新人教版八年级数学下册正比例函数同步练习题
八年级数学-正比例函数练习题(含解析)

八年级数学-正比例函数练习题(含解析)一、单选题1.下列函数中,y 是x 的正比例函数的是( )A .3xy = B .21y x =- C .22y x = D .21y x =-+2.经过以下一组点可以画出函数2y x =图象的是( )A .(0,0)和(2,1)B .(1,2)和(1,2)--C .(1,2)和(2,1)D .(1,2)-和(1,2)3.对于正比例函数2y x =-,当自变量x 的值增加1时,函数y 的值增加( )A .12 B .12- C .2 D .-24.已知长方体的高是1,长和宽分别是a 、b ,体积是V ,则下列说法正确的是()A .V 是b 的正比例函数B .V 是a 的正比例函数C .V 是a 或b 的正比例函数D .V 是ab 的正比例函数5.某正比例函数的图象如图所示,则此正比例函数的表达式为()A .y=12-x B .y=12x C .y=-2x D .y=2x6.函数y=(2﹣a )x+b ﹣1是正比例函数的条件是( )A .a≠2B .b=1C .a≠2且b=1 D .a,b 可取任意实数7.已知y =(m +3)x m2−8是正比例函数,则m 的值是( ) A .8 B .4 C .±3D .3 8.关于x 的正比例函数,y=(m+1)23mx -若y 随x 的增大而减小,则m 的值为 ( )A .2B .-2C .±2D .-129.若函数y=(k-1)x |k|+b+1是正比例函数,则k 和b 的值为( )A .k=±1,b=-1B .k=±1,b=0C .k=1,b=-1D .k=-1,b=-110.如图,三个正比例函数的图像分别对应的解析式是:①y ax =;②y bx =;③y cx =,则a 、b 、c 的大小关系是( ).A .a b c >>B .c b a <<C .b a c >>D .b c a >>二、填空题 11.正比例函数的图像一定经过的点的坐标为______.12.已知y 与x 成正比例,并且x =-3时,y =6,则y 与x 的函数关系式为________.13.若点(1,)b 和点(2,1)-都在同一个正比例函数的图象上,则b=________.14.已知函数y =(m ﹣1)x+m 2﹣1是正比例函数,则m =_____.15.如果函数()1y ax a =+-是正比例函数,那么这个函数的解析式是______.16.若2(1)(2)a y a x b =++-是正比例函数,则2020()a b -的值是________.三、解答题 17.在同一平面直角坐标系中画出函数2y x =,13y x =-,0.6y x =-的图象18.写出下列各题中x 与y 之间的关系式,并判断y 是否为x 的一次函数?是否为正比列函数?(1)汽车以60千米/时的速度匀速行驶,行驶路程y (千米)与行驶时间x (时)之间的关系;(2)圆的面积y (平方厘米)与它的半径x (厘米)之间的关系;(3)一棵树现在高50厘米,每个月长高2厘米,x 月后这棵树的高度为y (厘米)19.已知关于x 的函数y =(m +3)x |m +2|是正比例函数,求m 的值.20.已知正比例函数()231k y k x -=-,当k 为何值时,y 随x 的增大而减小?21.已知正比例函数图象上一个点A 到x 轴的距离为4,点A 的横坐标为-2,请回答下列问题:(1)求这个正比例函数;(2)这个正比例函数图象经过哪几个象限?(3)这个正比例函数的函数值y是随着x的增大而增大?还是随着x的增大而减小?22.如今餐馆常用一次性筷子,有人说这是浪费资源,破坏生态环境. 已知用来生产一次性筷子的大树的数量(万棵)与加工成一次性筷子的数量(亿双)成正比例关系,且100万棵大树能加工成18亿双一次性筷子.(1)求用来生产一次性筷子的大树的数量y(万棵)与加工成一次性筷子的数量x(亿双)的函数解析式;(2)据统计,我国一年要耗费一次性筷子约450亿双,生产这些一次性筷子约需要多少万棵大树?每1万棵大树占地面积为0.08平方千米,照这样计算,我国的森林面积每年因此将会减少大约多少平方千米?开放探究提优参考答案1.A【解析】 A. 3x y =是正比例函数,故A 符合题意; B. 21y x =-不是正比例函数,故B 不符合题意;C. 22y x =不是正比例函数,故C 不符合题意;D. 21y x =-+不是正比例函数,故D 不符合题意.故选A.2.B【解析】解:A 项,当2x =时,41y =≠,∴点(2,1)不符合,故本选项错误;B 项,当1x =时,2y =;当1x =-时,2y =-,∴两组数据均符合,故本选项正确;C 项,当2x =时,41y =≠,∴点(2,1)不符合,故本选项错误D 项,当1x =-时,22y =-≠,∴点(1,2)-不符合,故本选项错误.故选B.3.D【解析】解:令x a =,则2y a =-令1x a =+,则2(1)22y a a =-+=--,所以y 减少2.故选D.4.D【解析】解:∵长方体的高是1,长和宽分别是a 、b ,体积是V∴1V ab ab ==∴V 是ab 的正比例函数故选D.5.A【解析】解:正比例函数的图象过点M(−2,1),∴将点(−2,1)代入y=kx,得:1=−2k, ∴k=﹣12, ∴y=﹣12x, 故选A .6.C【解析】解:根据正比例函数的定义得:2﹣a ≠0,b ﹣1=0,∴a ≠2,b =1.故选C .7.D【解析】∵y =(m +3)x m 2﹣8是正比例函数,∴m 2﹣8=1且m +3≠0,解得m =3.故选:D .8.B【解析】由题意得:m 2-3=1,且m+1<0,解得:m=-2,故选:B .9.D【解析】形如(0)y kx k k =≠为常数, 的函数,叫做正比例函数,由此可知若函数y =(k ﹣1)x |k |+b +1是正比例函数,则满足:10{110k k b -≠=+=解得,k =﹣1,b =﹣1故选D.10.C【解析】解:根据图像可知,①与②经过一、三象限,③经过二、四象限,∴0a >,0b >,0c <,∵②越靠近y 轴,则b a >,∴大小关系为:b a c >>;故选择:C.11.()0,0【解析】解:∵正比例函数的一般形式为y=kx,∴当x=0时,y=0,∴正比例函数的图象一定经过原点.故答案为:(0,0).12.2y x =-【解析】设y=kx ,6=-3k ,解得k =-2.所以y =-2x .13.12- 【解析】设正比例函数解析式为y=kx,将点(-2,1)代入y=kx 中,得:1=-2k,解得:k=-12,∴正比例函数解析式为y=-12x . ∵点(1,b )在正比例函数y=-12x 的图象上, ∴b=-12, 故答案为-12. 14.