八年级数学上学期正比例函数同步练习题及答案
北师大版数学八年级上册42一次函数与正比例函数 同步练习(含简单答案)

北师大版数学八年级上册 4.2一次函数与正比例函数同步练习一、选择题1. 若函数y =(k +3)x +k −1是正比例函数,则k 的值是( )A. 3B. 2C. 1D. 任意实数2. 已知y 关于x 成正比例,且当x =2时,y =−6,则当x =1时,y 的值为( )A. 3B. −3C. 12D. −123. 下表列出了一项试验统计数据,表示将皮球从高处d 落下时,弹跳高度b 与下落高度d 的关系.下面能表示这种关系的函数式是.( ) d 50 80 100 150 b25405075A. b =d 2B. b =2dC. b =0.5dD. b =d +254. 若函数y =(k −4)x +5是一次函数,则k 应满足的条件为( )A. k >4B. k <4C. k =4D. k ≠45. 若一次函数y =(k −2)x +17,当x =−3时,y =2,则k 的值为( )A. −4B. 8C. −3D. 76. 下列说法中,正确的是( )A. 一次函数也是正比例函数B. 一个函数不是一次函数就是正比例函数C. 一个函数不是正比例函数,就一定不是一次函数D. 正比例函数也是一次函数7. 下列函数:①y =xπ;②y =2x +1;③y =−1x;④y =x 2+1中,是一次函数的有( )A. 4个B. 3个C. 2个D. 1个8. 若直线y =kx +b 经过A (0,2)和B (3,0)两点,那么这个一次函数关系式是( )A. y =2x +3B. y =−23x +2C. y =3x +2D. y =x −1二、填空题9.y=−2x−5是函数,其中k=,b=310.若函数y=(m−2)x|m|−1是一次函数,则m=.11.某实验前4次获得的实验数据如下表.若此项实验结果y与次数x之间近似为一次函数关系,则该函数表达式为.12.已知y与x+1成正比例,当x=5时,y=12,则y关于x的函数表达式是.13.为节约用水,某市居民生活用水按级收费,具体收费标准如下表:设某户居民家的月用水量为x(x>31)吨,应付水费为y元,则y关于x的函数表达式为.14.已知一次函数y=kx+b(k≠0)的图象经过A(1,−1)、B(−1,3)两点,则k______0(填“>”或“<”).三、解答题15.已知y与x−1成正比例,且x=3时y=−4.(1)求y与x之间的函数关系式;(2)当y=8时,求x的值.16.已知一次函数的图象经过点(2,1)和(0,−2).(1)求出该函数图象与x轴的交点坐标;(2)判断点(−4,6)是否在该函数图象上.17.在直角坐标系xOy中,直线l过(1,3)和(3,1)两点,且与x轴,y轴分别交于A,B两点.(1)求直线l的函数关系式;(2)求△AOB的面积.18.鞋子的“鞋码”(号)和鞋长(cm)存在一种换算关系,下表是几组“鞋码”与鞋长换算的对应数值(注:“鞋码”是表示鞋子大小的一种号码):鞋长(cm)16192124鞋码(号)22283238(1)设鞋长为x(cm),“鞋码”为y(号),试判断x和y满足何种函数关系;(2)求x,y之间的函数表达式;(3)如果某人穿44号“鞋码”的鞋,那么他的鞋长是多少?19.已知直线l1:y=2x,直线l2过点A(0,6)与B(6,0),两直线交于点C.(1)求直线l2的解析式,并求出交点C的坐标;(2)过点P(3,0)且垂直于x轴的直线与l1,l2的交点分别为D,E,求线段DE的长.20.某市为了鼓励居民节约用电,采用分段计费的方法按月计算每户家庭的电费.月用电量不超过200度时,按0.55元/度计费;月用电量超过200度时,其中的200度仍按0.55元/度计费,超过部分按0.70元/度计费.设某户家庭月用电量为x度时,应交电费y元.(1)分别求出0≤x≤200和x>200时,y与x之间的函数关系式.(2)小明家5月份交电费117元,小明家这个月用电多少度?参考答案1.C2.B3.C4.D5.D6.D7.C8.B9.一次,−2,−5310.−211.y=3x+3712.y=2x+213.y=7x−96(x>31)14.<15.