正比例函数及其性质练习题
正比例函数的图象与性质课件习题

在同一坐标系内画下列正比例函数的图像:
1 y 3x y x y x y 3
当k>0 时,它的图 像 经过第 一、三象 限
y 3x
3
yx
1 y x 3
1
3
1
o
x
在同一坐标系内画下列正比例函数的图像:
y 3x
y x
1 y x 3
y y 3x y x y 1 x
(1) 当k>0时,正比例函数的图像经过第一、三象 限,自变量x逐渐增大时,y的值也随着逐渐增大。 (2) 当k<0时,正比例函数的图像经过第二、四象限, 自变量x逐渐增大时,y的值则随着逐渐减小。
正 比 例 函 数
定义 图像
Y=kx(k≠0)
是经过原点和(1,k)点的一条直线 。
性 质
k>0
k<0
6.下列函数y=5x,y=-3x,y=1/2x,y=-1/3x中,y
随x的增大而减小的是———,y随x的增大而减小 且最先达到-10的是——。
能力提高:
想一想: 点燃蜡烛,蜡烛长度按照与时间成正比变短,长为21厘米 的蜡烛,已知点燃6分钟后,蜡烛变短3.6厘米,设蜡烛点 y 燃x分钟后变短y厘米,求 (1)用x表示函y数的解析式; (2)自变量x的取值范围; (3) 此蜡烛几分钟燃烧完?
能力提升!
m 2
1、已知函数 y (m 3) x , = 3 时,函数是正比例函数,图 减小 在 二、四 象限,y随x增大而
x 2、已知函数 y= 3 A(3,y1)
, 点
和点B (6,y2)在函数图象上, < 则 y1 y2(填“>”或“<”)。
x 3、已知函数 y 6
人教版八年级下册专项训练专题14 正比例函数图象和性质

专题14 正比例函数图象和性质一、知识点1、画正比例函数图象时,通常在坐标系中描出点________和________最为简单。
2、正比例函数y=kx(k是常数,k≠0)的图象是一条经过________的直线。
当k>0时,图象经过第________象限,y所x的增大而________。
当k<0时,图象经过第________象限,y所x的增大而________。
二、标准例题例1:若函数y=(2m+1)x2+(1﹣2m)x(m为常数)是正比例函数,则m的值为()A.m>12B.m=12C.m<12D.m=−12例2:若正比例函数y=(1+m)x 的图像经过点A(1,2m),则下列坐标对应的点也在该正比例函数的图像上的是()A.(2,1)B.(-1,2)C.(2,4)D.(-2,-1)例3:如图,在平面直角坐标系中,直线l:y=x+1与y轴交于点A1,如图所示依次作正方形A1B1C1O,正方形A2B2C2C1……正方形A n B n∁n C n﹣1(n为大于1的整数)使得点A1,A2,A3…A n在直线上,点C1,C2,C3,…∁n 在x轴正半轴上,请解决下列问题:(1)点A6的坐标是;点B6的坐标是;(2)点A n的坐标是,正方形A n B n∁n C n﹣1的面积是.例4:已知y与x﹣1成正比例,且当x=3时,y=4.(1)求y与x之间的函数表达式;(2)当x=﹣1时,求y的值;(3)当﹣3<y<5时,求x的取值范围.例5:已知正比例函数y=kx图象经过点(2,-4).(1)求这个函数的解析式;(2)图象上两点A(x1,y1)、B(x2,y2),如果x1<x2,比较y1,y2的大小.三、练习1.下列正比例函数中,y随x的值增大而增大的是()A.y=﹣2014x B.y=(√3﹣1)x C.y=(﹣π﹣3)x D.y=(1﹣π2)x2.已知点A(-5,y1)、B(-2,y2)都在直线y=-12x上,则y1与y2的关系是()A.y1≤y2B.y1=y2C.y1<y2D.y1>y23.若y关于x的函数y=(m–2)x+n是正比例函数,则m,n应满足的条件是()A.m≠2且n = 0B.m = 2且n ≠ 0C.m≠2D.n = 04.正比例函数y=2x的大致图象是()A.B.C.D.5.下列四组点中,可以在同一个正比例函数图象上的一组点是()A.(2 , −3),(−4 , 6)B.(−2 , 3),(4 , 6)C.(−2 , −3),(4 ,− 6)D.(2 , 3),(−4 , 6)6.直线y=kx过点A(m,n),B(m−3,n+4),则k的值是()A.43B.−43C.34D.−347.正比例函数y=kx(k>0)的图象大致是()A.B.C.D.8.