正比例函数图像性质专项练习题

合集下载

人教版八年级下册专项训练专题14 正比例函数图象和性质

人教版八年级下册专项训练专题14 正比例函数图象和性质

专题14 正比例函数图象和性质一、知识点1、画正比例函数图象时,通常在坐标系中描出点________和________最为简单。

2、正比例函数y=kx(k是常数,k≠0)的图象是一条经过________的直线。

当k>0时,图象经过第________象限,y所x的增大而________。

当k<0时,图象经过第________象限,y所x的增大而________。

二、标准例题例1:若函数y=(2m+1)x2+(1﹣2m)x(m为常数)是正比例函数,则m的值为()A.m>12B.m=12C.m<12D.m=−12例2:若正比例函数y=(1+m)x 的图像经过点A(1,2m),则下列坐标对应的点也在该正比例函数的图像上的是()A.(2,1)B.(-1,2)C.(2,4)D.(-2,-1)例3:如图,在平面直角坐标系中,直线l:y=x+1与y轴交于点A1,如图所示依次作正方形A1B1C1O,正方形A2B2C2C1……正方形A n B n∁n C n﹣1(n为大于1的整数)使得点A1,A2,A3…A n在直线上,点C1,C2,C3,…∁n 在x轴正半轴上,请解决下列问题:(1)点A6的坐标是;点B6的坐标是;(2)点A n的坐标是,正方形A n B n∁n C n﹣1的面积是.例4:已知y与x﹣1成正比例,且当x=3时,y=4.(1)求y与x之间的函数表达式;(2)当x=﹣1时,求y的值;(3)当﹣3<y<5时,求x的取值范围.例5:已知正比例函数y=kx图象经过点(2,-4).(1)求这个函数的解析式;(2)图象上两点A(x1,y1)、B(x2,y2),如果x1<x2,比较y1,y2的大小.三、练习1.下列正比例函数中,y随x的值增大而增大的是()A.y=﹣2014x B.y=(√3﹣1)x C.y=(﹣π﹣3)x D.y=(1﹣π2)x2.已知点A(-5,y1)、B(-2,y2)都在直线y=-12x上,则y1与y2的关系是()A.y1≤y2B.y1=y2C.y1<y2D.y1>y23.若y关于x的函数y=(m–2)x+n是正比例函数,则m,n应满足的条件是()A.m≠2且n = 0B.m = 2且n ≠ 0C.m≠2D.n = 04.正比例函数y=2x的大致图象是()A.B.C.D.5.下列四组点中,可以在同一个正比例函数图象上的一组点是()A.(2 , −3),(−4 , 6)B.(−2 , 3),(4 , 6)C.(−2 , −3),(4 ,− 6)D.(2 , 3),(−4 , 6)6.直线y=kx过点A(m,n),B(m−3,n+4),则k的值是()A.43B.−43C.34D.−347.正比例函数y=kx(k>0)的图象大致是()A.B.C.D.8.已知正比例函数y=(2m﹣1)x的图象上两点A(x1,y1),B(x2,y2),当x1<x2时,有y1>y2,那么m 的取值范围是()A.m<12B.m>12C.m<0D.m>09.正比例函数y=kx的图像过点A(2,3),则此函数的图像还经过点()A.(-2,-3)B.(-2,3)C.(3,2)D.(-3,-2)10.已知y=(m+3)x m2−8是正比例函数,则m=______.11.点A(m,−3)向下平移3个单位后,恰好落在正比例函数y=−6x的图象上,则m的值为______.12.如图,直线y=√33x,点A1坐标为(1,0),过点A1作x轴的垂线交直线于点B1,以原点O为圆心,OB1长为半径画弧交x轴于点A2;再过点A2作x轴的垂线交直线于点B2,以原点O为圆心,OB2长为半径画弧交x轴于点A3,…,按此做法进行下去,点A4的坐标为______,点A n______.13.函数y=(k-1)x2|k|-3是正比例函数,且y随x增大而减小,求(k+3)2019的值.14.如图,在边长为1个单位长度的小正方形组成的格点图中,点A、B、C都是格点.(1)点A坐标为;点B坐标为;点C坐标为;(2)画出△ABC关于原点对称的△A1B1C1;(3)已知M(1,4),在x轴上找一点P,使|PM﹣PB|的值最大(写出过程,保留作图痕迹),并写出点P 的坐标.15.一次函数y=kx+b.当x=-3时,y=0;当x=0时,y=-4(1)求k与b的值.(2)求该函数图象与x轴和y轴围成的图形面积.16.已知y与x+2成正比,当x=4时,y=4.(1)求y与x之间的函数关系式;(2)若点(a,3)在这个函数图象上,求a的值.17.请你用学习“一次函数”时积累的经验和方法研究函数y=|x|的图象和性质,并解决问题.(1)完成下列步骤,画出函数y=|x|的图象;①列表、填空;②描点:③连线(2)观察图象,当x______时,y随x的增大而增大;(3)结合图象,不等式|x|<x+2的解集为______.19.已知银行2006年9月的“半年期存款”年利率是2.25%,某人当年9月存入银行a元,经过半年到期时按规定缴纳20%利息税后,得到利息b元.问税后利息b(元)与本金a(元)成正比例吗?如果成正比例,那么求出这个比例系数.21.已知y与x成正比例,当x=4时,y=12.(1)写出y与x之间的函数解析式;(2)求当y=36时x的值;(3)判断点(-7,-10)是否是函数图象上的点.22.已知直线y=kx过点(−2,1),A是直线y=kx图像上的点,若过A向x轴作垂线,垂足为B,且SΔAB0=9,求点A的坐标.23.如图,点A(a,6)是第一象限内正比例函数y=3x的图象上的一点,AB⊥x轴,交直线OB于B点,三角形OAB的面积为5,求直线OB所对应的函数表达式.专题14 正比例函数图象和性质一、知识点1、画正比例函数图象时,通常在坐标系中描出点________和________最为简单。