解:(1)∵y与x−1成正比例,∴设y=k(x−1),∴y=kx−k,∵当x=3时,y=−4,∴−4=3k−k,解得k=−2,把k=−2代入y=kx−k,得y=−2x+2,∴y与x之间的函数关系式为y=−2x+2;(2)把y=8代入y=−2x+2得−2x+2=8解得x=−3,∴x的值为−3.16.解:(1)设该函数解析式为y =kx +b ,把点(2,1)和(0,−2)代入解析式得2k +b =1,b =−2, 解得k =32,b =−2, ∴该函数解析式为y =32x −2;令y =0,则32x −2=0,解得x =43,∴该函数图象与x 轴的交点为(43,0); (2)当x =−4时,y =32×(−4)−2=−8≠6,∴点(−4,6)不在该函数图象上.17.解:(1)设直线l 的函数关系式为y =kx +b(k ≠0),把(3,1),(1,3)代入得{3k +b =1k +b =3,解方程组得{k =−1b =4,∴直线l 的函数关系式为y =−x +4;(2)当x =0时,y =4,∴B(0,4), 当y =0,−x +4=0, 解得x =4, ∴A(4,0),∴S △AOB =12AO ⋅BO =12×4×4=8.18.解:(1)满足一次函数关系.(2)y =2x −10(x 不是连续的值). (3)此人的鞋长为27 cm .19.解:(1)设直线l 2的解析式为y =kx +b ,把点A(0,6)、B(6,0)分别代入得:{b =66k +b =0. 解得{k =−1b =6.故直线l 2的解析式为y =−x +6. 联立{y =−x +6y =2x,解得{x =2y =4.故C(2,4);(2)把x=3代入直线l1:y=2x,得y=6,即D(2,6).把x=3代入y=−x+6,得y=3,即E(3,3).故DE=|6−3|=3.所以线段DE的长度是3.20.解:(1)当0≤x≤200时,y与x之间的函数表达式是y=0.55x;当x>200时,y与x之间的函数表达式是y=0.55×200+0.7(x−200),即y=0.7x−30.(2)小明家5月份用电210度.。
4.2 一次函数与正比例函数同步练习(含答案)北师大版八年级数学上册

4.2 一次函数与正比例函数 同步练习 北师大版八年级数学上册一、单选题1.一辆汽车从甲地以50/km h 的速度驶往乙地,已知甲地与乙地相距150km ,则汽车距乙地的距离()s km 与行驶时间()t h 之间的函数解析式是( )A .15050(0)s t t =+…B .15050(3)s t t =-…C .15050(03)s t t =-<<D .15050(03)s t t =-……2.下列函数:下列函数:①y =-8x ;② y =-8x;③y =2x -3;④ y =-8x 2+6;⑤ y =0.5x -1中,是一次函数的有( )A .1个B .2个C .3个D .4个3.下列函数中是一次函数的是( )A .221y x =-B .13x y +=C .1y x=-D .2231y x x =+-4.EF 是BC 的垂直平分线,交BC 于点D ,点A 是直线EF 上一动点,它从点D 出发沿射线DE 方向运动,当BAC ∠减少x ︒时,ABC ∠增加y ︒,则y 与x 的函数表达式是( )A .y x=B .12y x =C .90y x =-D .1902y x =-5.已知汽车油箱内有油40L ,每行驶100km 耗油10L ,则汽车行驶过程中油箱内剩余的油量Q (L )与行驶路程s (km )之间的函数表达式是( )A .Q=40﹣100s B .Q=40+100s C .Q=40﹣10s D .Q=40+10s 6.李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长度恰好为24米。
要围成的菜园是如图所示的长方形ABCD 。