已知正比例函数y=(2m﹣1)x的图象上两点A(x1,y1),B(x2,y2),当x1<x2时,有y1>y2,那么m 的取值范围是()A.m<12B.m>12C.m<0D.m>09.正比例函数y=kx的图像过点A(2,3),则此函数的图像还经过点()A.(-2,-3)B.(-2,3)C.(3,2)D.(-3,-2)10.已知y=(m+3)x m2−8是正比例函数,则m=______.11.点A(m,−3)向下平移3个单位后,恰好落在正比例函数y=−6x的图象上,则m的值为______.12.如图,直线y=√33x,点A1坐标为(1,0),过点A1作x轴的垂线交直线于点B1,以原点O为圆心,OB1长为半径画弧交x轴于点A2;再过点A2作x轴的垂线交直线于点B2,以原点O为圆心,OB2长为半径画弧交x轴于点A3,…,按此做法进行下去,点A4的坐标为______,点A n______.13.函数y=(k-1)x2|k|-3是正比例函数,且y随x增大而减小,求(k+3)2019的值.14.如图,在边长为1个单位长度的小正方形组成的格点图中,点A、B、C都是格点.(1)点A坐标为;点B坐标为;点C坐标为;(2)画出△ABC关于原点对称的△A1B1C1;(3)已知M(1,4),在x轴上找一点P,使|PM﹣PB|的值最大(写出过程,保留作图痕迹),并写出点P 的坐标.15.一次函数y=kx+b.当x=-3时,y=0;当x=0时,y=-4(1)求k与b的值.(2)求该函数图象与x轴和y轴围成的图形面积.16.已知y与x+2成正比,当x=4时,y=4.(1)求y与x之间的函数关系式;(2)若点(a,3)在这个函数图象上,求a的值.17.请你用学习“一次函数”时积累的经验和方法研究函数y=|x|的图象和性质,并解决问题.(1)完成下列步骤,画出函数y=|x|的图象;①列表、填空;②描点:③连线(2)观察图象,当x______时,y随x的增大而增大;(3)结合图象,不等式|x|<x+2的解集为______.19.已知银行2006年9月的“半年期存款”年利率是2.25%,某人当年9月存入银行a元,经过半年到期时按规定缴纳20%利息税后,得到利息b元.问税后利息b(元)与本金a(元)成正比例吗?如果成正比例,那么求出这个比例系数.21.已知y与x成正比例,当x=4时,y=12.(1)写出y与x之间的函数解析式;(2)求当y=36时x的值;(3)判断点(-7,-10)是否是函数图象上的点.22.已知直线y=kx过点(−2,1),A是直线y=kx图像上的点,若过A向x轴作垂线,垂足为B,且SΔAB0=9,求点A的坐标.23.如图,点A(a,6)是第一象限内正比例函数y=3x的图象上的一点,AB⊥x轴,交直线OB于B点,三角形OAB的面积为5,求直线OB所对应的函数表达式.专题14 正比例函数图象和性质一、知识点1、画正比例函数图象时,通常在坐标系中描出点________和________最为简单。
正比例函数练习题及答案

正比例函数习题姓名:家长签字:得分:选择题(每小题3分,共30分。
)一.1.下列函数表达式中,y是x的正比例函数的是()A.y=-2x2B.y=xC.y=J^D.y=x-234x2.若y=x+2-b是正比例函数,则b的值是()A.0B.-2C.2D.-0.53.若函数广(2-m)是关于x的正比例函数,则常数m的值等于()A.±2B.-2C.±V3D.~V34.下列说法正确的是()A.圆面积公式S=nr2中,S与r成正比例关系B・三角形面积公式S=lah中,当S是常量时,a与h成反比例关系2°y皂+i中,y与x成反比例关系XD・中,y与x成正比例关系25.下列各选项中的y与x的关系为正比例函数的是()A.正方形周长y(厘米)和它的边长x(厘米)的关系B.圆的面积y(平方厘米)与半径x(厘米)的关系C.如果直角三角形中一个锐角的度数为x,那么另一个锐角的度数y与x间的关系D.一棵树的高度为60厘米,每个月长高3厘米,x月后这棵的树高度为y厘米6.若函数y=(m-3)x'®'*是正比例函数,则m值为()A.3B.-3C.±37.已知正比例函数y=(k-2)x+k+2的k的取值正确的是()A.k=2B.k^2C.k=-28.已知正比例函数)=1«(kOO)的图象如图所示,则在下列选项中k值可能是()A.1B.2C.39.如图所示,在同一直角坐标系中,一次函数y=Mx、y=k2x>y=k3x>y=k」x的图象分别为£、12>13>1」,则下列关系中正确的是()A.ki<k2<k3<k4B.k2<ki<k4<k3C.ki<k2<k4<k3D.k2<ki<k3<k410,在直角坐标系中,既是正比例函数尸=1«,又是y的值随X的增大而减小的图象是()A. B.J,/ C.J'| D.二.填空题(每小题3分,共27分。