-1【解析】解:由正比例函数的定义可得:m 2﹣1=0,且m ﹣1≠0, 解得:m =﹣1,故答案为:﹣1.15.y x =【解析】解:∵函数()1y ax a =+-是正比例函数∴10a -=解得:1a =∴这个函数的解析式是y x =.故答案为:y x =.16.1【解析】解:由2(1)(2)a y a x b =++-是正比例函数,得211020a a b ⎧=⎪+≠⎨⎪-=⎩,解得12a b =⎧⎨=⎩. ∴20202020()(1)1a b -=-=,故答案为:1.17.见解析【解析】解:列表:描点、画图:18.(1)一次函数,正比例函数;(2)不是x的一次函数,不是正比例函数;(3)是x的一次函数,不是正比例函数.【解析】解:(1)行驶路程y(千米)与行驶时间x(时)之间的关系为:y=60x,是x的一次函数,是正比例函数;(2)圆的面积y(平方厘米)与它的半径r(厘米)之间的关系为:y=πx2,不是x的一次函数,不是正比例函数;(3)x月后这棵树的高度为y(厘米)之间的关系为:y=50+2x,是x的一次函数,不是正比例函数.19.m=-1【解析】解:若关于x的函数y=(m+3)x|m+2|是正比例函数,需满足m+3≠0且|m+2|=1,解得m=-1故m的值为-1.k=-.20.2【解析】解:因为函数()231k y k x -=-是正比例函数,所以231k -=且10k -≠,所以2k =±,又因为y 随x 的增大而减小,所以2k =-.21.(1)2y x =或2y x =-;(2)当2y x =时,图象经过第一、三象限;当2y x =-时,图象经过第二、四象限;(3)当2y x =时,函数值y 是随着x 的增大而增大;当2y x =-时,函数值y 是随着x 的增大而减小.【解析】解:(1)正比例函数图象上一个点A 到x 轴的距离为4,点A 的横坐标为-2, ∴点A 的坐标为(2,4)-或(2,4)--.设这个正比例函数为(0)y kx k =≠,则42k =-或42k -=-,解得2k =-或2k =,故正比例函数为2y x =或2y x =-.(2)当2y x =时,图象经过第一、三象限;当2y x =-时,图象经过第二、四象限.(3)当2y x =时,函数值y 是随着x 的增大而增大;当2y x =-时,函数值y 是随着x 的增大而减小.22.(1)509y x =;(2)生产这些一次性筷子约需要2500万棵大树,照这样计算,我国的森林面积每年因此将减少大约200平方千米.【解析】解:(1)设y kx =,由题意,得10018k =,解得509k =. 所以用来加工一次性筷子的大树的数量y (万棵)与加工成筷子的数量x (亿双)的函数解析式为509y x =. (2)当450x =时,5045025009y =⨯=,25000.08200⨯=(平方米). 所以生产这些一次性筷子约需要2500万棵大树,照这样计算,我国的森林面积每年因此将减少大约200平方千米.。
人教版数学八年级下册19.2.1《正比例函数》同步练习(含答案)

15.已知正比例函数的图像经过点 M(-2, 1)、A(x1,y1)、B(x2,y2),如果 x1<x2,那么 y1________y2.(填 “>”、“=”、“<”)
三、解答题
16.已知正比例函数 y=(m﹣1) x5m2 的图象在第二、四象限,求 m 的值.
17.在同一平面直角坐标系中画出函数 y=2x,y=- 1 x,y=-0.6x 的图象 3
人教版数学八年级下册 19.2.1《正比例函数》同步练习
一、选择题
1.对于正比例函数 y=-2x,当自变量 x 的值增加 1 时,函数 y 的值增加( )
A.0.5
B.-0.5
C.2
D.-2
2.若函数 y=(k﹣1)x+b+2 是正比例函数,则( )
A.k≠﹣1,b=﹣2 B.k≠1,b=﹣2 C.k=1,b=﹣2 D.k≠1,b=2
3.设正比例函数 y=mx 的图象经过点 A(m,4),且 y 的值随 x 值的增大而减小,则 m=( )
A.2
B.-2
C.4
D.-4
4.经过以下一组点可以画出函数 y=2x 图象的是( )
A.(0,0)和(2,1) B.(1,2)和(-1,-2) C.(1,2)和(2,1) D.(-1,2)和(1,2)
18.已知 y+3 与 x+2 成正比例,且当 x=3 时,y=7. (1)写出 y 与 x 之间的函数关系式; (2)当 x=﹣1 时,求 y 的值.
2/5
19.已知正比例函数 y=(m-1)x 的图象上有两点 A(x1,y1)、B(x2,y2),当 x1<x2 时,有 y1>y2. (1)求 m 的取值范围; (2)当 m 取最大整数时,画出该函数图象.
人教版八下数学19.6 正比例函数-基础知识同步练习(含解析)

人教版八下数学19.6正比例函数-基础知识同步练习一、单选题1.(2023·上海市康城学校八年级期末)在下列式子中,表示y 是x 的正比例函数的是().A .y =B .2y x =C .2xy =D .2y x=2.(2023·全国八年级)若函数y =﹣2x+m ﹣3是y 关于x 的正比例函数,则m 的值为()A .﹣3B .1C .2D .33.(2023·全国八年级)若函数y =(k ﹣3)x+k 2﹣9是正比例函数,则()A .k≠3B .k =±3C .k =3D .k =﹣34.(2023·安徽合肥市·八年级期末)若正比例函数y =-12x 的图象经过点P (m ,1),则m 的值是()A .-2B .-12C .12D .25.(2024·水城实验学校八年级月考)若正比例函数的图象经过点(2,-3),则这个图象必经过点()A .(-3,2)B .(2,3)C .(3,2)D .(-2,3)6.(2024·安徽合肥市·合肥38中八年级月考)如图,点B 、C 分别在直线y=2x 和y=kx 上,点A 、D 是x 轴上的两点,已知四边形ABCD 是正方形,则k 的值为()A .23B .1C .32D .不能确定7.(2024·山东泰安市·八年级期末)定义运算“※”为a ※b =()()00ab b ab b ⎧->⎪⎨≤⎪⎩,如1※(﹣2)=1×(﹣2)=﹣2,则函数y =2※x 的图象大致是()A .B .C.D.8.(2024·陕西西安市·西北工业大学附属中学九年级三模)正比例函数y kx=的图象经过不同象限的两个点()1,A m-,(),2B n,那么一定有()A.0m<,0n<B.0m>,0n>C.0m<,0n>D.0m>,0n< 9.(2019·邯郸市凌云中学九年级一模)若正比例函数()21y k x=-的图象上有一点()11,A x y,且11x y<,则k的取值范围是()A.12k<B.12k>C.12k<或12k>D.无法确定10.(2024·宁波市镇海蛟川书院八年级期末)如图,点A坐标为()1,0,点B在直线y x=-上运动,当线段AB最短时,点B的坐标为()A.11,22⎛⎫-⎪⎝⎭B.11,22⎛⎫⎪⎝⎭C.D.11.