设BC 边的长为x 米,AB 边的长为y 米,则y 与x 之间的函数关系式是( )A .y=-12x+12B .y=-2x+24C .y=2x-24D .y=12x-127.有一个装有水的容器,其水面高度是10cm.现向容器内注水,在注水过程中,水面高度以每秒0.2cm的速度匀速增加,则容器内的水面高度h(cm)关于注水时间为t(s)的函数表达式是( ).A .h=0.2t+10B .h=0.2tC .h=10t+0.2D .h=t+108.下列函数中,y 是x 的一次函数的是( )①y=x ﹣6;②y= 2x ;③y= 8x;④y=7﹣x .A .①②③B .①③④C .①②③④D .②③④9.下列函数中,y 是x 的正比例函数的是( )A .y=2xB .y=﹣8xC .y=52x +6D .y=0.5x ﹣110.设圆的面积为S ,半径为R , 那么下列说法正确的是( )A .S 是R 的一次函数B .S 是R 的正比例函数C .S 是R 2的正比例函数D .以上说法都不正确二、填空题11.当m= 时,函数y=(2m -1)X 32m 是正比例函数。
沪教版(上海)八年级上册数学 18.2正比例函数 同步练习

18.2正比例函数同步练习一.选择题(共10小题)1.下列函数表达式中,y是x的正比例函数的是()A. y=﹣2x2B. y=C. y=D. y=x﹣22.若y=x+2﹣b是正比例函数,则b的值是()A. 0 B.﹣2 C. 2 D.﹣0.53.若函数是关于x的正比例函数,则常数m的值等于()A.±2 B.﹣2 C.D.4.下列说法正确的是()A.圆面积公式S=πr2中,S与r成正比例关系B.三角形面积公式S=ah中,当S是常量时,a与h成反比例关系C. y=中,y与x成反比例关系D. y=中,y与x成正比例关系5.下列各选项中的y与x的关系为正比例函数的是()A.正方形周长y(厘米)和它的边长x(厘米)的关系B.圆的面积y(平方厘米)与半径x(厘米)的关系C.如果直角三角形中一个锐角的度数为x,那么另一个锐角的度数y与x间的关系D.一棵树的高度为60厘米,每个月长高3厘米,x月后这棵的树高度为y厘米6.若函数y=(m﹣3)x|m|﹣2是正比例函数,则m值为()A. 3 B.﹣3 C.±3 D.不能确定7.已知正比例函数y=(k﹣2)x+k+2的k的取值正确的是()A. k=2 B.k≠2C. k=﹣2 D.k≠﹣28.已知正比例函数y=kx(k≠0)的图象如图所示,则在下列选项中k值可能是()A.1B.2C.3D. 48题图 9题图9.如图所示,在同一直角坐标系中,一次函数y=k1x、y=k2x、y=k3x、y=k4x的图象分别为l1、l2、l3、l4,则下列关系中正确的是()A. k1<k2<k3<k4B. k2<k1<k4<k3C. k1<k2<k4<k3D. k2<k1<k3<k4 10.在直角坐标系中,既是正比例函数y=kx,又是y的值随x的增大而减小的图象是()A.B.C.D.二.填空题(共9小题)11.若函数y﹦(m+1)x+m2﹣1是正比例函数,则m的值为_________ .12.已知y=(k﹣1)x+k2﹣1是正比例函数,则k= _________ .13.写出一个正比例函数,使其图象经过第二、四象限:_________ .14.请写出直线y=6x上的一个点的坐标:_________ .15.已知正比例函数y=kx(k≠0),且y随x的增大而增大,请写出符合上述条件的k的一个值:_________ .16.已知正比例函数y=(m﹣1)的图象在第二、第四象限,则m的值为_________ .17.若p1(x1,y1) p2(x2,y2)是正比例函数y=﹣6x的图象上的两点,且x1<x2,则y1,y2的大小关系是:y1_________ y2.点A(-5,y1)和点B(-6,y2)都在直线y= -9x的图像上则y1__________y218.正比例函数y=(m﹣2)x m的图象的经过第_________ 象限,y随着x的增大而_________ .19.函数y=﹣7x的图象在第_________ 象限内,经过点(1,_________ ),y随x的增大而_________ .三.解答题(共3小题)20.已知:如图,正比例函数的图象经过点P和点Q(﹣m,m+3),求m的值.21.已知y+2与x﹣1成正比例,且x=3时y=4.(1)求y与x之间的函数关系式;(2)当y=1时,求x的值.22.已知y=y1+y2,y1与x2成正比例,y2与x﹣2成正比例,当x=1时,y=5;当x=﹣1时,y=11,求y与x之间的函数表达式,并求当x=2时y的值.23. 为缓解用电紧张矛盾,某电力公司特制定了新的用电收费标准,每月用电量()x kW h 与应付饱费y (元)的关系如图所示。
八年级数学-正比例函数练习题(含解析)