正比例函数性质

一、选择题(共13小题)1、(2010•黔南州)已知正比例函数y=kx(k≠0)的图象如图所示,则在下列选项中k值可能是()A、1B、2C、3D、42、(2005•湖州)如图:三个正比例函数的图象分别对应的解析式是①y=ax,②y=bx,③y=cx,则a、b、c的大小关系是()A、a>b>cB、c>b>aC、b>a>cD、b>c>a3、(2005•滨州)如图所示,在同一直角坐标系中,一次函数y=k1x、y=k2x、y=k3x、y=k4x的图象分别为l1、l2、l3、l4,则下列关系中正确的是()A、k1<k2<k3<k4B、k2<k1<k4<k3C、k1<k2<k4<k3D、k2<k1<k3<k44、(2000•西城区)在平面直角坐标系中,正比例函数y=kx(k<0)的图象的大体位置是()A、B、C、D、5、一次函数y=﹣x的图象平分()A、第一、三象限B、第一、二象限C、第二、三象限D、第二、四象限6、在平面直角坐标系中,一次函数y=2x+1的图象不经过()A、第一象限B、第二象限C、第三象限D、第四象限7、在直角坐标系中,既是正比例函数y=kx,又是y的值随x的增大而减小的图象是()A、B、C、D、8、(2011•湘西州)当k>0时,正比例函数y=kx的图象大致是()A、B、C、D、9、已知正比例函数y=kx+b的值随着x的增大而减小,则大致图象为()A、B、C、D、10、已知正比例函数y=kx (k≠0),当x=﹣1时,y=﹣2,则它的图象大致是()A、B、C、D、11、如图所示函数图象中,正比例函数的图象是()A、B、C、D、12、正比例函数y=kx的图象是经过原点的一条()A、射线B、双曲线C、线段D、直线13、结合函数y=﹣2x的图象回答,当x<﹣1时,y的取值范围()A、y<2B、y>2C、y≥D、y≤二、填空题(共1小题)14、正比例函数的图象是_________,当k>0时,直线y=kx过第_________象限,y随x的增大而_________.答案与评分标准一、选择题(共13小题)1、(2010•黔南州)已知正比例函数y=kx(k≠0)的图象如图所示,则在下列选项中k值可能是()A、1B、2C、3D、4考点:正比例函数的图象。
4.3 正比例函数的图像与性质 同步作业(含答案)

正比例函数的图像与性质1.[2018·陕西]如图,在矩形AOBC 中,A (-2,0),B (0,1).若正比例函数y =kx 的图象经过点C ,则k 的值为( )A .-12 B.12 C .-2 D .22.关于正比例函数y =-2x ,下列说法正确的是( )A .图象必经过点(-1,-2)B .图象经过第一、三象限C .y 随x 的增大而减小D .不论x 取何值,总有y <03.已知正比例函数y =kx (k <0)的图象上两点A (x 1,y 1),B (x 1,y 2),且x 1<x 2,则下列不等式中恒成立的是( )A .y 1+y 2>0B .y 1+y 2<0C .y 1-y 2>0D .y 1-y 2<04.如图,三个正比例函数的图象分别对应表达式:①y =ax ;②y =bx ;③y =cx .将a ,b ,c 从小到大排列并用“<”连接为_________.5.在正比例函数y =-3mx 中,函数y 的值随x 值的增大而增大,则P (m ,5)在第____象限. 6.已知正比例函数的图象经过点(-1,2). (1)求此正比例函数的表达式; (2)点(2,-5)是否在此函数的图象上?7.在同一直角坐标系上画出函数y =2x ,y =-13x ,y =-0.6x 的图象.8.在如图所示的平面直角坐标系中,点P 是直线y =x 上的动点,A (1,0),B (2,0)是x 轴上的两点,则P A +PB 的最小值为________.9.已知正比例函数y =(m +2)x 中,y 的值随x 的增大而增大,而正比例函数y =(2m -3)x 中,y 的值随x 的增大而减小,且m 为整数,你能求出m 的可能值吗?为什么?10.