力部位,如梁、柱、板等结构 件。断裂失效的原因可能包括设计缺陷、材料缺陷、制造工 艺问题等。断裂失效可能导致设备损坏或安全事故,造成严 重后果。
03
设备失效的后果分析
生产中断
生产流程停滞
设备失效会导致生产线上的其他设备 无法正常运转,整个生产流程被迫中 断。
02
验收与检验
对采购的备件和材料进行严格的 验收与检验,确保其性能和质量 符合标准。
03
备件和材料的存储 与保管
建立完善的备件和材料存储与保 管制度,确保其在使用前保持良 好的状态。
提高操作人员的技能和意识
01
02
03
培训与考核
定期对操作人员进行设备 操作、维护和保养等方面 的培训与考核,提高其技 能水平。
腐蚀失效
总结词
腐蚀失效是指设备在腐蚀介质的作用下,发生的化学或电化学反应导致设备性能下降或损坏。
详细描述
腐蚀失效可能发生在各种设备和材料中,如金属管道、容器、阀门、船舶、飞机等。腐蚀失效的原因可能包括大 气腐蚀、水腐蚀、土壤腐蚀等。腐蚀失效会导致设备性能下降、结构强度减弱、泄漏等问题,严重时可能导致设 备损坏或安全事故。

FMEA失效模式及其影响分析

FMEA失效模式及其影响分析

03
FMEA失效影响分析
直接和间接影响
直接影响
指失效模式对产品或系统的性能、安 全性、可靠性和可用性等直接造成的 影响。例如,电池的充电功能失效会 导致设备无法正常工作。
间接影响
指失效模式引发的连锁反应或次生问 题,可能涉及到供应链、生产、销售 和服务等环节。例如,关键零部件的 失效可能导致整条生产线停产。
制中的问题,提高产品的可靠性和安全性。
识别和评估
总结词
在FMEA失效模式分析中,识别和评估是关键步骤,需要全面考虑各种可能的失效模式,并对其影响进行量化评 估。
详细描述
在识别阶段,团队需要充分了解产品或过程的设计、制造和使用环境,找出可能出现的各种失效模式。这些失效 模式可能包括机械、电气、化学、热学等多个方面。在评估阶段,团队需要分析每种失效模式的发生概率、严重 程度以及可检测性,为后续的优先级排序提供依据。
静态性
FMEA通常在产品设计阶段进行,对后续生产和使用的动 态变化考虑不足,可能无法全面反映产品在实际使用中的 失效模式。
高成本
FMEA需要投入大量时间和资源进行数据收集、分析和改 进措施制定,对于小型企业或项目可能存在成本压力。
06
案例研究
案例一:汽车制造业的FMEA应用
总结词
汽车制造业是FMEA应用的重要领域,通过分析失效 模式及其影响,可以优化产品设计、生产和质量控制 。
FMEA失效模式及其影响 分析
• 介绍 • FMEA失效模式分析 • FMEA失效影响分析 • FMEA实施步骤 • FMEA的优点和局限性 • 案例研究
01
介绍
FMEA的定义
• FMEA(Failure Modes and Effects Analysis)即失效模式与影响分析, 是一种预防性的质量工具,用于评估 产品设计或流程中潜在的失效模式及 其对系统性能的影响。它通过识别、 评估和优先处理那些可能对产品或流 程性能产生最大影响的失效模式,帮 助组织减少或消除潜在的问题,提高 产品和流程的可靠性和安全性。

失效模式分析表格

失效模式分析表格

失效模式分析表格失效模式描述1. 组件故障组件损坏或失效导致整个系统无法正常工作2. 电源故障供电系统故障导致设备无法正常工作3. 连接故障连接线路或接口故障导致信号无法传输或丢失4. 软件错误系统软件或应用程序出现错误导致功能失效5. 网络故障网络连接中断或网络设备故障导致通信失败6. 传感器故障传感器无法正常检测或传输数据导致系统失效7. 数据错误数据输入或处理过程中出现错误导致结果不准确8. 停电故障电力供应中断或电力设备故障导致设备无法工作9. 控制逻辑错误控制逻辑程序出现错误导致系统无法按预期运作人员操作不当或误操作导致系统功能失效10. 人为操作错误1. 组件故障描述:组件故障是指系统中的重要组件出现损坏或失效的情况,导致整个系统无法正常工作。