(2024·武汉市七一中学)如图,点C、D分别在两条直线y=kx和72y x=上,点A(0,2),B点在x轴正半轴上.已知四边形ABCD是正方形,则k=()A.52B.25C.57D.75二、填空题12.(2023·上海市康城学校八年级期末)如果函数(21my m x-=是正比例函数,那么m的值为__________.13.(2023·四川省九龙县中学校八年级期末)已知y 与1x -成正比例,且当12x =时,1y =-,则y 关于x 的函数解析式是____14.(2024·甘肃张掖市·张掖四中八年级期中)对于正比例函数y=1m mx -,若图像经过第一,三象限,则m=____.15.(2024·上海市格致初级中学八年级期中)平面直角坐标系中,点A 坐标为(2),将点A 沿x 轴向左平移m 个单位后恰好落在正比例函数y =﹣x 的图象上,则m 的值为_____.16.(2024·全国八年级课时练习)已知函数y=(m ﹣1)2m x 是正比例函数,m=__;函数的图象经过____象限;y 随x 的减少而___.17.(2024·长沙市天心区明德启南中学八年级期中)如图,直线l 的解析式为y x =,点A 的坐标为(2,0)-,AB l ⊥于点B ,则ABO 的面积为____.18.(2023·四川成都市·石室中学八年级期末)平面直角坐标系中,点A 坐标为(),将点A 沿x 轴向左平移a 个单位后恰好落在正比例函数y =-的图象上,则a 的值为__________.19.(2024·上海市澧溪中学八年级月考)正比例函数2y x =-的图象经过第______象限.20.(2024·广西玉林市·八年级期末)如图,在平面直角坐标系中,正方形ABCD 的边长为2,//AB x 轴,点A 的坐标为(11),,若直线y kx =与正方形ABCD 有两个公共点,k 的取值范围是__________.(写出一个即可)21.(2024·辽宁沈阳市·八年级期末)若正比例函数2y x =-的图象经过点()1,4A a -,则a 的值是__________.22.(2019·江苏无锡市·九年级月考)当﹣1≤x ≤3时,不等式mx +4>0始终成立,则m 的取值范围是______.23.(2024·全国八年级单元测试)点A 在正比例函数图像上,过点A 作x 轴的垂线,垂足是D ,若:3:2AD OD =,则此正比例函数的解析式是________.24.(2019·莆田哲理中学八年级期中)如图,点B 、C 分别在两条直线2y x =和y kx =上,点A 、D 是x 轴上两点,已知四边形ABCD 是正方形,则k 值为______.三、解答题25.(2024·合肥市第四十五中学八年级期中)已知y-1与x 成正比例,且x=3时y=4.(1)求y 与x 之间的函数关系式;(2)当y=-1时,求x 的值.26.(2018·广东湛江市·)已知:如图,正比例函数y=kx 的图象经过点A ,(1)请你求出该正比例函数的解析式;(2)若这个函数的图象还经过点B(m,m+3),请你求出m的值;(3)请你判断点P(﹣32,1)是否在这个函数的图象上,为什么?参考答案1.C 【分析】形如:()0y kx k =≠的函数,可得:y 是x 的正比例函数,根据定义逐一判断各选项即可得到答案.【详解】解:函数y =,y 不是x 的正比例函数,故A 错误;函数2y x =,不是一次,y 不是x 的正比例函数,故B 错误;函数2x y =,y是x 的正比例函数,故C 正确;函数2y x=,不是整式,y 不是x 的正比例函数,故D 错误;故选:.C 【点拨】本题考查的是正比例函数的定义,掌握正比例函数的定义是解题的关键.2.D 【分析】根据正比例函数的定义求解即可.【详解】解:由题意得:m ﹣3=0,解得:m =3,故选:D .【点拨】本题主要考查了正比例函数的定义,正比例函数的定义是形如y =kx (k 是常数,k ≠0)的函数,其中k 叫做比例系数.3.D 【分析】形如(0)y kx k =≠的函数是正比例函数,根据定义解答.【详解】解:∵y =(k ﹣3)x+k 2﹣9是正比例函数,∴k 2﹣9=0,且k ﹣3≠0,解得:k =﹣3,故选:D.【点拨】此题考查正比例函数的定义:形如(0)y kx k =≠的函数是正比例函数,熟记定义是解题的关键.4.A 【分析】把点的坐标代入函数解析式,转化为关于m 的一元一次方程求解即可.【详解】把点(),1m 代入正比例函数,得:112m =-,解得2m =-.故选A.【点拨】本题考查了正比例函数与点的关系,点的坐标满足函数的解析式是解题的关键.5.D 【分析】求出函数解析式,然后根据正比例函数的定义用代入法计算.【详解】设正比例函数的解析式为y =kx (k≠0),因为正比例函数y =kx 的图象经过点(2,-3),∴-3=2k ,解得:k =32-,∴y =32-x ,把这四个选项中的点的坐标分别代入y =32-x 中,使等号成立的点就在正比例函数y =32-x 的图象上,所以这个图象必经过点(-2,3).故选:D .【点拨】本题考查正比例函数的知识,关键是先求出函数的解析式,然后代值验证答案.6.A 【分析】设(),0A a ,根据一次函数解析式用a 表示B 、C 两点,再表示出AB 、BC 的长,用AB BC =列式求出k 的值.【详解】解:设(),0A a ,则B 点横坐标也是a ,∵B 点在直线2y x =上,∴(),2B a a ,B 点纵坐标和C 点相同,且C 点在直线y kx =上,令2y a =,解得2a x k =,则2,2a C a k ⎛⎫⎪⎝⎭,根据A 、B 、C 坐标得2AB a =,2aBC a k=-,∵四边形ABCD 是正方形,∴AB BC =即22a a a k =-,解得23k =.故选:A .【点拨】本题考查一次函数的图象和几何综合,解题的关键是利用数形结合的思想,先设点坐标,然后根据几何的性质列式求解.7.A 【分析】根据题意,可得y=2※x 的函数解析式,根据函数解析式,可得函数图象.【详解】解:y=2※x=()() 20 20x xx x⎧->⎪⎨≤⎪⎩,x>0时,图象是y=﹣2x的正比例函数中在第三象限的部分;x≤0时,图象是y=2x的正比例函数中y轴右侧的部分.故选:A.【点拨】本题考查了正比例函数的图象,利用定义运算“※”为:a※b=()()ab bab b⎧->⎪⎨≤⎪⎩,得出分段函数是解题关键.8.C【分析】根据A点的横坐标可以判断A点可能在二、三象限,根据B点的纵坐标可以判断B点可能在一、二象限,由此可以确定正比例函数所经过的象限,即可求解;【详解】()1,A m-,(),2B n∴A点可能在二、三象限,B点可能在一、二象限∴函数图象必定经过一、三象限∴0m<,0n>故选:C.【点拨】本题主要考查平面直角坐标系内点的特点,同时结合正比例函数的性质,熟练掌握平面直角坐标系内点的特点是求解本题的关键.9.A【分析】利用一次函数图象上点的坐标特征看得出y1=(2k-1)x1,进而可得出x1y1=(2k-1)x12,再由x12≥0,x1y1<0,即可得出关于k的一元一次不等式,解之即可得出k的取值范围.