[2018·贵港]如图,直线l 为y =3x ,过点A 1(1,0)作A 1B 1⊥x 轴,与直线l 交于点B 1,以原点O 为圆心,OB 1长为半径画弧交x 轴于点A 2;再作A 2B 2⊥x 轴,交直线l 于点B 2,以原点O 为圆心,OB 2的长为半径画弧交x 轴于点A 3;…,按此作法进行下去,则点An 的坐标为__________.参考答案1.A2.C3.C4.a<c<b5.二6.解:(1)y=-2x;(2)点(2,-5)不在此函数的图象上.7.解:列表如下:画出图象如下:答图8. 5答图【解析】如答图,作A点关于直线y=x的对称点A′,连接A′B,交直线y=x于点P,此时P A+PB最小,由题意可得OA′=1,BO=2,P A′=P A,此时,P A+PB=A′B=12+22= 5.9.解:m 的可能值为-1,0,1.理由如下:∵正比例函数y =(m +2)x 中,y 的值随x 的增大而增大, ∴m +2>0,解得m >-2.∵正比例函数y =(2m -3)x 中,y 的值随x 的增大而减小, ∴2m -3<0,解得m <32,∴-2<m <32.∵m 为整数,∴m 的可能值为-1,0,1. 10. (2n -1,0)【解析】 直线y =3x ,点A 1坐标为(1,0),过点A 1作x 轴的垂线交直线l 于点B 1,可知B 1点的坐标为(1,3),以原点O 为圆心,OB 1长为半径画弧交x 轴于点A 2,OA 2=OB 1,所以OA 2=12+(3)2=2,因此点A 2的坐标为(2,0),同理,可求得点B 2的坐标为(2,23),故点A 3的坐标为(4,0),B 3(4,43),…,所以An 的坐标为(2n -1,0)。
4.3.1 正比例函数的图象和性质 湘教版数学八年级下册同步练习(含答案)

4.3 一次函数的图象1 正比例函数的图象和性质要点感知1画函数图象的步骤:(1)__________;(2)__________:建立直角坐标系,以__________为横坐标,__________为纵坐标,确定点的坐标;(3)__________.预习练习1-1下面所给点的坐标满足y=-2x的是( )A.(2,-1)B.(-1,2)C.(1,2)D.(2,1)要点感知2 正比例函数y=kx(k为常数,k≠0)的图象是一条__________,因此画正比例函数图象时,只要描出图象上的__________,然后过两点作一条直线即可,这条直线叫作“直线__________”.预习练习2-1 如图,某正比例函数的图象过点M(-2,1),则此正比例函数表达式为( )A.y=-xB.y=xC.y=-2xD.y=2x要点感知3 正比例函数图象的性质:直线y=kx(k≠0)是一条经过________的直线.当k>0时,直线y=kx经过第_______象限,从左到右,y随x的增大而________;当k<0时,直线y=kx经过第_____象限,从左到右,y随x的增大而________.知识点1 画正比例函数的图象1.正比例函数y=3x的大致图像是( )2.已知正比例函数y=x,请在平面直角坐标系中画出这个函数的图象.知识点2 正比例函数的图象与性质3.已知函数y=kx的函数值随x的增大而增大,则函数的图象经过( )A.第一、二象限B.第一、三象限C.第二、三象限D.第二、四象限4.对于函数y=-k2x(k是常数,k≠0)的图象,下列说法不正确的是( )A.其函数图象是一条直线B.其函数图象过点(,-k)C.其函数图象经过一、三象限D.y随着x增大而减小5.正比例函数y=-x的图象平分( )A.第一、三象限B.第一、二象限C.第二、三象限D.第二、四象限6.函数y=-5x的图象在第__________象限内,y随x的增大而__________.知识点3 实际问题中的正比例函数7.一根蜡烛长20 cm,点燃后每小时燃烧5 cm,则蜡烛燃烧的长度y(cm)与燃烧时间x(h)的函数关系用图象表示为下图中的( )8.小明用16元零花钱购买水果,已知水果单价是每千克4元,设买水果x千克用去的钱为y元,(1)求买水果用去的钱y(元)随买水果的数量x(千克)而变化的函数表达式;(2)画出这个函数的图象.9.已知正比例函数y=kx(k≠0),当x=1时,y=-2,则它的图象大致是( )10.已知正比例函数y=(3k-1)x,若y随x的增大而增大,则k的取值范围是( )A.k<0B.k>0C.k<D.k>11.