常见的组件故障包括电子元器件损坏、机械部件失灵、电路板短路等。

解决方案: - 检查组件的工作状态,确保其在正常工作范围内; - 定期进行设备维护和检修,及时更换老化部件; - 使用高质量的组件,减少故障发生的可能性。

2. 电源故障描述:电源故障是指系统供电部分发生故障,导致设备无法正常工作。

常见的电源故障包括电源线路断路、电源适配器故障、电池电量不足等。

解决方案: - 检查电源线路和插头是否正常连接; - 检查电源适配器是否工作正常,如发现故障及时更换; - 定期检查设备电池电量,如发现不足及时充电或更换电池。

3. 连接故障描述:连接故障是指设备之间的连接线路或接口出现问题,导致信号无法正常传输或丢失。

常见的连接故障包括线路脱落、接口松动或损坏等。

解决方案: - 检查连接线路是否完好,确保连接稳固; - 检查接口是否松动或损坏,如有问题及时修复或更换; - 定期进行连接线路的检查和保养,防止连接故障发生。

4. 软件错误描述:软件错误是指系统的软件或应用程序出现错误,导致系统功能失效。

常见的软件错误包括程序崩溃、数据丢失、算法错误等。

解决方案: - 及时更新软件补丁或升级软件版本,修复已知的软件错误; - 定期进行软件测试和质量控制,确保软件的稳定性和可靠性; - 遵循良好的软件开发规范,减少软件错误的发生。

过程功能的潜在失效模式的7种分类

过程功能的潜在失效模式的7种分类

过程功能的潜在失效模式的7种分类
1. 设计失效模式:因为设计不良而导致过程功能失效,例如材料选择不当、构造设计不合理等。

2. 制造失效模式:由于制造过程中的人为失误或机器故障而导致过程功能失效,例如装配错误、切削工具损坏等。

3. 环境失效模式:环境的变化导致过程功能失效,例如温度过高或过低、湿度过大或过小等。

4. 材料失效模式:材料的老化或磨损导致过程功能失效,例如金属疲劳、塑料老化等。

5. 物理失效模式:由于应力、热、振动、电磁干扰等因素导致过程功能失效,例如焊接断裂、腐蚀、变形等。

6. 操作失效模式:人为操作不当导致过程功能失效,例如错误的操作顺序、操作不周等。

7. 维修失效模式:由于维修人员的错误操作或故障排除方法不当而导致过程功能失效,例如更换错误的零件、调整错误的参数等。

失效模式或的符号

失效模式或的符号

失效模式或的符号失效模式指系统或组件在运行过程中产生的异常情况,导致系统无法正常工作或不符合设计要求。

这些失效模式可以通过符号来描述,以便更好地理解和分析。

下面是一些常见的失效模式符号及其解释:1.X符号:表示未知或不受关注的变量或状态。

当系统发生未知或不可预见的失效时,可以使用该符号来表示。

2.O符号:表示系统或组件正常工作或所期望的输出。

当系统处于正常工作状态时,可以用该符号表示。

3.⊥符号:表示系统或组件无法提供正确的输出或达到预期要求。

这种符号通常用于描述系统的故障或失效状态。

4.-符号:表示系统或组件的输出为无效或未定义。

这种符号通常用于表示系统出现错误或不完整的输出。

5.!符号:表示系统或组件的输出与所期望的输出不一致。

这种符号通常用于描述系统的错误或异常输出。

6.?符号:表示系统或组件的输入缺失或未定义。

这种符号通常用于描述系统因缺少必要的输入而无法正常工作或达到预期要求。

7.+符号:表示系统或组件的输出有冗余或额外的功能。

这种符号通常用于描述系统的超出需求的功能。

8.∳符号:表示系统或组件的输出发生随机变化或波动。

这种符号通常用于描述系统的不稳定性或不可预测性。

9.∞符号:表示系统或组件的输入或输出无限大或无限小。

这种符号通常用于描述系统的溢出或越界问题。

10.Σ符号:表示系统或组件的输入或输出发生累加或累积。

这种符号通常用于描述系统的累积误差或性能退化。

以上仅是一些常见的失效模式符号,实际应用中可以根据具体情况进行扩展和补充。

使用符号来描述失效模式有助于对系统进行分析和评估,并采取相应的措施来预防或修复这些失效。

失效模式与影响分析

失效模式与影响分析

失效模式与影响分析失效模式与影响分析(英文:Failure mode and effects analysis,FMEA),又称为失效模式与后果分析、失效模式与效应分析、故障模式与后果分析或故障模式与效应分析等,是一种操作规程,旨在对系统范围内潜在的失效模式加以分析,以便按照严重程度加以分类,或者确定失效对于该系统的影响。

FMEA广泛应用于制造行业产品生命周期的各个阶段;而且,FMEA在服务行业的应用也在日益增多。

失效原因是指加工处理、设计过程中或项目/物品(英文:item)本身存在的任何错误或缺陷,尤其是那些将会对消费者造成影响的错误或缺陷;失效原因可分为潜在的和实际的。