正比例函数练习题及答案

正比例函数练习题及答案

正比例函数习题姓名:家长签字:得分:选择题(每小题3分,共30分。

)一.1.下列函数表达式中,y是x的正比例函数的是()A.y=-2x2B.y=xC.y=J^D.y=x-234x2.若y=x+2-b是正比例函数,则b的值是()A.0B.-2C.2D.-0.53.若函数广(2-m)是关于x的正比例函数,则常数m的值等于()A.±2B.-2C.±V3D.~V34.下列说法正确的是()A.圆面积公式S=nr2中,S与r成正比例关系B・三角形面积公式S=lah中,当S是常量时,a与h成反比例关系2°y皂+i中,y与x成反比例关系XD・中,y与x成正比例关系25.下列各选项中的y与x的关系为正比例函数的是()A.正方形周长y(厘米)和它的边长x(厘米)的关系B.圆的面积y(平方厘米)与半径x(厘米)的关系C.如果直角三角形中一个锐角的度数为x,那么另一个锐角的度数y与x间的关系D.一棵树的高度为60厘米,每个月长高3厘米,x月后这棵的树高度为y厘米6.若函数y=(m-3)x'®'*是正比例函数,则m值为()A.3B.-3C.±37.已知正比例函数y=(k-2)x+k+2的k的取值正确的是()A.k=2B.k^2C.k=-28.已知正比例函数)=1«(kOO)的图象如图所示,则在下列选项中k值可能是()A.1B.2C.39.如图所示,在同一直角坐标系中,一次函数y=Mx、y=k2x>y=k3x>y=k」x的图象分别为£、12>13>1」,则下列关系中正确的是()A.ki<k2<k3<k4B.k2<ki<k4<k3C.ki<k2<k4<k3D.k2<ki<k3<k410,在直角坐标系中,既是正比例函数尸=1«,又是y的值随X的增大而减小的图象是()A. B.J,/ C.J'| D.二.填空题(每小题3分,共27分。

4.3 正比例函数的图像与性质 同步作业(含答案)

4.3 正比例函数的图像与性质 同步作业(含答案)

正比例函数的图像与性质1.[2018·陕西]如图,在矩形AOBC 中,A (-2,0),B (0,1).若正比例函数y =kx 的图象经过点C ,则k 的值为( )A .-12 B.12 C .-2 D .22.关于正比例函数y =-2x ,下列说法正确的是( )A .图象必经过点(-1,-2)B .图象经过第一、三象限C .y 随x 的增大而减小D .不论x 取何值,总有y <03.已知正比例函数y =kx (k <0)的图象上两点A (x 1,y 1),B (x 1,y 2),且x 1<x 2,则下列不等式中恒成立的是( )A .y 1+y 2>0B .y 1+y 2<0C .y 1-y 2>0D .y 1-y 2<04.如图,三个正比例函数的图象分别对应表达式:①y =ax ;②y =bx ;③y =cx .将a ,b ,c 从小到大排列并用“<”连接为_________.5.在正比例函数y =-3mx 中,函数y 的值随x 值的增大而增大,则P (m ,5)在第____象限. 6.已知正比例函数的图象经过点(-1,2). (1)求此正比例函数的表达式; (2)点(2,-5)是否在此函数的图象上?7.在同一直角坐标系上画出函数y =2x ,y =-13x ,y =-0.6x 的图象.8.在如图所示的平面直角坐标系中,点P 是直线y =x 上的动点,A (1,0),B (2,0)是x 轴上的两点,则P A +PB 的最小值为________.9.已知正比例函数y =(m +2)x 中,y 的值随x 的增大而增大,而正比例函数y =(2m -3)x 中,y 的值随x 的增大而减小,且m 为整数,你能求出m 的可能值吗?为什么?10.[2018·贵港]如图,直线l 为y =3x ,过点A 1(1,0)作A 1B 1⊥x 轴,与直线l 交于点B 1,以原点O 为圆心,OB 1长为半径画弧交x 轴于点A 2;再作A 2B 2⊥x 轴,交直线l 于点B 2,以原点O 为圆心,OB 2的长为半径画弧交x 轴于点A 3;…,按此作法进行下去,则点An 的坐标为__________.参考答案1.A2.C3.C4.a<c<b5.二6.解:(1)y=-2x;(2)点(2,-5)不在此函数的图象上.7.解:列表如下:画出图象如下:答图8. 5答图【解析】如答图,作A点关于直线y=x的对称点A′,连接A′B,交直线y=x于点P,此时P A+PB最小,由题意可得OA′=1,BO=2,P A′=P A,此时,P A+PB=A′B=12+22= 5.9.解:m 的可能值为-1,0,1.理由如下:∵正比例函数y =(m +2)x 中,y 的值随x 的增大而增大, ∴m +2>0,解得m >-2.∵正比例函数y =(2m -3)x 中,y 的值随x 的增大而减小, ∴2m -3<0,解得m <32,∴-2<m <32.∵m 为整数,∴m 的可能值为-1,0,1. 10. (2n -1,0)【解析】 直线y =3x ,点A 1坐标为(1,0),过点A 1作x 轴的垂线交直线l 于点B 1,可知B 1点的坐标为(1,3),以原点O 为圆心,OB 1长为半径画弧交x 轴于点A 2,OA 2=OB 1,所以OA 2=12+(3)2=2,因此点A 2的坐标为(2,0),同理,可求得点B 2的坐标为(2,23),故点A 3的坐标为(4,0),B 3(4,43),…,所以An 的坐标为(2n -1,0)。