若点A(-2,m)在正比例函数y=-x的图象上,则m的值是( )A. B.- C.1 D.-112.已知正比例函数y=kx(k<0)的图象上两点A(x1,y1)、B(x2,y2),且x1<x2,则下列不等式中恒成立的是( )A.y1+y2>0B.y1+y2<0C.y1-y2>0D.y1-y2<013.甲、乙两人在一次百米赛跑中,路程s(米)与赛跑时间t(秒)的关系如图所示,则下列说法正确的是( )A.甲、乙两人的速度相同B.甲先到达终点C.乙用的时间短D.乙比甲跑的路程多14.写出一个图像经过一、三象限的正比例函数y=kx(k≠0)的解析式(关系式):_______________.15.当m=__________时,函数y=mx3m+4是正比例函数,此函数y随x的增大而__________.16.如图,正比例函数y=kx,y=mx,y=nx在同一平面直角坐标系中的图象如图所示.则系数k,m,n的大小关系是__________.17.已知正比例函数y=(k-2)x.(1)若函数图象经过第二、四象限,则k的范围是什么?(2)若函数图象经过第一、三象限,则k的范围是什么?18.已知正比例函数图象经过点(-1,2).(1)求此正比例函数的表达式;(2)画出这个函数图象;(3)点(2,-5)是否在此函数图象上?(4)若这个图象还经过点A(a,8),求点A的坐标.19.已知正比例函数y=kx经过点A,点A在第四象限,过点A作AH⊥x轴,垂足为点H,点A的横坐标为3,且△AOH的面积为3.(1)求正比例函数的表达式;(2)在x轴上能否找到一点P,使△AOP的面积为5?若存在,求点P的坐标;若不存在,请说明理由.参考答案要点感知1(1)列表(2)描点自变量值相应的函数值(3)连线预习练习1-1B要点感知2 直线两点y=kx预习练习2-1A要点感知3 原点一、三上升增大二、四下降减少1.B2.图略.3.B4.C5.D6.二、四减小7.A8.(1)根据题意可得y=4x(0≤x≤4).(2)当x=0时,y=0;当x=4时,y=16.在平面直角坐标系中画出两点O(0,0),A(4,16),过这两点作线段OA,线段OA即函数y=4x(0≤x≤4)的图象,如图.9.A 10.D 11.C 12.C 13.B 14.y=3x(答案不唯一) 15.-1减小16.k>m>n 17.(1)k-2<0,∴k<2;(2)k-2>0,∴k>2.18.(1)设函数的表达式为:y=kx,则-k=2,即k=-2.故正比例函数的表达式为:y=-2x.(2)图象图略.(3)将点(2,-5)代入,左边=-5,右边=-4,左边≠右边,故点(2,-5)不在此函数图象上.(4)把(a,8)代入y=-2x,得8=-2a.解得a=-4.故点A的坐标是(-4,8).19.(1)∵点A的横坐标为3,且△AOH的面积为3,∴点A的纵坐标为-2,点A的坐标为(3,-2).∵正比例函数y=kx经过点A,∴3k=-2.解得k=-.∴正比例函数的表达式是y=-x.(2)∵△AOP的面积为5,点A的坐标为(3,-2),∴OP=5.∴点P的坐标为(5,0)或(-5,0).。
中考数学《正比例函数图像和性质》专项练习题及答案

中考数学《正比例函数图像和性质》专项练习题及答案一、单选题1.若正比例函数的图象经过点(﹣1,2),则这个图象必经过点( )A .(1,2)B .(﹣1,﹣2)C .(2,﹣1)D .(1,﹣2)2.若正比例函数y=(1-2m )x 的图象经过点A (x 1,y 1)和点B (x 2,y 2),当x 1<x 2时,y 1>y 2,则m的取值范围是( ) A .m >0B .m <0C .m <12D .m >123.已知正比例函数 y =mx(m <0) 图象上有两点 P(x 1,y 1) , Q(x 2,y 2) 且 x 1<x 2 ,则 y 1与 y 2 的大小关系是( ) A .y 1>y 2B .y 1<y 2C .y 1=y 2D .不能确定4.正比例函数y =3x 的图象必经过点( )A .(﹣1,﹣3)B .(﹣1,3)C .(1,﹣3)D .(3,1)5.已知正比例函数y=(m-1)x ,若y 随x 增大而增大,则点(m ,1-m )所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限6.