影响分析指的是对于这些失效之处的调查研究。

基本术语失效模式(又称为故障模式)观察失效时所采取的方式;一般指的是失效的发生方式。

失效影响(又称为失效后果、故障后果)失效对于某物品/项目(英文:item)之操作、功能或功能性,或者状态所造成的直接后果。

约定级别(又称为约定级)代表物品/项目复杂性的一种标识符。

复杂性随级数接近于1而增加。

局部影响仅仅累及所分析物品/项目的失效影响。

上阶影响累及上一约定级别的失效影响。

终末影响累及最高约定级别或整个系统的失效影响。

失效原因(又称为故障原因)作为失效之根本原因的,或者启动导致失效的某一过程的,设计、加工处理、质量或零部件应用方面所存在的缺陷严重程度(又称为严重度)失效的后果。

严重程度考虑的是最终可能出现的损伤程度、财产损失或系统损坏所决定的,失效最为糟糕的潜在后果[1]。

历史从每次的失效/故障之中习得经验和教训,是一件代价高昂而又耗费时间的事情,而FMEA 则是一种用来研究失效/故障的,更为系统的方法。

同样,最好首先进行一些思维实验。

二十世纪40年代后期,美国空军正式采用了FMEA[2]。

后来,航天技术/火箭制造领域将FMEA用于在小样本情况下避免代价高昂的火箭技术发生差错。

其中的一个例子就是阿波罗空间计划。

FMEA失效分析与失效模式分析

FMEA失效分析与失效模式分析
关系
FMEA失效分析通常包括失效模式分析作为其一部分,两者都是质量 保证和可靠性工程的重要工具。
02
FMEA失效模式分析
失效模式的定义与分类
失效模式定义
在产品或过程中,可能导致产品或系 统不能达到预期功能的现象或问题。
失效模式分类
按失效的性质可分为功能失效、潜在 失效、外观失效等;按失效的原因可 分为设计缺陷、制造缺陷、使用不当 等。
06
案例研究
案例一:汽车刹车系统的FMEA失效分析
总结词
全面分析,预防为主
详细描述
通过对汽车刹车系统进行FMEA失效分析, 识别出潜在的失效模式和原因,并采取相应 的预防措施,确保刹车系统的可靠性和安全
性。
案例二
要点一
总结词
细致入微,失效定位
要点二
详细描述
对电子产品电路板进行FMEA失效模式分析,准确定位失 效模式和原因,提出改进措施,提高电路板的可靠性和稳 定性。
失效风险
指产品或系统在实现其功能过程中可能出现的故障、异常或性能下降的风险。
分类
按照失效模式和影响分析(FMEA)的方法,失效风险可分为功能失效风险和潜在失效 风险。
失效风险的分析方法
01
故障树分析(FTA)
通过建立故障树,分析系统各部件的故障对系统整体性能的影响。
02
事件树分析(ETA)
通过建立事件树,分析系统各事件的发生对系统性能的影响。
失效模式的分析方法
故障树分析法
01
通过建立故障树,分析导致故障的各种因素,确定故障发生的
概率和影响程度。
故障模式与影响分析法
02
分析产品或系统的各种故障模式,评估其对系统功能的影响程
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电子元器件主要失效模式和机理介绍
本报编辑:韩双露时间: 2009-5-22 17:16:45 来源: 电子制造商情
中国赛宝实验室分析中心陈媛
摘要:电子元器件的种类繁多,相应的失效模式和机理也很多,本文归纳和总结电子元器件的
失效模式、分析和验证电子元器件的失效机理。

针对失效模式和失效机理采取有效措施,是不
断提高电子元器件可靠性水平的过程。

关键词:电子元器件、可靠性、失效模式、失效机理
引言
电子元器件的失效主要是在产品的制造、试验、运输、存储和使用等过程中发生的,与原材料、设计、制造、使用密切相关。

电子元器件的种类很多,相应的失效模式和机理也很多。

失效模式是指失效的外在直观失效表现形式和过程规律,通常指测试或观察到的失效现象、失效形式,如开路、短路、参数漂移、功能失效等。

失效机理是指失效的物理、化学变化过程,微观过程可以追溯到原子、分子尺度和结构的变化,但与此相对的是它迟早也要表现出的一系列宏观(外在的)性能、性质变化,如疲劳、腐蚀和过应力等。

从现场失效和试验失效中去收集尽可能多的信息(包括失效形态、失效表现现象及失效结果等)进行归纳和总结电子元器件的失效模式,分析和验证失效机理,并针对失效模式和失效机理采取有效措施,是不断提高电子元器件可靠性水平的过程。