中考数学《正比例函数图像和性质》专项练习题及答案

中考数学《正比例函数图像和性质》专项练习题及答案

中考数学《正比例函数图像和性质》专项练习题及答案一、单选题1.若正比例函数的图象经过点(﹣1,2),则这个图象必经过点( )A .(1,2)B .(﹣1,﹣2)C .(2,﹣1)D .(1,﹣2)2.若正比例函数y=(1-2m )x 的图象经过点A (x 1,y 1)和点B (x 2,y 2),当x 1<x 2时,y 1>y 2,则m的取值范围是( ) A .m >0B .m <0C .m <12D .m >123.已知正比例函数 y =mx(m <0) 图象上有两点 P(x 1,y 1) , Q(x 2,y 2) 且 x 1<x 2 ,则 y 1与 y 2 的大小关系是( ) A .y 1>y 2B .y 1<y 2C .y 1=y 2D .不能确定4.正比例函数y =3x 的图象必经过点( )A .(﹣1,﹣3)B .(﹣1,3)C .(1,﹣3)D .(3,1)5.已知正比例函数y=(m-1)x ,若y 随x 增大而增大,则点(m ,1-m )所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限6.正比例函数y=kx (k ≠0)的函数值y 随着x 增大而减小,则一次函数y=x+k 的图象大致是( )A .B .C .D .7.若函数y=kx 的图象经过点(1,-2),那么该图象一定经过点( )A .(2,-1)B .( −12,1)C .(-2,1)D .(1, 12)8.若正比例函数y =(m ﹣2)x 的图象经过点A(x 1,y 1)和点B(x 2,y 2),当x 1<x 2时,y 1>y 2,则m 的取值范围是( ) A .m >0B .m <0C .m >2D .m <29.正比例函数y=2x与反比例函数y=2x的图象或性质的共有特征之一是()A.函数值y随x的增大而增大B.图象在第一、三象限都有分布C.图象与坐标轴有交点D.图象经过点(2,1)10.若一个正比例函数y=mx的图像经过P(4,-8),Q(m,n)两点,则n的值为()A.1B.8C.-2D.411.对于正比例函数y=kx,当自变量x的值增加3时,对应的函数值y减少6,则k的值为()A.2B.﹣2C.﹣3D.﹣0.512.如图,在平面直角坐标系中,点A的坐标为(0,6),沿x轴向右平移后得到A',A点的对应点A'在直线y=35x上,则点B与其对应点B'之间的距离为()A.4B.6C.8D.10二、填空题13.函数y= 1m−2 x中,如果y随x的增大而减小,那么m的取值范围是.(1)线段B1B2的长度为;(2)点A2022的坐标为;(3)线段B2021B2022的长度为.15.写出一个实数k的值,使得正比例函数y=kx的图象在二、四象限.16.正比例函数y=(m﹣2)x m的图象的经过第象限,y随着x的增大而.17.若正比例函数y=(m﹣2)x的图象经过一、三象限,则m的取值范围是.18.函数y=kx与y=6−x的图像如图所示,则k=.三、综合题19.已知正比例函数y=kx.(1)若函数图象经过第二、四象限,则k的范围是什么?(2)点(1,﹣2)在它的图象上,求它的表达式.20.已知正比例函数y=kx经过点A(−1,4) .(1)求正比例函数的表达式;(2)将(1)中正比例函数向下平移5个单位长度后得到的函数表达式是.21.已知正比例函数y=kx图象经过点(3,﹣6),求:(1)求这个函数解析式.(2)画出这个函数图象.(3)判断点A(4,﹣2)、点B(﹣1.5,3)是否在这个函数图象上(4)图象上的两点C(x1,y1)、D(x2,y2),如果x1>x2,比较y1、y2的大小.22.如图,它表示甲乙两人从同一个地点出发后的情况.到十点时,甲大约走了13千米.根据图象回答:(1)甲是几点钟出发?(2)乙是几点钟出发,到十点时,他大约走了多少千米? (3)到十点为止,哪个人的速度快? (4)两人最终在几点钟相遇?23.已知函数y=(m+3)x m2+2m−2.(1)当m 为何值时,它是正比例函数? (2)当m 为何值时,它是反比例函数? (3)当m 为何值时,它是二次函数?24.一水果经销商购进了A ,B 两种水果各10箱,分配给他的甲、乙两个零售店(分别简称甲店、乙店)销售,预计每箱水果的盈利情况如下表:A 种水果/箱B 种水果/箱甲店11元 17元 乙店9元13元5箱,B 种水果两店各5箱,请你计算出经销商能盈利多少元?(2)在甲、乙两店各配货10箱(按整箱配送),且保证乙店盈利不小于100元的条件下,请你设计出使水果经销商盈利最大的配货方案,并求出最大盈利为多少?参考答案1.【答案】D2.【答案】D3.【答案】A4.【答案】A5.【答案】D6.【答案】A7.【答案】B8.【答案】D9.【答案】B10.【答案】D11.【答案】B12.【答案】D13.【答案】m<214.【答案】(1)√3(2)A2021A2022=22020 (3)22020√315.【答案】-216.【答案】二、四;减小17.【答案】m>218.【答案】219.【答案】(1)解:∵函数图象经过第二、四象限∴k<0.(2)解:当x=1,y=﹣2时,则k=﹣2 即:y=﹣2x.20.【答案】(1)解:将点A(−1,4)代入y=kx,得4=−k,即k=−4.故函数解析式为:y=−4x(2)y=−4x−521.【答案】(1)解:将点(3,﹣6)代入y=kx得,﹣6=3k解得,k=﹣2函数解析式为y=﹣2x;(2)解:如图:函数过(0,0),(1,﹣2).(3)解:将点A(4,﹣2)、点B(﹣1.5,3)分别代入解析式得,﹣2≠﹣2×4;3=﹣2×(﹣1.5);故点A不在函数图象上,点B在函数图象上.(4)解:由于k=﹣2<0,故y随x的增大而减小,可得y1<y2.22.【答案】(1)解:甲8点出发(2)解:乙9点出发;到10时他大约走了13千米(3)解:到10时为止,乙的速度快(4)解:两人最终在12时相遇23.【答案】(1)解:当函数y=(m+3)x m2+2m−2是正比例函数∴m2+2m﹣2=1且m+3≠0解得:m1=﹣3(舍去),m2=1则m=1时,它是正比例函数;(2)解:当函数y=(m+3)x m2+2m−2是反比例函数∴m2+2m﹣2=﹣1且m+3≠0解得:m1=﹣1+√2,m2=﹣1﹣√2则m=﹣1±√2时,它是反比例函数;(3)解:当函数y=(m+3)x m 2+2m−2是二次函数 ∴m 2+2m ﹣2=2 且m+3≠0解得:m 1=﹣1+√5,m 2=﹣1﹣√5 则m=﹣1±√5时,它是二次函数.24.【答案】(1)解:经销商能盈利=5×11+5×17+5×9+5×13=5×50=250(2)解:设甲店配A 种水果x 箱,则甲店配B 种水果(10﹣x )箱 乙店配A 种水果(10﹣x )箱,乙店配B 种水果10﹣(10﹣x )=x 箱. ∵9×(10﹣x )+13x ≥100∴x ≥2 12经销商盈利为w=11x+17•(10﹣x )+9•(10﹣x )+13x=﹣2x+260. ∵﹣2<0∴w 随x 增大而减小 ∴当x=3时,w 值最大.甲店配A 种水果3箱,B 种水果7箱.乙店配A 种水果7箱,B 种水果3箱.最大盈利:﹣2×3+260=254(元).。