【详解】解:∵正比例函数y=(2k-1)x的图象上有一点A(x1,y1),∴y1=(2k-1)x1,∴x 1y 1=(2k-1)x 12.又∵x 12≥0,x 1y 1<0,∴2k-1<0,∴12k <.故选:A .【点拨】本题考查了一次函数图象上点的坐标特征,利用一次函数图象上点的坐标特征结合x 1y 1<0,找出关于k 的一元一次不等式是解题的关键.10.A 【分析】当AB 与直线y=-x 垂直时,AB 最短,则△OAB 是等腰直角三角形,作B 如图,点A 坐标为()1,0,点B 在直线y x =-上运动,当线段AB 最短时,点B 的坐标为BC ⊥x 轴即可求得OD ,BD 的长,从而求得B 的坐标.【详解】解析:过A 点作垂直于直线y x =-的垂线AB ,点B 在直线y x =-上运动,45AOB ∴∠=︒,AOB ∴∆为等腰直角三角形,过B 作BC 垂直x 轴垂足为C ,则点C 为OA 的中点,则12OC BC ==,作图可知B 在x 轴下方,y 轴的右方.∴横坐标为正,纵坐标为负.所以当线段AB 最短时,点B 的坐标为11,22⎛⎫-⎪⎝⎭.故选A .【点拨】本题考查了正比例函数的性质,等腰三角形的性质的综合应用,正确根据垂线段最短确定:当AB 与直线y=-x 垂直时,AB 最短是关键.11.C【分析】如图(见解析),设点B 的坐标为(,0)B b ,则OB b =,先根据正方形的性质、三角形全等的判定定理与性质得出2,OA DF OB AF b ====,再根据线段的和差可得2OF b =+,从而可得点D 的坐标,代入直线72y x =可求出b 的值,同理可得出点C 的坐标,将其代入直线y kx =即可得.【详解】如图,过点D 作DF y ⊥轴于点F ,过点C 作CE x ⊥轴于点E ,设点B 的坐标为(,0)B b ,则OB b =,且0b >,(0,2)A 2OA ∴=.四边形ABCD 是正方形,,90AB DA BAD ∴=∠=︒,90BAO DAF ADF DAF ∴∠+∠=∠+∠=︒,BAO ADF ∴∠=∠.在ABO 和DAF △中,90AOB DFA BAO ADF AB DA ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩()ABO DAF AAS ∴≅,2,OA DF OB AF b∴====2OF OA AF b∴=+=+∴点D 的坐标为(2,2)D b +,将(2,2)D b +代入直线72y x =得:7222b ⨯=+,解得5b =,同理可得:ABO BCE ≅,2,5OA BE OB CE b ∴=====527OE OB BE ∴=+=+=∴点C 的坐标为(7,5)C ,将(7,5)C 代入直线y kx =得:75k =,解得57k =.故选:C .【点拨】本题考查了正比例函数的性质、正方形的性质、三角形全等的判定定理与性质等知识点,通过作辅助线,构造全等三角形是解题关键.12.【分析】根据自变量的次数为1,系数不等于0求解即可;【详解】解:∵函数(21m y m x -=-是正比例函数,∴m 2-1=1,且0m ≠,解得m=.故答案为:.【点拨】本题主要考查了正比例函数的定义,正比例函数的定义是形如y =kx (k 是常数,k ≠0)的函数,其中k 叫做比例系数.13.y=2x-2.【分析】已知y 与x-1成正比例,设y=k(x-1),且当12x =时1y =-,用待定系数法可求出函数关系式.【详解】解:∵y 与x-1成正比例,∴设y=k(x-1),当12x =时1y =-,代入上式得到:k=2,则y 与x 的函数关系式是:y=2x-2.故答案为:y=2x-2.【点拨】此题考查利用待定系数法求函数解析式,正确利用正比例函数的特点以及已知条件求出k 的值,写出解析式.14.2【分析】根据正比例函数自变量x 的指数为1,且系数不为0即可求出m 的值,再根据图像经过第一、三象限进而舍去不符合要求的m 值即可.【详解】解:由题意可知:110m m ⎧-=⎨≠⎩,解得:2m =±,又图像经过第一、三象限,∴2m =,故答案为:2.【点拨】本题考查了正比例函数的定义,正比例函数(0)y kx k =≠要求自变量的指数为1,且自变量前面的系数不为0.15.3.【分析】根据点的平移规律可得平移后点的坐标是m -,2),再根据正比例函数图象上点的坐标特点可得)(2m -⨯-=,再解方程即可得到答案.【详解】解:A 坐标为2),∴将点A 沿x 轴向左平移m 个单位后得到的点的坐标是m -,2),恰好落在正比例函数y =-的图象上,)(2m ∴⨯-=,解得:3m =.故答案为:3.【点拨】此题主要考查了正比例函数图象上点的坐标特点,关键是根据点的平移规律解答.16.﹣1第二、四增大【分析】根据正比例函数的定义可以求得m 的值,然后根据正比例函数的性质即可得到该函数的图象所在的象限和y 随x 的减小而如何变化.【详解】∵函数y=(m ﹣1)2m x 是正比例函数,∴2101m m -≠⎧⎨=⎩,解得,m=﹣1,∴y=﹣2x ,∴该函数的图象在第二、四象限,y 随x 的减小而增大.故答案为:﹣1,第二、四,增大.【点拨】本题考查了正比例函数的图象和性质,解答本题的关键是明确题意,利用正比例函数的性质解答.17.1【分析】过点B 作BC ⊥x 轴于C ,先得出△BCO 为等腰直角三角形,再推出△ABO 为等腰直角三角形,结合勾股定理可求出AB ,BO 的长,继而可得出结果.【详解】解:过点B 作BC ⊥x 轴于C ,∵点B 在直线y=x 上,设点B 的坐标为(a ,a),∴BC=|a|=CO ,∴△BCO 为等腰直角三角形,∴∠BOC=45°.又AB ⊥BO ,∴∠BAO=90°-∠BOC=45°,∴∠BAO=∠BOA ,∴AB=BO ,∴△ABO 为等腰直角三角形.又点A 的坐标为(-2,0),∴AO=2,由勾股定理得,AB 2+BO 2=AO 2,∴AB=BO=22,∴△ABO 的面积=12.故答案为:1.【点拨】本题考查了一次函数的图象,等腰直角三角形的判定与性质,勾股定理以及三角形面积的求法,解题的关键是综合运用相关知识进行推理.1853【分析】根据点的平移规律可得平移后点的坐标是3,3),代入3y x =-计算即可.【详解】解:∵A 坐标为33),∴将点A 沿x 轴向左平移a 个单位后得到的点的坐标是3,3),∵恰好落在正比例函数23y x =-的图象上,∴)2333a -=,解得:53故答案为532.【点拨】此题主要考查了正比例函数图象上点的坐标特点,以及点的平移规律,关键是要懂得左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加..19.