1 集成电路失效模式和机理介绍
集成电路的主要失效模式有功能失效、参数漂移、短路、开路等。

集成电路失效模式统计分布见图1。

图1 集成电路失效模式分布
集成电路的主要失效机理有:
1)过电应力(EOS):是指元器件承受的电流、电压应力或功率超过其允许的最大范围。

2)静电损伤(ESD):微电子器件在加工生产、组装、贮存以及运输过程中,可能与带静电的容器、测试设备及操作人员相接触,所带静电经过器件
引脚放电到地,使器件受到损伤或失效
3)闩锁效应(latch-up):集成电路由于过电应力触发内部寄生晶体管结构而呈现的一种低阻状态,这种低阻状态在触发条件去除或终止后仍会
存在。

4)电迁移(EM):当器件工作时,金属互连线内有一定的电流通过,金属离子会沿导体产生质量的运输,其结果会使导体的某些部位出现空洞或
晶须。

5)热载流子效应(HC):热载流子是指其能量比费米能级大几个kT以上的载流子。

这些载流子与晶格不处于热平衡状态,当其能量达到或超过
Si-SiO
界面势垒时(对电子注入为3.2eV,对空穴注入为4.5eV)便会注
2
入到氧化层中,产生界面态、氧化层陷阱或被陷阱所俘获,使氧化层电
荷增加或波动不稳,这就是热载流子效应。

6)栅氧击穿:在MOS器件及其集成电路中,栅氧化层缺陷会导致栅氧漏电,漏电增加到一定程度即构成击穿。

7)与时间有关的介质击穿(TDDB):施加的电场低于栅氧的本征击穿强度,但经历一定的时间后仍发生击穿的现象。

这是由于施加应力的过程中,
氧化层内产生并聚集了缺陷(陷阱)的原因。

8)金铝键合失效:由于金-铝之间的化学势不同,经长期使用或200℃以上的高温存储后,会产生多种金属间化合物,如紫斑、白斑等。

使铝层
变薄、粘附性下降、接触电阻增加,最后导致开路。

在300℃高温下还
会产生空洞,即柯肯德尔效应,这种效应是高温下金向铝中迅速扩散并
形成化合物,在键合点四周出现环形空洞。

使铝膜部分或全部脱离,形
成高阻或开路。

9)“爆米花效应”:塑封元器件塑封材料内的水汽在高温下受热发生膨胀,使塑封料与金属框架和芯片间发生分层效应,拉断键合丝,从而发生开
路失效。

2 分立器件失效模式和机理介绍
分立器件失效模式主要有短路、开路、参数漂移、壳体破碎等。

分立器件失效模式统计分布见图2。

图2 分立器件失效模式分布
分立器件的主要失效机理有:
1)过电应力(EOS)。

2)机械应力和热变应力:元器件在生产、运输、安装和焊接等过程中受到外来的机械和热应力的作用而失效。

3)二次击穿:器件被偏置在某一特殊的工作点时,电压突然跌落,电流突然上升的物理现象。

这时若无限流装置及其他保护措施,元器
件将被烧毁。

4)热击穿:功率器件芯片与底座粘接或烧结不良,会存在众多大小不等的空洞,导致器件工作时产生的热量不能充分往外传导,形成局
部热点而发生击穿的现象。

5)栅氧击穿。

6)金铝键合失效。

3 阻容感元件失效模式和机理介绍
阻容感元件的失效模式主要有参数漂移、短路、壳体破碎、外观不合格等。

阻容感元件失效模式统计分布见图3。

图3 阻容感元件失效模式分布
阻容感元件的失效机理主要有:
1)过电应力(EOS)。

2)机械应力和热变应力。

3)腐蚀:金属与周围介质接触时发生化学或电化学作用而被破坏叫做腐蚀,它会导致元器件的电性能恶化。

4)银迁移:电子元器件在存储和使用中,由于存在湿气、水分,导致其中相对活泼的金属银离子发生电化学迁移,从而出现短路、开路
及绝缘性能变坏等失效。

4、其他电子元器件失效模式和机理介绍
除了以上常见的电子元器件以外,还有很多其它电子元器件,如连接器、继电器、半导体激光器、传感器、霍尔器件等。

这些元器件失效主要是由于工艺过程控制不严,在生产过程中产生了缺陷或引入污染源(水汽、沾污)等。

其主要失效模式主要表现为参数漂移和功能失效。

结束语
电子元器件的种类繁多,其失效模式和机理也不尽相同,但所有失效基本都可归纳为两个方面的原因:即应用环境、条件与产品质量要求。

电子元器件可靠性水平的提高基本可围绕这两方面来进行。

一要改进电子元器件的设计和工艺条件,控制产品质量;二要合理使用,注意整机电路设计,考虑元器件使用的条件范围及环境等。

相关文档
最新文档