正比例函数y=kx (k ≠0)的函数值y 随着x 增大而减小,则一次函数y=x+k 的图象大致是( )A .B .C .D .7.若函数y=kx 的图象经过点(1,-2),那么该图象一定经过点( )A .(2,-1)B .( −12,1)C .(-2,1)D .(1, 12)8.若正比例函数y =(m ﹣2)x 的图象经过点A(x 1,y 1)和点B(x 2,y 2),当x 1<x 2时,y 1>y 2,则m 的取值范围是( ) A .m >0B .m <0C .m >2D .m <29.正比例函数y=2x与反比例函数y=2x的图象或性质的共有特征之一是()A.函数值y随x的增大而增大B.图象在第一、三象限都有分布C.图象与坐标轴有交点D.图象经过点(2,1)10.若一个正比例函数y=mx的图像经过P(4,-8),Q(m,n)两点,则n的值为()A.1B.8C.-2D.411.对于正比例函数y=kx,当自变量x的值增加3时,对应的函数值y减少6,则k的值为()A.2B.﹣2C.﹣3D.﹣0.512.如图,在平面直角坐标系中,点A的坐标为(0,6),沿x轴向右平移后得到A',A点的对应点A'在直线y=35x上,则点B与其对应点B'之间的距离为()A.4B.6C.8D.10二、填空题13.函数y= 1m−2 x中,如果y随x的增大而减小,那么m的取值范围是.(1)线段B1B2的长度为;(2)点A2022的坐标为;(3)线段B2021B2022的长度为.15.写出一个实数k的值,使得正比例函数y=kx的图象在二、四象限.16.正比例函数y=(m﹣2)x m的图象的经过第象限,y随着x的增大而.17.若正比例函数y=(m﹣2)x的图象经过一、三象限,则m的取值范围是.18.函数y=kx与y=6−x的图像如图所示,则k=.三、综合题19.已知正比例函数y=kx.(1)若函数图象经过第二、四象限,则k的范围是什么?(2)点(1,﹣2)在它的图象上,求它的表达式.20.已知正比例函数y=kx经过点A(−1,4) .(1)求正比例函数的表达式;(2)将(1)中正比例函数向下平移5个单位长度后得到的函数表达式是.21.已知正比例函数y=kx图象经过点(3,﹣6),求:(1)求这个函数解析式.(2)画出这个函数图象.(3)判断点A(4,﹣2)、点B(﹣1.5,3)是否在这个函数图象上(4)图象上的两点C(x1,y1)、D(x2,y2),如果x1>x2,比较y1、y2的大小.22.如图,它表示甲乙两人从同一个地点出发后的情况.到十点时,甲大约走了13千米.根据图象回答:(1)甲是几点钟出发?(2)乙是几点钟出发,到十点时,他大约走了多少千米? (3)到十点为止,哪个人的速度快? (4)两人最终在几点钟相遇?23.已知函数y=(m+3)x m2+2m−2.(1)当m 为何值时,它是正比例函数? (2)当m 为何值时,它是反比例函数? (3)当m 为何值时,它是二次函数?24.一水果经销商购进了A ,B 两种水果各10箱,分配给他的甲、乙两个零售店(分别简称甲店、乙店)销售,预计每箱水果的盈利情况如下表:A 种水果/箱B 种水果/箱甲店11元 17元 乙店9元13元5箱,B 种水果两店各5箱,请你计算出经销商能盈利多少元?(2)在甲、乙两店各配货10箱(按整箱配送),且保证乙店盈利不小于100元的条件下,请你设计出使水果经销商盈利最大的配货方案,并求出最大盈利为多少?参考答案1.【答案】D2.【答案】D3.【答案】A4.【答案】A5.【答案】D6.【答案】A7.【答案】B8.【答案】D9.【答案】B10.【答案】D11.【答案】B12.【答案】D13.【答案】m<214.【答案】(1)√3(2)A2021A2022=22020 (3)22020√315.【答案】-216.【答案】二、四;减小17.【答案】m>218.【答案】219.【答案】(1)解:∵函数图象经过第二、四象限∴k<0.(2)解:当x=1,y=﹣2时,则k=﹣2 即:y=﹣2x.20.【答案】(1)解:将点A(−1,4)代入y=kx,得4=−k,即k=−4.故函数解析式为:y=−4x(2)y=−4x−521.【答案】(1)解:将点(3,﹣6)代入y=kx得,﹣6=3k解得,k=﹣2函数解析式为y=﹣2x;(2)解:如图:函数过(0,0),(1,﹣2).(3)解:将点A(4,﹣2)、点B(﹣1.5,3)分别代入解析式得,﹣2≠﹣2×4;3=﹣2×(﹣1.5);故点A不在函数图象上,点B在函数图象上.