二、四【分析】由题目可知,该正比例函数过原点,且系数为负,故函数图象过二、四象限.【详解】由题意,y =-2x ,可知函数过二、四象限.故答案为:二、四【点拨】一次函数的图象与坐标系的位置关系,要求学生可根据函数式判断出函数图象的位置.20.133k <<【分析】根据y kx =,正比例函数必定经过原点,利用数形结合代入D ,B 的坐标求出k 值即可求解.【详解】解:因为ABCD 为正方形,A (1,1)∴B (3,1),D (1,3)若直线y kx =经过D 时,3k=解得:3k =若直线y kx =经过B 时,13k=解得:13k =∴若直线y kx =与正方形有两个公共点,则k 的取值范围为133k <<故答案为:133k <<【点拨】本题主要考查了正比例函数的图形性质,正方形的性质,利用待定系数法和数形结合求出k 的取值是解题的关键.21.-1【分析】把点()1,4A a -代入函数解析式,列出关于a 的方程,通过解方程组来求a 的值.【详解】∵正比例函数2y x =-的图象经过点()1,4A a -,∴2(1)4a --=故答案为:-1.【点拨】本题考查了一次函数图象上点的坐标特征.直线上任意一点的坐标都满足函数关系式y=kx (k≠0).22.﹣43<m <4.【分析】根据正比例函数的性质分类讨论即可解答.【详解】令y =mx ,由不等式mx +4>0得到y >﹣4,即在﹣1≤x ≤3内,y >﹣4恒成立.①当m >0时,把(﹣1,﹣4)代入y =mx ,得﹣4=﹣m ,此时m =4,则0<m <4.②当m <0时,把(3,﹣4)代入y =mx ,得﹣4=3m ,此时m =﹣43,则﹣43<m <0.③当m =0时,得到:4>0,不等式mx +4>0始终成立.综上所述:m 的取值范围是﹣43<m <4.故答案为:﹣43<m <4.【点拨】考查了正比例函数的性质,解题时,需要注意正比例函数的增减性.23.32y x =或32y x =-【分析】设3,AD a =()0a >由题意可得2,OD a =得到A 的坐标,将之代入正比例解析式中求得k 值,即可得解.设3,AD a =()0a >由题意可得2,OD a =故点A 的坐标为()2,3a a ±±,设正比例函数解析式为(),0y kx k =≠,23ak a ∴±=±,解得32k =±,所以这个函数的解析式为32y x =或32y x =-故答案为32y x =或32y x =-.【点拨】本题考查了正比例函数,能灵活应用待定系数法求解析式是解题关键.24.23【分析】设正方形的边长为a ,根据正方形的性质分别表示出B ,C 两点的坐标,再将C 的坐标代入函数中从而可求得k 的值.【详解】设正方形的边长为a ,则B 的纵坐标是a ,把点B 代入直线y=2x 的解析式,则设点B 的坐标为(2a ,a ),则点C 的坐标为(2a +a ,a ),把点C 的坐标代入y=kx 中得,a=k (2a +a ),解得,k=23.故答案为:23.【点拨】此题考查正方形的性质及正比例函数的综合运用,建立起关系,灵活运用性质是解题的关键.25.(1)y=x+1;(2)x=-2【分析】(1)设y-1=kx ,然后把x=3时,y=4代入可得k 的值,进而可得函数解析式;(2)把y 的值代入函数解析式可得x 的值.【详解】(1)∵y-1与x成正比例,∴设y-1=kx,∵x=3时,y=4,∴4-1=3k,解得:k=1,∴y与x之间的函数关系式为:y=x+1;(2)当y=-1时,-1=x+1,解得:x=-2.【点拨】本题主要考查了正比例函数的性质,活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题.26.(1)正比例函数解析式为y=﹣2x;(2)m=﹣1;(3)点P不在这个函数图象上,理由见解析.【解析】【分析】(1)将点A的坐标代入正比例函数解析式中求出k的值,即可确定出正比例解析式;(2)将点B(m,m+3)代入所求的解析式,即可求得m的值;(3)把x=-32代入所求的解析式,求得y的值,比较即可.【详解】(1)由图可知点A(﹣1,2),代入y=kx得:﹣k=2,k=﹣2,则正比例函数解析式为y=﹣2x;(2)将点B(m,m+3)代入y=﹣2x,得:﹣2m=m+3,解得:m=﹣1;(3)当x=﹣时,y=﹣2×(﹣)=3≠1,所以点P不在这个函数图象上.【点拨】本题考查了待定系数法求正比例函数解析式,把点的坐标代入函数解析式计算即可.。
最新 练习19.2.1 正比例函数 课时练习 2021-2022学年八年级数学人教版下册

2022年人教版数学八年级下册19.2.1《正比例函数》课时练习一、选择题1.已知正比例函数y=(k﹣2)x+k+2的k的取值正确的是()A.k=2B.k≠2C.k=﹣2D.k≠﹣22.若函数y=(m﹣3)x|m|﹣2是正比例函数,则m值为()A.3B.﹣3C.±3D.不能确定3.下列关系中的两个量成正比例的是()A.从甲地到乙地,所用的时间和速度;B.正方形的面积与边长C.买同样的作业本所要的钱数和作业本的数量;D.人的体重与身高4.下列说法中不成立的是()A.在y=3x-1中y+1与x成正比例B.在y=-0.5x中y与x成正比例C.在y=2(x+1)中y与x+1成正比例D.在y=x+3中y与x成正比例5.下列函数表达式中,y是x的正比例函数的是()A.y=﹣2x2B.y=C.y=D.y=x﹣26.在直角坐标系中,既是正比例函数y=kx,又是y的值随x的增大而减小的图象是()A. B. C. D.7.已知(x1,y1)和(x2,y2)是直线y=-3x上的两点,且x1>x2,则y1与y2•的大小关系是()A.y1>y2B.y1<y2C.y1=y2D.以上都有可能8.如图所示,在同一直角坐标系中,一次函数y=k1x、y=k2x、y=k3x、y=k4x的图象分别为l1、l2、l3、l4,则下列关系中正确的是()A.k1<k2<k3<k4B.k2<k1<k4<k3C.k1<k2<k4<k3D.k2<k1<k3<k4二、填空题9.若函数y=(m-1)x+m2-1是正比例函数,则m=.10.已知点A(-2,4)为正比例函数y=kx上一点,则k=;若B点(2,a)在此直线上,则a=.11.已知y=(m2+1)x为正比例函数,则图象经过象限,y随x增大而.12.若函数y=(m-1)x|m|是正比例函数,则该函数的图象经过第______象限.13.函数y=-7x的图象在第象限内,经过点(1,),y随x的增大而.14.如图,已知菱形ABCD在平面直角坐标系中,A(-4,0),D(0,3),连OC,则直线OC解析式为.三、解答题15.已知y是x的正比例函数,当x=-2时,y=6,求y与x的函数关系式.16.已知y+2与2x+3成正比例函数,当x=-1时,y=8.(1)求y与x的函数关系式;(2)若A(-5,y1),B(2,y2),试比较y1与y2的大小关系.17.