第12讲正比例函数(知识解读题型精讲随堂检测)(原卷版)

第12讲正比例函数(知识解读题型精讲随堂检测)(原卷版)

第12讲正比例函数知识点1:正比例函数的定义一般地,形如y=kx(k≠0)函数,叫做正比例函数,其中k叫做比例系数.知识点2:正比例函数图像和性质:待定系数法求正比例函数解析式1.正比例函数的表达式为y=kx(k≠0),只有一个待定系数k,所以只要知道除(0,0)外的自变量与函数的一对对应值或图象上一个点的坐标(原点除外)即可求出k的值,从而确定表达式.2.确定正比例函数表达式的一般步骤:(1)设——设出函数表达式,如y=kx(k≠0);(2)代——把已知条件代入y=kx中;(3)求——解方程求未知数k; (4)写——写出正比例函数的表达式【题型一:正比例函数的定义】【典例1】(2023春•永定区期末)下列函数中,是正比例函数的是()A.B.C.y=x2D.y=2x﹣1(2023春•赣州期末)下列式子中,表示y是x的正比例函数的是()【变式11】A.y=3x2B.C.D.y2=3x【变式12】(2023春•洪江市期末)下列函数中,是正比例函数的是()A.y=2x﹣1B.C.D.y=2x2+1【变式13】(2023春•朝阳区校级期中)下列变量之间的关系,一个变量是另一个变量的正比例函数的是()A.正方形的面积S随边长x的变化而变化B.面积为20的三角形的一边上的高h随着这边长a的变化而变化C.正方形的周长C随着边长x的变化而变化L/min的流量往外放水,水箱中的剩水量V(单位:L)随着放水时间t(单位:min)的变化而变化【典例2】(2023春•兴隆县期末)已知y=(m+1)x|m|,若y是x的正比例函数,则m的值为()A.1B.﹣1C.1或﹣1D.0【变式21】(2023春•南皮县月考)若函数y=(k+1)x+b﹣2是正比例函数,则()A.k≠﹣1,b=﹣2B.k≠1,b=﹣2C.k=1,b=﹣2D.k≠﹣1,b=2【变式22】(2023春•永春县期末)若y=x+b是正比例函数,则b的值是()A.0B.﹣1C.1D.任意实数【变式23】(2023春•孝感期末)若函数y=﹣2x m﹣2+n+1是正比例函数,则m+n ()A.3B.2C.1D.﹣1【题型二:判断正比例函数图像所在象限】【典例3】(2023春•朔州期末)正比例函数的图象经过()A.第一、二象限B.第一、三象限C.第一、四象限D.第二、四象限【变式31】(2023春•凤庆县期末)正比例函数y=﹣3x的图象经过()象限.A.第一、三象限B.第二、四象限C.第一、四象限D.第二、三象限【变式32】(2023春•南岗区期末)在平面直角坐标系中,正比例函数y=﹣4x 的图象经过()A.第一、二象限B.第一、三象限C.第二、三象限D.第二、四象限【题型三:正比例函数的性质】【典例4】(2023春•乐陵市期末)关于函数y=2x,下列说法错误的是()A.它是正比例函数B.图象经过(1,2)C.图象经过一、三象限D.当x>0,y<0【变式41】(2022秋•东胜区期末)关于函数y=﹣3x,下列说法正确的是()A.该函数的图象经过点(﹣3,1)B.是一次函数,但不是正比例函数C.该函数的图象经过第一、三象限D.随着x的增大,y反而减小【变式42】(2023•金山区二模)已知函数y=kx(k≠0,k为常数)的函数值y 随x值的增大而减小,那么这个函数图象可能经过的点是()A.(0.5,1)B.(2,1)C.(﹣2,4)D.(﹣2,﹣2)【变式43】(2022•临渭区二模)已知正比例函数y=kx(k≠0),当自变量的值减小1时,函数y的值增大3,则k的值为()A.B.C.3D.﹣3【题型四:判断正比例函数的比例系数大小】【典例5】(2022春•南城县校级月考)如图,三个正比例函数的图象分别对应表达式:①y=ax,②y=bx,③y=cx.将a,b,c按从小到大排列并用“<”连接,正确的是()A.a<b<c B.c<b<a C.b<c<a D.a<c<b【变式51】(2022秋•渠县校级期中)三个正比例函数的表达式分别为①y=ax;②y=bx;③y=cx,其在平面直角坐标系中的图象如图所示,则a,b,c的大小关系为()A.a>b>c B.c>b>a C.b>a>c D.b>c>a【变式52】(2023秋•太仓市期末)如图,三个正比例函数的图象分别对应函数关系式:①y=ax,②y=bx,③y=cx,将a,b,c从小到大排列并用“<”连接为()A.a<b<c B.c<a<b C.c<b<a D.a<c<b【题型五:待定系数法求正比例函数解析式】【典例6】(2023春•鼓楼区校级期末)已知y与x成正比例,且当x=2时,y =4.