八年级数学-正比例函数练习题(含解析)一、单选题1.下列函数中,y 是x 的正比例函数的是( )A .3xy = B .21y x =- C .22y x = D .21y x =-+2.经过以下一组点可以画出函数2y x =图象的是( )A .(0,0)和(2,1)B .(1,2)和(1,2)--C .(1,2)和(2,1)D .(1,2)-和(1,2)3.对于正比例函数2y x =-,当自变量x 的值增加1时,函数y 的值增加( )A .12 B .12- C .2 D .-24.已知长方体的高是1,长和宽分别是a 、b ,体积是V ,则下列说法正确的是()A .V 是b 的正比例函数B .V 是a 的正比例函数C .V 是a 或b 的正比例函数D .V 是ab 的正比例函数5.某正比例函数的图象如图所示,则此正比例函数的表达式为()A .y=12-x B .y=12x C .y=-2x D .y=2x6.函数y=(2﹣a )x+b ﹣1是正比例函数的条件是( )A .a≠2B .b=1C .a≠2且b=1 D .a,b 可取任意实数7.已知y =(m +3)x m2−8是正比例函数,则m 的值是( ) A .8 B .4 C .±3D .3 8.关于x 的正比例函数,y=(m+1)23mx -若y 随x 的增大而减小,则m 的值为 ( )A .2B .-2C .±2D .-129.若函数y=(k-1)x |k|+b+1是正比例函数,则k 和b 的值为( )A .k=±1,b=-1B .k=±1,b=0C .k=1,b=-1D .k=-1,b=-110.如图,三个正比例函数的图像分别对应的解析式是:①y ax =;②y bx =;③y cx =,则a 、b 、c 的大小关系是( ).A .a b c >>B .c b a <<C .b a c >>D .b c a >>二、填空题 11.正比例函数的图像一定经过的点的坐标为______.12.已知y 与x 成正比例,并且x =-3时,y =6,则y 与x 的函数关系式为________.13.若点(1,)b 和点(2,1)-都在同一个正比例函数的图象上,则b=________.14.已知函数y =(m ﹣1)x+m 2﹣1是正比例函数,则m =_____.15.如果函数()1y ax a =+-是正比例函数,那么这个函数的解析式是______.16.若2(1)(2)a y a x b =++-是正比例函数,则2020()a b -的值是________.三、解答题 17.在同一平面直角坐标系中画出函数2y x =,13y x =-,0.6y x =-的图象18.写出下列各题中x 与y 之间的关系式,并判断y 是否为x 的一次函数?是否为正比列函数?(1)汽车以60千米/时的速度匀速行驶,行驶路程y (千米)与行驶时间x (时)之间的关系;(2)圆的面积y (平方厘米)与它的半径x (厘米)之间的关系;(3)一棵树现在高50厘米,每个月长高2厘米,x 月后这棵树的高度为y (厘米)19.已知关于x 的函数y =(m +3)x |m +2|是正比例函数,求m 的值.20.已知正比例函数()231k y k x -=-,当k 为何值时,y 随x 的增大而减小?21.已知正比例函数图象上一个点A 到x 轴的距离为4,点A 的横坐标为-2,请回答下列问题:(1)求这个正比例函数;(2)这个正比例函数图象经过哪几个象限?(3)这个正比例函数的函数值y是随着x的增大而增大?还是随着x的增大而减小?22.如今餐馆常用一次性筷子,有人说这是浪费资源,破坏生态环境. 已知用来生产一次性筷子的大树的数量(万棵)与加工成一次性筷子的数量(亿双)成正比例关系,且100万棵大树能加工成18亿双一次性筷子.(1)求用来生产一次性筷子的大树的数量y(万棵)与加工成一次性筷子的数量x(亿双)的函数解析式;(2)据统计,我国一年要耗费一次性筷子约450亿双,生产这些一次性筷子约需要多少万棵大树?每1万棵大树占地面积为0.08平方千米,照这样计算,我国的森林面积每年因此将会减少大约多少平方千米?开放探究提优参考答案1.A【解析】 A. 3x y =是正比例函数,故A 符合题意; B. 21y x =-不是正比例函数,故B 不符合题意;C. 22y x =不是正比例函数,故C 不符合题意;D. 21y x =-+不是正比例函数,故D 不符合题意.