(4)解:由于k=﹣2<0,故y随x的增大而减小,可得y1<y2.22.【答案】(1)解:甲8点出发(2)解:乙9点出发;到10时他大约走了13千米(3)解:到10时为止,乙的速度快(4)解:两人最终在12时相遇23.【答案】(1)解:当函数y=(m+3)x m2+2m−2是正比例函数∴m2+2m﹣2=1且m+3≠0解得:m1=﹣3(舍去),m2=1则m=1时,它是正比例函数;(2)解:当函数y=(m+3)x m2+2m−2是反比例函数∴m2+2m﹣2=﹣1且m+3≠0解得:m1=﹣1+√2,m2=﹣1﹣√2则m=﹣1±√2时,它是反比例函数;(3)解:当函数y=(m+3)x m 2+2m−2是二次函数 ∴m 2+2m ﹣2=2 且m+3≠0解得:m 1=﹣1+√5,m 2=﹣1﹣√5 则m=﹣1±√5时,它是二次函数.24.【答案】(1)解:经销商能盈利=5×11+5×17+5×9+5×13=5×50=250(2)解:设甲店配A 种水果x 箱,则甲店配B 种水果(10﹣x )箱 乙店配A 种水果(10﹣x )箱,乙店配B 种水果10﹣(10﹣x )=x 箱. ∵9×(10﹣x )+13x ≥100∴x ≥2 12经销商盈利为w=11x+17•(10﹣x )+9•(10﹣x )+13x=﹣2x+260. ∵﹣2<0∴w 随x 增大而减小 ∴当x=3时,w 值最大.甲店配A 种水果3箱,B 种水果7箱.乙店配A 种水果7箱,B 种水果3箱.最大盈利:﹣2×3+260=254(元).。
第1课时正比例函数的图象及性质练习试题(含答案解析)

WORD格式.整理版第1课时正比例函数的图象和性质一.选择题(共10小题)y=3.若函数是关于x的正比例函数,则常数m的值等于()Dah中,中,8题图 9题图9.如图所示,在同一直角坐标系中,一次函数y=k1x、y=k2x、y=k3x、y=k4x的图象分别为l1、l2、l3、l4,则下列B C D11.若函数y﹦(m+1)x+m2﹣1是正比例函数,则m的值为_________ .14.请写出直线y=6x 上的一个点的坐标: _________ .15.已知正比例函数y=kx (k≠0),且y 随x 的增大而增大,请写出符合上述条件的k 的一个值: _________ .16.已知正比例函数y=(m ﹣1)的图象在第二、第四象限,则m 的值为 _________ .17.若p 1(x 1,y 1) p 2(x 2,y 2)是正比例函数y=﹣6x 的图象上的两点,且x 1<x 2,则y 1,y 2的大小关系是:y 1 _________ y 2.点A (-5,y 1)和点B (-6,y 2)都在直线y= -9x 的图像上则y 1__________ y 218.正比例函数y=(m ﹣2)x m 的图象的经过第 _________ 象限,y 随着x 的增大而 _________ .19.函数y=﹣7x 的图象在第 _________ 象限内,经过点(1, _________ ),y 随x 的增大而 _________ .三.解答题(共3小题)20.已知:如图,正比例函数的图象经过点P 和点Q (﹣m ,m+3),求m 的值.21.已知y+2与x ﹣1成正比例,且x=3时y=4.(1)求y 与x 之间的函数关系式;(2)当y=1时,求x 的值.22.已知y=y 1+y 2,y 1与x 2成正比例,y 2与x ﹣2成正比例,当x=1时,y=5;当x=﹣1时,y=11,求y 与x 之间的函数表达式,并求当x=2时y 的值.23. 为缓解用电紧张矛盾,某电力公司特制定了新的用电收费标准,每月用电量()x kW h 与应付饱费y (元)的关系如图所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正比例函数专题练习
知识点
1.形如___________(k是常数,k≠0)的函数是正比例函数,其中k 叫,正比例函数都是常数与自变量的乘积的形式
2.正比例函数y=kx(k是常数,k≠0)的图象是一条经过________的_______,我们通常称之为直线y=kx.当k>0时,图像位于第象限,从左向右,y随x的增大而,也可以说成函数值随自变量的增大而_________;当k<0时,图像位于第象限,从左向右,y随x的增大而,也可以说成函数值随自变量的增大而_________.