(1)求y与x之间的函数关系式;(2)若点(a,3)在这个函数图象上,求a的值.【变式61】(2023春•荆门期末)已知y与x成正比例,且x=﹣2时y=4,(1)求y与x之间的函数关系式;(2)设点(a,﹣2)在这个函数的图象上,求a.【变式62】(2022秋•城关区期末)已知点(,1)在函数y=(3m﹣1)x的图象上,(1)求m的值,(2)求这个函数的解析式.【变式63】(2022秋•江宁区校级月考)已知y=y2﹣y1,其中y1与x成正比例,y2与x+2成正比例,当x=﹣1时,y=2,当x=2时,y=10.(1)求y与x的函数表达式;(2)当x取何值时,y的值为30?【题型六:正比例函数的图像性质综合】【典例7】(2021春•灵山县期末)(1)小青学习了函数后,对画函数的图象很感兴趣,她作函数y=|x|的图象过程如下(请补充完整空格的部分):当x≥0时,得y=x,当x<0时,得y=﹣x,她在坐标系中画出了如图1的图象,所以函数y=|x|的图象由两条构成;同理,她用类似的方法和过程作出函数y=|x﹣1|的图象;(2)请你在图2的坐标系中作出y=|x﹣1|的图象;(3)学习经验拓展:根据上述的过程获得的经验,请你画出函数y=|x﹣1|+|x|的图象.【变式7】(2022秋•大兴区校级期末)探究活动:探究函数y=|x|的图象与性质,下面是小左的探究过程,请补充完整.(1)下表见y与x的几组对应值.x…﹣3﹣2﹣10123…y…3m10123…直接写出m的值是.(2)如图.在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.请你先描出点(﹣2.m),然后画出该函数的图象.(3)观察图象,写出函数y=|x|的一条性质:.1.(2023春•东城区校级期中)下列函数中,是正比例函数的是()A.y=2x B.y=C.y=x2D.y=2x﹣1 2.(2023春•信都区期末)正比例函数y=x的图象大致是()A.B.C.D.3.(2023•凤凰县模拟)下列图象中,表示正比例函数图象的是()A.B.C.D.4.(2023春•灵宝市期末)已知(x1,y1)和(x2,y2)是直线y=﹣3x上的两点,且x1>x2,则y1与y2的大小关系是()A.y1>y2B.y1<y2C.y1=y2D.以上都有可能5.(2023春•南宁期末)一次函数y=2x的图象经过的象限是()A.第一、三象限B.第二、四象限C.第二、三象限D.第一、二象限6.(2023春•廊坊期末)下列关于正比例函数y=3x的说法中,正确的是()A.当x=3时,y=1B.它的图象是一条过原点的直线C.y随x的增大而减小D.它的图象经过第二、四象限7.(2022春•道里区期末)已知函数y=(k﹣3)x,y随x的增大而减小,则常数k的取值范围是()A.k>3B.k<3C.k<﹣3D.k<0 8.(2022•碑林区校级模拟)若一个正比例函数的图象经过点(2,﹣3),则这个图象一定也经过点()A.(﹣3,2)B.(,﹣1)C.(,﹣1)D.(﹣,1)9.(2021•芦淞区模拟)已知正比例函数y=(m﹣1)x的图象上两点A(x1,y1),B(x2,y2),当x1<x2时,有y1>y2,那么m的取值范围是()A.m<1B.m>1C.m<2D.m>0 10.(2019•武功县一模)对于正比例函数y=﹣2x,当自变量x的值增加1时,函数y的值增加()A.B.C.2D.﹣2 11.(2023春•寻乌县期末)若函数y=3x m﹣2是正比例函数,则m的值是.12.(2022春•青山区期末)已知函数y=2x+m﹣1是正比例函数,则m=.13.(2023•范县一模)写出一个y随x的增大而减小的正比例函数的表达式.14.(2021•包河区校级开学)已知正比例函数y=kx,当﹣2≤x≤2时,函数有最大值3,则k的值为.15.(2022秋•宁波期末)已知y与x之间成正比例关系,且当x=﹣1时,y=3.(1)求y与x之间的函数关系式;(2)当x=2时,求y的值.16.(2023春•陵城区校级月考)已知y﹣2与3x﹣4成正比例函数关系,且当x =2时,y=3.(1)写出y与x之间的函数解析式;(2)若点P(a,﹣3)在这个函数的图象上,求a的值;(3)若y的取值范围为﹣1≤y≤1,求x的取值范围.17.(2023春•西城区校级期中)函数问题:(1)作出y与x的函数y=2|x|的图象;①自变量x的取值范围是;②列表并画出函数图象:x…﹣2﹣1012…y…4…③当自变量x的值从1增加到2时,则函数y的值增加了.(2)在一个变化的过程中,两个变量x与y之间可能是函数关系,也可能不是函数关系:下列各式中,y是x的函数的是.①x+y=1;②|x+y|=1;③xy=1;④x2+y2=1.。