故选A.2.B【解析】解:A 项,当2x =时,41y =≠,∴点(2,1)不符合,故本选项错误;B 项,当1x =时,2y =;当1x =-时,2y =-,∴两组数据均符合,故本选项正确;C 项,当2x =时,41y =≠,∴点(2,1)不符合,故本选项错误D 项,当1x =-时,22y =-≠,∴点(1,2)-不符合,故本选项错误.故选B.3.D【解析】解:令x a =,则2y a =-令1x a =+,则2(1)22y a a =-+=--,所以y 减少2.故选D.4.D【解析】解:∵长方体的高是1,长和宽分别是a 、b ,体积是V∴1V ab ab ==∴V 是ab 的正比例函数故选D.5.A【解析】解:正比例函数的图象过点M(−2,1),∴将点(−2,1)代入y=kx,得:1=−2k, ∴k=﹣12, ∴y=﹣12x, 故选A .6.C【解析】解:根据正比例函数的定义得:2﹣a ≠0,b ﹣1=0,∴a ≠2,b =1.故选C .7.D【解析】∵y =(m +3)x m 2﹣8是正比例函数,∴m 2﹣8=1且m +3≠0,解得m =3.故选:D .8.B【解析】由题意得:m 2-3=1,且m+1<0,解得:m=-2,故选:B .9.D【解析】形如(0)y kx k k =≠为常数, 的函数,叫做正比例函数,由此可知若函数y =(k ﹣1)x |k |+b +1是正比例函数,则满足:10{110k k b -≠=+=解得,k =﹣1,b =﹣1故选D.10.C【解析】解:根据图像可知,①与②经过一、三象限,③经过二、四象限,∴0a >,0b >,0c <,∵②越靠近y 轴,则b a >,∴大小关系为:b a c >>;故选择:C.11.()0,0【解析】解:∵正比例函数的一般形式为y=kx,∴当x=0时,y=0,∴正比例函数的图象一定经过原点.故答案为:(0,0).12.2y x =-【解析】设y=kx ,6=-3k ,解得k =-2.所以y =-2x .13.12- 【解析】设正比例函数解析式为y=kx,将点(-2,1)代入y=kx 中,得:1=-2k,解得:k=-12,∴正比例函数解析式为y=-12x . ∵点(1,b )在正比例函数y=-12x 的图象上, ∴b=-12, 故答案为-12. 14.-1【解析】解:由正比例函数的定义可得:m 2﹣1=0,且m ﹣1≠0, 解得:m =﹣1,故答案为:﹣1.15.y x =【解析】解:∵函数()1y ax a =+-是正比例函数∴10a -=解得:1a =∴这个函数的解析式是y x =.故答案为:y x =.16.1【解析】解:由2(1)(2)a y a x b =++-是正比例函数,得211020a a b ⎧=⎪+≠⎨⎪-=⎩,解得12a b =⎧⎨=⎩. ∴20202020()(1)1a b -=-=,故答案为:1.17.见解析【解析】解:列表:描点、画图:18.(1)一次函数,正比例函数;(2)不是x的一次函数,不是正比例函数;(3)是x的一次函数,不是正比例函数.【解析】解:(1)行驶路程y(千米)与行驶时间x(时)之间的关系为:y=60x,是x的一次函数,是正比例函数;(2)圆的面积y(平方厘米)与它的半径r(厘米)之间的关系为:y=πx2,不是x的一次函数,不是正比例函数;(3)x月后这棵树的高度为y(厘米)之间的关系为:y=50+2x,是x的一次函数,不是正比例函数.19.m=-1【解析】解:若关于x的函数y=(m+3)x|m+2|是正比例函数,需满足m+3≠0且|m+2|=1,解得m=-1故m的值为-1.k=-.20.2【解析】解:因为函数()231k y k x -=-是正比例函数,所以231k -=且10k -≠,所以2k =±,又因为y 随x 的增大而减小,所以2k =-.21.(1)2y x =或2y x =-;(2)当2y x =时,图象经过第一、三象限;当2y x =-时,图象经过第二、四象限;(3)当2y x =时,函数值y 是随着x 的增大而增大;当2y x =-时,函数值y 是随着x 的增大而减小.【解析】解:(1)正比例函数图象上一个点A 到x 轴的距离为4,点A 的横坐标为-2, ∴点A 的坐标为(2,4)-或(2,4)--.