3.正比例函数的图像是经过坐标点和定点__ __两点的一条。
根据两点确定一条直线,可以确定两个点(两点法)画正比例函数的图象.
一、填空题(每小题3分,共30·分)
1、形如的函数是正比例函数。
2、大连市区与庄河两地之间的距离是160km,若汽车以每小时80 km 的速度匀速从庄河开往大连,则汽车距庄河的路程s (km)与行驶的时间t(h)之间的函数关系式为.
3、正比例函数y kx
=(k为常数,0
k<)的图像经过第象限,函数值随自变量的增大而。
4、已知一个正比例函数的图像经过点(-2,4),则这个正比例函数的表达式是。
5、已知y与x成正比例,且2
x=时6
y=-,则9
y=时x=。
6如果函数23
y mx m
=+-是正比例函数,则m= 。
7.若x、y是变量,且函数2
)1
(k x
k
y+
=是正比例函数,则k的值为_____________。
8.已知y=(k+1)x+k-5是正比例函数求k的值是______________.
9.若函数y=(2m+6)x2+(1-m)x是正比例函数,则m的值是______________.
10.已知函数y=(2m+1)x+m-3若此函数图象经过原点,则m=____________. 8、已知正比例函数(12)
y a x
=-如果y的值随x的值增大而减小,那么a的取值范圆是
9、结合正比例函数4
y x
=的图像回答:当1
x>时,y的取值范围是。
10.函数y=-7x的图象在第象限内,经过点(0, )与点(1, ),y随x的增大而 .函数y=4x的图象在第
象限内,经过点(0, )与点(1, ),y随x的增而 .
11.正比例函数x
m
y)1
(-
=的图象经过一、三象限,则m的取值范围是
12.若正比例函数图像又x
k)6
3(
y-
=的图像经过点)
,
(
1
1
y
x
A和B)
,
(
2
2
y
x
B,当2
1
x
x<
时,
2
1
y
y>则k的取值范围是
13、已知正比例函数y=kx(k≠0)的图象如图所示,则在下列选项中k值可能是()
A、1
B、2
C、3
D、4
14、(2000•西城区)在平面直角坐标系中,正比例函数y=kx(k<0)的图象
的大体位置是()
15、一次函数y=﹣x的图象平分()
A、第一、三象限
B、第一、二象限
C、第二、三象限
D、第二、四象限
16、在直角坐标系中,既是正比例函数y=kx,又是y的值随x的增大而减小的图象是()
17、当k>0时,正比例函数y=kx的图象大致是()
18、已知正比例函数y=kx (k≠0),当x=﹣1时,y=﹣2,则它的图象大致是()
19、如图所示函数图象中,正比例函数的图象是()20、正比例函数y=kx的图象是经过原点的一条()
A、射线
B、双曲线
C、线段
D、直线
21、结合函数y=﹣2x的图象回答,当x<﹣1时,y的取值范围()
A、y<2
B、y>2
C、y≥错误!未找到引用源。
D、y≤错误!未找到引用源。
22.正比例函数x
m
y)1
3(-
=的图像经过点)
,
(
)
,
(
2
2
1
1
y
x
B
y
x
A和且该图像经过第二、四象限.
(1)求m的取值范围
(2)当x1>x2时,比较y1与y2的大小,并说明理由.。