正比例函数的图象和性质练习

正比例函数的图象和性质练习

正比例函数练习题(1)画函数图象的步骤:_____________________________(2)正比例函数的函数关系式为:_____________________________________(3)正比例函数的图象是一条________________,当K>0时,图象经过第_______象限,从左到右_______,y随x的增大而________;当k<0时,图象经过第________象限,从左到右__________,y随x的增大而________.补充讲解:在同一坐标系中画出y=x、y=0.5x和y=3x的函数图象.归纳:_______________________________________________________________.例题1 如图1,正比例函数y=kx,y=mx,y=nx在同一平面直角坐标系中的图象如图所示. 则系数k,m,n的大小关系是__________.例题2 如图2,在同一直角坐标系中,一次函数y=k1x、y=k2x、y=k3x、y=k4x的图象分别为l1、l2、l3、l4,则下列关系中正确的是()A.k1<k2<k3<k4B.k2<k1<k4<k3C.k1<k2<k4<k3D.k2<k1<k3<k4练习:知识点一:正比例函数的概念1.下列函数表达式中,y是x的正比例函数的是()A.y=﹣2x2B.y=C.y=D.y=x﹣22.若y=x+2﹣b是正比例函数,则b的值是()A.0B.﹣2 C.2D.﹣0.53.若函数是关于x的正比例函数,则常数m的值等于()A.±2B.﹣2 C.D.4.下列说法正确的是()A.圆面积公式S=πr2中,S与r成正比例关系B.三角形面积公式S=ah中,当S是常量时,a与h成反比例关系C.y=中,y与x成反比例关系D.y=中,y与x成正比例关系5.下列各选项中的y与x的关系为正比例函数的是()A.正方形周长y(厘米)和它的边长x(厘米)的关系B.圆的面积y(平方厘米)与半径x(厘米)的关系C.如果直角三角形中一个锐角的度数为x,那么另一个锐角的度数y与x间的关系D.一棵树的高度为60厘米,每个月长高3厘米,x月后这棵的树高度为y厘米6.若函数y﹦(m+1)x+m2﹣1是正比例函数,则m的值为_________ .7.已知y=(k﹣1)x+k2﹣1是正比例函数,则k= _________ .知识点2 正比例函数的图象与性质8.正比例函数y=3x的大致图像是( )9.如右图,则此正比例函数表达式为( )A.y=-12x B.y=12xC.y=-2xD.y=2x10.函数y=-5x的图象在第__________象限内,y随x的增大而__________.11.请写出直线y=6x上的一个点的坐标:_________ .12.正比例函数y=(m﹣2)x m的图象的经过第_________ 象限,y随着x的增大而_________ .13.函数y=﹣7x的图象在第_________ 象限内,经过点(1,_________ ),y随x 的增大而_____14. 已知函数y=kx的函数值随x的增大而增大,则函数的图象经过( )A.第一、二象限B.第一、三象限C.第二、三象限D.第二、四象限15. 正比例函数y=-x的图象平分( )A.第一、三象限B.第一、二象限C.第二、三象限D.第二、四象限16.对于函数y=-k2x(k是常数,k≠0)的图象,下列说法不正确的是( )A.其函数图象是一条直线B.其函数图象过点(1k,-k)C.其函数图象经过一、三象限D.y随着x增大而减小17.已知正比例函数图象经过点(-1,2).(1)求此正比例函数的表达式;(2)画出这个函数图象;(3)点(2,-5)是否在此函数图象上?(4)若这个图象还经过点A(a,8),求点A的坐标.知识点三综合应用18.一根蜡烛长20 cm,点燃后每小时燃烧5 cm,则蜡烛燃烧的长度y(cm)与燃烧时间x(h)的函数关系用图象表示为下图中的( )19. 已知正比例函数y=(3k-1)x,若y随x的增大而增大,则k的取值范围是_____________.20.若点A(-2,m)在正比例函数y=-12x的图象上,则m的值是( )21.已知正比例函数y=kx(k<0)的图象上两点A(x1,y1)、B(x2,y2),且x1<x2,则下列不等式中恒成立的是( )A.y1+y2>0B.y1+y2<0C.y1-y2>0D.y1-y2<0 22.若p1(x1,y1) p2(x2,y2)是正比例函数y=﹣6x的图象上的两点,且x1<x2,则y1,y2的大小关系是:y1_________ y2.点A(-5,y1)和点B(-6,y2)都在直线y= -9x的图像上则y1__________y223.已知:如图,正比例函数的图象经过点P和点Q(﹣m,m+3),求m的值.24.已知y+2与x ﹣1成正比例,且x=3时y=4. (1)求y 与x 之间的函数关系式; (2)当y=1时,求x 的值.25. 为缓解用电紧张矛盾,某电力公司特制定了新的用电收费标准,每月用电量()x kW h 与应付饱费y (元)的关系如图所示。