在函数y=-3x的图像上取一点P,过P 点作PA⊥x轴A为垂足,己知P点的横坐标为-2,求ΔPOA的面积(O为坐标原点).18.已知y-1与x成正比例,当x=-2时,y=4.(1)求出y与x的函数关系式;(2)设点(a,-2)在这个函数的图像上,求a的值;(3)若x的取值范围是0≤x≤5,求y的取值范围.参考答案1.C2.B3.C4.D5.B6.C7.B8.B9.答案为:-1;10.答案为:-2;-4;11.答案为:第一、三;增大;12.答案为:二、四;13.答案为:二、四;-7;减小;14.答案为:y=0.8x;15.答案为:y=-3x;16.(1)y=-4x+4;(2)y1>y2.17.解:面积为6.18.(1)解:已知y-2与x成正比例,∴得到y-1=kx,∵当x=-2时,y=4,将其代入y-1=kx,解得k=-1.5,则y与x之间的函数关系式为:y=-1.5x+1;(2)由(1)知,y与x之间的函数关系式为:y=-1.5x+1;∴-2=-1.5a+1,解得,a=2;(3)∵0≤x≤5,∴0≥-1.5x≥-7.5,∴1≥-1.5x+1≥-6.5,即-6.5≤y≤1.勾股定理的逆定理一、选择题1.满足下列条件的三角形中,不是直角三角形的是()A.三个内角比为1∶2∶1B.三边之比为1∶2∶5C.三边之比为3∶2∶5D. 三个内角比为1∶2∶32.在△ABC中,∠A,∠B,∠C的对边分别是 a,b,c,那么下面不能判定△ABC是直角三角形的是()A.∠B=∠C-∠AB.a2 = (b+c) (b-c)C.∠A:∠B:∠C=5 :4 :3D.a : b : c=5 : 4 : 33.已知四个三角形分别满足下列条件:①三角形的三边之比为1:1:;②三角形的三边分别是9、40、41;③三角形三内角之比为1:2:3;④三角形一边上的中线等于这边的一半。
2020-2021学年人教版八年级下册数学19.2.1正比例函数 同步练习(含解析)

19.2.1正比例函数同步练习一.选择题1.下列问题中,两个变量之间是正比例函数关系的是()A.汽车以80km/h的速度匀速行驶,行驶路程y(km)与行驶时间x(h)之间的关系B.圆的面积y(cm2)与它的半径x(cm)之间的关系C.某水池有水15m3,我打开进水管进水,进水速度5m3/h,xh后水池有水ym3D.有一个边长为x的正方体,则它的表面积S与边长x之间的函数关系2.已知函数y=3x|m﹣2|是关于x的正比例函数,则常数m的值为()A.3或1B.3C.±1D.13.已知y是x的正比例函数,当x=3时,y=﹣6,则y与x的函数关系式为()A.y=2x B.y=﹣2x C.y=x D.y=﹣x4.已知正比例函数y=kx,当x每增加2时,y减少3,则k的值为()A.﹣B.C.﹣D.5.下列说法中不成立的是()A.在y=3x﹣1中y+1与x成正比例B.在y=﹣中y与x成正比例C.在y=2(x+1)中y与x+1成正比例D.在y=x+3中y与x成正比例6.关于直线y=﹣2x,下列结论正确的是()A.图象必过点(1,2)B.图象经过第一、三象限C.与y=﹣2x+1平行D.y随x的增大而增大7.已知函数y=(m+1)x,y随x的增大而增大,则m的取值范围在数轴上表示正确的是()A.B.C.D.8.已知直线y=k1x,y=k2x,y=k3x的图象如图,则k1、k2、k3的大小关系为()A.k1>k2>k3B.k1>k3>k2C.k3>k2>k1D.k2>k1>k39.关于正比例函数y=﹣2x,下列说法正确的是()A.y随x的增大而增大B.图象是经过第一、第二象限的一条直线C.图象向上平移1个单位长度后得到直线y=﹣2x+1D.点(1,2)在其图象上10.已知正比例函数y=(2t﹣1)x的图象上一点(x1,y1),且x1y1<0,那么t的取值范围是()A.t<0.5B.t>0.5C.t<0.5或t>0.5D.不确定二.填空题11.直线y=x经过第象限.12.某正比例函数的图象经过点(﹣1,2),则此函数关系式为.13.如果正比例函数y=(3k﹣2)x的图象在第二、四象限内,那么k的取值范围是.14.在函数y=x中,若自变量x的取值范围是50≤x≤75,则函数值y的取值范围为.15.如图,直线l的解析式为y=x,点A的坐标为(﹣2,0),AB⊥l于点B,则△ABO的面积为.三.解答题16.已知y与x成正比例,且当x=3时,y=4.(1)求y与x之间的函数解析式;(2)当x=﹣1时,求y的值.17.已知函数y=(k+3)x.(1)k为何值时,函数为正比例函数;(2)k为何值时,函数的图象经过一,三象限;(3)k为何值时,y随x的增大而减小?(4)k为何值时,函数图象经过点(1,1)?18.已知正比例函数y=kx经过点A,点A在第四象限,过点A作AH⊥x轴,垂足为点H,点A 的横坐标为3,且△AOH的面积为3.(1)求正比例函数的表达式;(2)在x轴上能否找到一点P,使△AOP的面积为5?若存在,求点P的坐标;若不存在,请说明理由.参考答案一.选择题1.解:选项A:y=80x,属于正比例函数,两个变量之间成正比例函数关系,符合题意;选项B:y=πx2,属于二次函数,两个变量之间不是成正比例函数关系,不合题意;选项C:y=15+5x,属于一次函数,两个变量之间不是成正比例函数关系,不合题意;选项D:S=6x2,属于二次函数,两个变量之间不是成正比例函数关系,不合题意;故选:A.2.解:∵函数y=3x|m﹣2|是关于x的正比例函数,∴|m﹣2|=1,解得:m=3或1,故选:A.3.解:设y与x之间的函数关系式是y=kx,把x=3,y=﹣6代入得:﹣6=3k,解得:k=﹣2,∴y与x的函数关系式为y=﹣2x,故选:B.4.解:根据题意得:y﹣3=k(x+2),y﹣3=kx+2k,而y=kx,所以2k=﹣3,解得k=﹣.故选:C.5.解:A、∵y=3x﹣1,∴y+1=3x,∴y+1与x成正比例,故本选项正确.B、∵y=﹣,∴y与x成正比例,故本选项正确;C、∵y=2(x+1),∴y与x+1成正比例,故本选项正确;D、∵y=x+3,不符合正比例函数的定义,故本选项错误.故选:D.6.解:A、∵(1,2)不能使y=﹣2x左右相等,因此图象不经过(1,2)点,故此选项错误;B、∵k=﹣2<0,∴图象经过第二、四象限,故此选项错误;C、∵两函数k值相等,∴两函数图象平行,故此选项正确;D、∵k=﹣2<0,∴y随x的增大而减小,故此选项错误;故选:C.7.解:∵一次函数y=(m+1)x,y随x的增大而增大,∴m+1>0,解得,m>﹣1,在数轴上表示为:.故选:C.8.解:由题意得:k1为正数,k2>k3,∴k1,k2,k3的大小关系是k1>k2>k3.故选:A.9.解:A、k=﹣2,y随x的增大而减小,不符合题意;B、图象是经过第二、第四象限的一条直线,不符合题意;C、图象向上平移1个单位长度后得到直线y=﹣2x+1,符合题意;D、当x=1时,y=﹣2,所以点(1,2)不在其图象上,不符合题意;故选:C.10.