正比例函数图像及性质

正比例函数图像及性质

WORD 格式整理版正比例函数的图像和性质知识精要1.正比例函数的图像一般地,正比例函数 y=kx(k 是常数, k 0)的图像是经过原点 O(0,0) 和点 M(1,k)的一条直线。

我们把正比例函数 y=kx 的图像叫做直线 y=kx。

2.正比例函数性质精讲名题x m 3例 1. 若函数 y=(m-1)是正比例函数,则m=,函数的图像经过象限。

解:m=4, 图像经过第一、三象限。

例 2. 已知 y-1 与 2x 成正比例,当 x=-1 时, y=5, 求 y 与 x 的函数解析式。

解:∵ y-1 与 2x 成正比例∴设y-1=k ·2x (k0 )把x=-1,y=5代入,得k=-2,∴ y-1=-2·2x∴y=-4x+1例 3. 已知 y 与 x 的正比例函数,且当x=6 时 y=-2WORD 格式整理版(1)求出这个函数的解析式;(2)在直角坐标平面内画出这个函数的图像;(3)如果点 P(a, 4)在这个函数的图像上,求 a 的值;(4)试问,点 A(-6 , 2)关于原点对称的点 B 是否也在这个图像上?解: (1)设 y=k·x ( k 0)当 x=6 时, y=-2 ∴-2=6k ∴k 1∴这个函数的解析式为 y1x 33(2)y 1x 的定义域是一切实数,图像如图所示:3(3)如果点 P(a, 4)在这个函数的图像上,∴41a ,∴a=-12 3(4)点 A(-6 ,2)关于原点对称的点 B 的坐标( 6,-2 ),当 x=6 时, y=162因此,点 B 也在直线y 1x 上33例 4. 已知点 ( x1, y1 ) ,( x2, y2 ) 在正比例函数 y=(k-2)x的图像上,当x1x2时, y1y2,那么k 的取值范围是多少?解:由题意,得函数y 随 x 的值增大而减小,∴k-2<0, ∴k<2例 5. (1)已知 y=ax 是经过第二、四象限的直线,且 a 3 在实数范围内有意义,求 a 的取值范围。

中考数学-一次函数正比例函数的图像及性质(含答案)专题练习

中考数学-一次函数正比例函数的图像及性质(含答案)专题练习

中考数学-一次函数正比例函数的图像及性质(含答案)专题练习一、单选题1.已知正比例函数y=kx(k≠0),点(2,-3)在函数上,则y随x的增大而()A. 增大B. 减小C. 不变D. 不能确定2.已知函数y=x+k+1是正比例函数,则k的值为()A.1B.﹣1C.0D.±13.正比例函数y=(2k+1)x,若y随x增大而减小,则k的取值范围是()A. k>﹣B. k<﹣C. k=D. k=04.若正比例函数y=kx的图象经过点A(k,9),且经过第一、三象限,则k的值是()A. ﹣9B. ﹣3C. 3D. ﹣3或35.若正比例函数y=(1-2m)x的图象经过点A(x1,y1)和点B(x2,y2),当x1< x2时,y1>y2,则m的取值范围是()A. m<0B. m>0C.D.6.在下列四组点中,可以在同一个正比例函数图象上的一组点是()A. (2,﹣3),(﹣4,6)B. (﹣2,3),(4,6)C. (﹣2,﹣3),(4,﹣6)D. (2,3),(﹣4,6)7.正比例函数y=kx(k≠0)的图像在第二、四象限,则一次函数y=x+k的图像大致是()A. B. C. D.8.下列点不在正比例函数y=﹣2x的图象上的是()A. (5,﹣10)B. (0,0)C. (2,﹣1)D. (1,﹣2)9.正比例函数y=(2k+1)x,若y随x增大而减小,则k的取值范围是()A. k>﹣B. k<﹣C. k=D. k=010.关于函数y=﹣x,下列结论正确的是()A. 函数图象必过点(﹣2,﹣1)B. 函数图象经过第1、3象限C. y随x的增大而减小D. y随x的增大而增大11.下列式子中,表示y是x的正比例函数的是()A.y=x﹣1B.y=2xC.y=2x2D.y2=2x12.下列变量之间关系中,一个变量是另一个变量的正比例函数的是()A. 正方形的面积S随着边长x的变化而变化B. 正方形的周长C随着边长x的变化而变化C. 水箱有水10L,以0.5L/min的流量往外放水,水箱中的剩水量V(L)随着放水时间t(min)的变化而变化D. 面积为20的三角形的一边a随着这边上的高h的变化而变化13.P1(x1,y1),P2(x2,y2)是正比例函数图象上的两点,下列判断中,正确的是A. y1>y2B. y1<y2C. 当x1<x2时,y1<y2D. 当x1<x2时,y1>y214.下列四个点中,在正比例函数的图象上的点是()A. (2,5)B. (5,2)C. (2,—5)D. (5,—2)15.若正比例函数的图象经过点(2,﹣3),则这个图象必经过点()A. (﹣3,﹣2)B. (2,3)C. (3,﹣2)D. (﹣2,3)16.下列关系中,是正比例关系的是()A. 当路程s一定时,速度v与时间tB. 圆的面积S与圆的半径RC. 正方体的体积V与棱长aD. 正方形的周长C与它的一边长a17.下列问题中,两个变量成正比例关系的是()A. 等腰三角形的面积一定,它的底边和底边上的高B. 等边三角形的面积与它的边长C. 长方形的长确定,它的周长与宽D. 长方形的长确定,它的面积与宽18.下列各点中,在正比例函数y=-2x图象上的是()A. (-2,-1)B. (1,2)C. (2,-1)D. (1,-2)19.一次函数y=4x,y=﹣7x,y=的共同特点是()A. 图象位于同样的象限B. y随x增大而减小C. y随x增大而增大D. 图象都过原点二、填空题20.已知正比例函数y=kx(k是常数,k≠0),y随x的增大而减小,写出一个符合条件的k的值为________.21.写出一个正比例函数,使其图象经过第二、四象限:________.22.若函数y=(2m+6)x+(1﹣m)是正比例函数,则m的值是________.23.写一个图象经过第二、四象限的正比例函数:________24.将正比例函数y=2x的图象向上平移3个单位,所得的直线不经过第________象限.答案解析部分一、单选题1.已知正比例函数y=kx(k≠0),点(2,-3)在函数上,则y随x的增大而()A. 增大B. 减小C. 不变D. 不能确定【答案】B【考点】正比例函数的图象和性质【解析】【解答】∵点(2,-3)在正比例函数y=kx(k≠0)上,∴函数图象经过二四象限,∴y随着x的增大而减小,故选B【分析】首先根据函数的图象经过的点的坐标确定函数的图象经过的象限,然后确定其增减性即可2.已知函数y=x+k+1是正比例函数,则k的值为()A.1B.﹣1C.0D.±1【答案】B【考点】正比例函数的图象和性质【解析】【解答】解:由题意,得k+1=0,解得k=﹣1,故选:B.【分析】根据正比例函数的定义,可得答案.3.正比例函数y=(2k+1)x,若y随x增大而减小,则k的取值范围是()A. k>﹣B. k<﹣C. k=D. k=0 【答案】B【考点】正比例函数的图象和性质【解析】【解答】解:∵正比例函数y=(2k+1)x中,y的值随自变量x的值增大而减小,∴2k+1<0,解得,k<﹣;故选B.【分析】根据正比例函数图象与系数的关系列出关于k的不等式2k+1<0,然后解不等式即可.4.若正比例函数y=kx的图象经过点A(k,9),且经过第一、三象限,则k的值是()A. ﹣9B. ﹣3C. 3D. ﹣3或3 【答案】C【考点】正比例函数的图象和性质【解析】【解答】解:∵正比例函数y=kx(k≠0)的图象经过第一、三象限∴k>0,把(k,9)代入y=kx得k2=9,解得k1=﹣3,k2=3,∴k=3,故选C.【分析】根据正比例函数的性质得k>0,再把(k,9)代入y=kx得到关于k的一元二次方程,解此方程确定满足条件的k的值.5.若正比例函数y=(1-2m)x的图象经过点A(x1,y1)和点B(x2,y2),当x1< x2时,y1>y2,则m的取值范围是()A. m<0B. m>0C.D.【答案】D【考点】正比例函数的图象和性质【解析】【分析】由题目所给信息“当x1<x2时,y1>y2”可以知道,y随x的增大而减小,则由一次函数性质可以知道应有:1-2m<0,进而可得出m的取值范围.【解答】由题目分析可知:在正比例函数y=(1-2m)x中,y随x的增大而减小由一次函数性质可知应有:1-2m<0,即-2m<-1,解得:m>.【点评】此题主要考查了一次函数的图象性质,只有掌握它的性质才能灵活运用.6.在下列四组点中,可以在同一个正比例函数图象上的一组点是()A. (2,﹣3),(﹣4,6)B. (﹣2,3),(4,6)C. (﹣2,﹣3),(4,﹣6)D. (2,3),(﹣4,6)【答案】A【考点】正比例函数的图象和性质【解析】【分析】根据正比例函数关系式y=kx,可得k=,再依次分析各选项即可判断。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精品资料欢迎下载
正比例函数图像性质作业题
1、.若y=(m-1)xm2是关于 x的正比例函数,则m= 。

2、已知正比例函数的比例系数是-5,则它的解析式为:。

3、由于两点确定一条直线,所以画正比例的函数图象时,只需描点(0,0)和点 (1,k),然后连线即可,故作y=-3x的图像时,可以取和两点来画。

4、函数y =-4x的图象过第象限,经过点(0,)与点(1, ), y 随x的增大而。

5、如果函数y =(m-2)x 的图象经过第一、三象限,那么m的取值范围是。

6、正比例函数y=kx(k≠0)
(1) 当k>0时,正比例函数的图像经过第象限,自变量x逐渐增大时,y 的值也随着逐渐。

(2)当k 时,正比例函数的图像经过第二、四象限,自变量x逐渐增大时,y 的值则随着逐渐。

7、函数 y=4x 经过象限,y 随 x 的减小而 .
8、如果函数 y= - kx 的图像经过一、三象限,那么y = kx 的图像经过第象限。

9、已知y=(m+1)x lml是正比例函数,它的图像经过第象限。

10、如果正比例函数y=(8-2a)x的图像经过第二、四象限,则a的取值范围是。

11、若正比例函数图像又y=(3k-6)x的图像经过点A(x1,y1)和B(x2,y2),当x1<x2时, y1>y2,则k的取值范围是。

12、正比例函数y=(3m-1)x的图像经过点A(x1,x2)和B(y1,y2),且该图像经过第
二、四象限,则m的取值范围是;当x1>x2时,则 y1与y2的大小关系是。

相关文档
最新文档