解:因为x1y1<0,所以该点的横、纵坐标异号,即图象经过二、四象限,则2t﹣1<0,t<.故选:A.二.填空题11.解:由正比例函数y=x中的k=>0知函数y=x的图象经过第一、三象限.故答案是:一、三.12.解:设此函数的解析式为y=kx(k≠0),∵点(﹣1,2)在此函数图象上,∴﹣k=2,解得k=﹣2,∴此函数的关系式为y=﹣2x.故答案为:y=﹣2x.13.解:正比例函数y=(3k﹣2)x的图象经过第二、四象限,∴3k﹣2<0,解得,k<.故答案是:k<.14.解:∵函数y=x的y随x的增大而增大,∴当x=50时,y=×50=120.当x=75时,y=×75=180.则120≤y≤180.故答案是:120≤y≤180.15.解:∵直线l的解析式为y=x,∴∠AOB=45°,设B(a,a),∵AB⊥l于点B,∴△AOB是等腰直角三角形,∴AB=OB=OA,∵点A的坐标为(﹣2,0),∴OA=2,∴AB=OB=,∴△ABO的面积==1,故答案为:1.三.解答题16.解:(1)∵y与x成正比例,∴设y=kx,∵当x=3时,y=4,∴4=3k,解得k=,∴y与x之间的函数关系式为y=x;(2)把x=﹣1代入y=x得y=﹣;17.解:(1)根据题意得k+3≠0,解得k≠﹣3;(2)根据题意得k+3>0,解得k>﹣3;(3)根据题意得k+3<0,解得k<﹣3;(4)把(1,1)代入y=(k+3)x得k+3=1,解得k=﹣2,即k为﹣2时,函数图象经过点(1,1).18.解:(1)∵点A在第四象限,点A的横坐标为3,且△AOH的面积为3.∴点A的纵坐标为﹣2,∴点A的坐标为(3,﹣2).将点A(3,﹣2)代入y=kx,﹣2=3k,解得:k=﹣,∴正比例函数的表达式为y=﹣x.(2)设点P的坐标为(a,0),则S△AOP=|a|×|﹣2|=5,解得:a=±5,∴在x轴上能找到一点P,使△AOP的面积为5,此时点P的坐标为(﹣5,0)或(5,0).。
人教版八年级数学上下册正比例函数练习题

正比例函数练习题一、选择题1、下列关系中的两个变量成正比例的是()A、从甲地到乙地,所用的时间与速度B、正方形的面积与边长C、买同样的作业本所要的钱数和作业本的数量D、人的体重与身高2、下列函数中,y是x正比例函数的是()A y=4x+1B y=2x2C y=-5xD y=x3、下列说法中不成立的是()A 在y=3x-1中,y+1与x成正比例B 在y=-2x中,y与x成正比例C 在y=2(x+1)中,y与x+1成正比例D 在y=x+3中,y与x成正比例4、若函数y=(2m+6)x2 +(1+m)x是正比例函数,则m的值是()A m=-3B m=1C m=3D m>-35、已知(x1,y1)和(x2, y2)是直线y=-3x上的两点, 且x1>x2则y1与y2的大小关系是()A y1>y2B y1<y2C y1=y2D 以上都有可能二、填空题6、下列函数是正比例函数的是( )① y=3x ② y=x3 ③ y=x 2+1 ④ y=(a 2+1)x-2 ⑤ y=2x7、若是x ,y 变量,且函数y=(k+1)x k 是正比例函数,则k=8、若y=(m-2)x 32-m 是正比例函数,m=9、已知与成正比例,且x=2时y=-6, 则y=9时x=三、解答题10、写出下列各题中x 与y 的关系式,并判断y 是否是x 的正比例函数。
(1)电报收费标准是每个字0.1元,电报费y(元)与字数x(个)之间的函数关系;(2)地面气温是28度,如果每升高1km ,气温下降5度,则气温y(度)与高度x(km)之间的函数关系;(3)圆面积y(cm 2)与半径x(cm)之间的函数关系。
11、若正比例函数y=(2m+1)x 22m -中,y 随x 增大而减小,求这个正比例函数。
答案一、1.C 2.C 3.D 4.A 5.B二、6.①⑤ 7.1 8. -2 9.-3三、10 (1)y=0.1x y是x的正比例函数(2)y=28-5x ,y不是x的正比例函数(3)y=£x2,y不是x的正比例函数11 y=-x。
八年级数学下册(人教版)课堂练习检测—正比例函数2(含答案)

八年级数学下册(人教版)课堂练习检测—正比例函数2(含答案)一、选择题1.已知函数y=(k-1)2k x为正比例函数,则()A.k≠±1B.k=±1C.k=-1D.k=12.若y=x+2-b是正比例函数,则b的值是()A.0B.-2C.2D.-0.53.(易错题)正比例函数y=x的大致图像是()x图像上的两点,下列判断中,正确的4.P1(x1,y1),P2(x2,y2)是正比例函数y=-12是()A.y1>y2B.y1<y2C.当x1<x2时,y1<y2D.当x1<x2时,y1>y25.(易错题)已知在正比例函数y=(a-1)x的图像中,y随x的增大而减小,则a的取值范围是()A.a<1B.a>1C.a≥1D.a≤16.若正比例函数的图象经过点(-1,2),则这个图象必经过点()A.(1,2)B.(-1,-2)C.(-2,-1)D.(1,-2)7.(北京景山学校月考)若点A(-2,m)在正比例函数y=-12x的图象上,则m的值是()A.14B.14-C.1D.-18.(北京师大附中月考)某正比例函数的图像如图19-2-1所示,则此正比例函数的表达式为()A.y=-12-x B.y=12xC.y=-2xD.y=2x9.(天津河西区模拟)对于函数y=-k2x(k是常数,k≠0)的图象,下列说法不正确的是()A.是一条直线B.过点(1,kk-)C.经过一、三象限或二、四象限D.y随着x增大而减小二、填空题10.(教材习题变式)直线y=32x经过第________象限,经过点(1,________),y随x 增大而________;直线y=-(a2+1)x经过第________象限,y随x增大而________.三、解答题11.已知正比例函数y=(2m+4)x,求:(1)m为何值时,函数图象经过第一、三象限?(2)m为何值时,y随x的增大而减小?(3)m为何值时,点(1,3)在该函数的图象上?12.已知4y+3m与2x-5n成正比例,证明:y是x的一次函数.13.(教材例题变式)画正比例函数y=13x与y=-13x的图象.14.已知点(12,1)在函数y=(3m-1)x的图象上.(1)求m的值;(2)求这个函数的分析式.15.已知y-3与2x-1成正比例,且当x=1时,y=6.(1)求y与x之间的函数解析式;(2)如果y的取值范围为0≤y≤5,求x的取值范围;(3)若点A(x1,y1),B(x2,y2)都在该函数的图象上,且y1>y2,试判断x1,x2的大小关系.16.(湖北启黄中学月考)已知函数()2321-=-my m x的图象是一条过原点的直线,且y随x的增大而减小,求m的值。
八年级数学下册《正比例函数》练习题及答案(人教版)

第 1 页 共 4 页八年级数学下册《正比例函数》练习题及答案(人教版)一、单选题 1.如果a >b ,那么不等式组x a x b <⎧⎨<⎩的解集是( ) A .x < a B .x < b C .b <x <a D .无解2.下列不等式变形正确的是() A .由a b >,得ac bc >B .由a b >,得2a b 2-+<-C .由112->-,得a a 2->- D .由a b >,得c a c b -<- 3.不等式1>3x -2的解集在数轴上表示正确的是( )A .B .C .D .4.不等式组20321x x -≥⎧⎨+>-⎩的解集里( ) A .12x -<≤B .21xC .1x <-或2x ≥D .21x -≤<-5.不等式720x -≥的正整数解有( )A .1个B .2个C .3个D .无数个6.若不等式组29611x x x k +<+⎧⎨-<⎩无解,则k 的取值范围为( ) A .k≥1 B .k≤1 C .k <1 D .k >17.下列5个说法中:①两个锐角之和一定是钝角;②直角小于锐角;③同位角相等,两直线平行;④内错角互补,两直线平行;⑤如果a<b ,b<c ,那么a<c ;其中正确的个数为( )A .1个B .2个C .3个D .4个8.已知,正比例函数y =kx 的图象经过点(a ,b ),且a b =2,则k 的值等于( ) A .12 B .2 C .﹣2 D .﹣12 9.已知不等式组1113x a x -<-⎧⎪-⎨≤⎪⎩的解集如图所示(原点没标出,数轴单位长度为1),则a 的值为( )第 2 页 共 4 页二、填空题三、解答题第 3 页 共 4 页18.甲、乙两家商场以相同的价格出售同样的商品,为了促进消费,商场推出不同的优惠方案: 甲商场的优惠方案:购物花费累计超过200元后,超出200元部分按70%付费;乙商场的优惠方案:购物花费按80%付费.若某顾客准备购买标价为()200x x >元的商品.(1)甲商场购物花费______元,乙商场购物花费______元(用含x 的代数式表示);(2)顾客到哪家商场购物花费少?写出说理过程;(3)乙商场为了吸引顾客,采取了进一步的优惠方案:不超过1000元,仍按80%付费;超过1000元后,超出1000元部分按60%付费.甲商场没有调整优惠方案,请直接..写出顾客选择甲商场购物花费少时()200x x >的取值范围.19.解不等式21152x x +--≥,并将其在数轴上表达出来.20.某学校计划购买A 、B 两种型号的小黑板共60块,购买一块A 型小黑板100元,购买一块B 型小黑板80元,要求总费用不超过5250元,并且购买A 型小黑板的数量至少占总数量的13,请你通过计算,求出购买A 、B 两种型号的小黑板有哪几种方案?第4页共4页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正比例函数同步练习题
一.选择题(每题6分)
2.下列函数中,y是x的正比例函数的是()
A.y=4x+1 B.y=2x2 C.y=-5x D.y=1
4.若函数y=(2m+6)x2+(1-m)x是正比例函数,则m的值是()
A.m=-3 B.m=1 C.m=3 D.m>-3
5.已知(x1,y1)和(x2,y2)是直线y=-3x上的两点,且x1>x2,则y1与y2•的大小关系是()
A.y1>y2B.y1<y2C.y1=y2 D.以上都有可能
6.已知函数y=-9x, 则下列说法错误的是( )
A.函数图像经过第二,四象限。
B.y的值随x的增大而增大。
C.原点在函数的图像上。
D.y的值随x的增大而减小。
二.填空题(每题6分)
7.形如___________的函数是正比例函数.
8.若x、y是变量,且函数y=(k+1)x k2是正比例函数,则k=_________.
9.正比例函数y=kx(k为常数,k<0)的图象依次经过第________象限,函数值随自变量的增大而_________.
10.已知y与x成正比例,且x=2时y=-6,则y=9时x=________.
12.已知y-3与x成正比例,且x=4时,y=7。
(1)写出y与x之间的函数解析式。
(2)计算x=9时,y的值。
(3)计算y=2时,x的值。
13.在函数y=-3x的图象上取一点P,过P点作PA⊥x轴,已知P点的横坐标为-•2,求△POA的面积(O为坐标原点).
14.已知y+3和2x-1成正比例,且x=2时,y=1。
(1)写出y与x的函数解析式。
(2)当0≤x≤3 时,y的最大值和最小值分别是多少?
1.下列说法正确的是()
A.正比例函数是一次函数 B.一次函数是正比例函数
C.正比例函数不是一次函数 D.不是正比例函数就不是一次函数
2.下列函数中,y是x的一次函数的是()
A.y=-3x+5 B.y=-3x2 C.y=1
x
D..y=π
4.一次函数y=kx+b满足x=0时,y=-1;x=1时,y=1,则这个一次函数是( •)A.y=2x+1 B.y=-2x+1 C.y=2x-1 D.y=-2x-1
5.下列函数(1)y=-x(2)y=2x+11(3)y=-3x2 +x+8(4)y=1
x
中是一次函数的()
A 4个
B 3个
C 2个
D 1个
二填空题(每题6分)
6.已知函数y=(k-1)x+k2-1,当k________时,它是一次函数,当k=_______•时,它是正比例函数.
3.下列一次函数中,y随x值的增大而减小的()
A.y=2x+1 B.y=3-4x C.y=πx+2 D.y=(5-2)x
4.已知一次函数y=mx+│m+1│的图象与y轴交于(0,3),且y随x•值的增大而增大,则m的值为()
A.2 B.-4 C.-2或-4 D.2或-4
5.已知一次函数y=mx-(m-2)过原点,则m的值为()
A.m>2 B.m<2 C.m=2 D.不能确定
8.当m满足________ 时,一次函数y=(m-3)x+7中,y随x的增大而增大。
9.当m满足________时,一次函数y=-3x+m-5的图像与y轴交于负半轴。
10.函数y=kx+b的图象平行于直线y=-2x,且与y轴交于点(0,3),则k=______,b=_______.三.问答题(每题10分)
11.已知点A(a+2,1-a)在函数y=2x-1的图象上,求a的值.
13.已知一次函数y=(2m+2)x+(3-n),根据下列条件,求出m,n的取值范围。
(1)y随x的增大而增大。
(2)直线与y轴交点在x轴下方。
(3)图像经过第二,三,四象限。
7.已知y-2与x成正比例,且x=2时,y=4,则y与x的函数关系式是_________;当y=3时,x=__________.
8.若一次函数y=bx+2的图象经过点A(-1,1),则b=__________.
5.已知一次函数的图象经过点A(1,4)、B(4,2),•则这个一次函数的解析式为___________.11.已知直线经过点(1,3)和点(12,9),求该直线的解析式。