设这个正比例函数为(0)y kx k =≠,则42k =-或42k -=-,解得2k =-或2k =,故正比例函数为2y x =或2y x =-.(2)当2y x =时,图象经过第一、三象限;当2y x =-时,图象经过第二、四象限.(3)当2y x =时,函数值y 是随着x 的增大而增大;当2y x =-时,函数值y 是随着x 的增大而减小.22.(1)509y x =;(2)生产这些一次性筷子约需要2500万棵大树,照这样计算,我国的森林面积每年因此将减少大约200平方千米.【解析】解:(1)设y kx =,由题意,得10018k =,解得509k =. 所以用来加工一次性筷子的大树的数量y (万棵)与加工成筷子的数量x (亿双)的函数解析式为509y x =. (2)当450x =时,5045025009y =⨯=,25000.08200⨯=(平方米). 所以生产这些一次性筷子约需要2500万棵大树,照这样计算,我国的森林面积每年因此将减少大约200平方千米.。
正比例函数习题

《正比例函数》习题(含答案)一、单选题1.下列函数中,正比例函数有( ).(1)2y x =-(2)y =3)1yx =-(4)v =5)213y x =-(6)2y r π=(7)22y x =A .1个B .2个C .3个D .4个 2.一个正比例函数的图象经过点(2,4)-,它的表达式为 ( )A .2y x =-B .2y x =C .12y x =-D .12y x = 3.若正比例函数y =(1-2m)x 的图象经过点A(x 1,y 1)和点B(x 2,y 2),当x 1<x 2时,y 1>y 2,则m 的取值范围是( )A .m <0B .m >0C .m <12D .m >12 4.若y 关于x 的函数(2)y a x b =-+是正比例函数,则a ,b 应满足的条件是( ) A .2a ≠ B .0b = C .2a =且0b = D .2a ≠且0b = 5.邮购一种图书,每册定价20元,另加书价的5%作邮资,购书x 册,需付款y (元)与x (册)的函数关系式为( )A .205%y x x =+B .20.5y x =C .20(15%)y x =+D .19.95y x = 6.对于正比例函数2y x =-,当自变量x 的值增加1时,函数y 的值增加( ) A .12 B .12- C .2 D .-2 7.下列四组点中,可以在同一个正比例函数图象上的一组点是( ). A .(2,3),(4,6)- B .(2,3),(4,6)- C .(2,3),(4,6)-- D .(2,3),(4,6)- 8.如果正比例函数y =(a ﹣1)x (a 是常数)的图象在第一、三象限,那么a 的取值范围是( )A .a <0B .a >0C .a <1D .a >1 9.若某正比例函数过(2,3)-,则关于此函数的叙述不.正确的是( ). A .函数值随自变量x 的增大而增大B .函数值随自变量x 的增大而减小C .函数图象关于原点对称D .函数图象过二、四象限 10.如图,三个正比例函数的图像分别对应的解析式是:①y ax =;②y bx =;③y cx =,则a 、b 、c 的大小关系是( ).A .a b c >>B .c b a <<C .b a c >>D .b c a >>二、填空题 11.形如_________的函数叫做正比例函数.其中_______叫做比例系数.12.下列正比例函数中,y 的值随着x 值的增大而减小的有______.(1)8y x =;(2)0.6y x =-;(3)y =;(4)y x =. 13.按下列要求写出解析式:(1)若正方形的周长为p ,边长为a ,那么边长a 与周长p 之间的关系式为_________; (2)一辆汽车的速度为60km/h ,则行使路程()km s 与行使时间()h t 之间的关系式为___________;(3)圆的半径为r ,则圆的周长c 与半径r 之间的关系式为__________.14.正比例函数的图像过A 点,A 点的横坐标为3.且A 点到x 轴的距离为2,则此函数解析式是___________________ .15.正比例函数()35y m x =+,当m ______时,y 随x 的增大而增大.16.放假了,小明和小丽去蔬菜加工厂社会实践,两人同时工作了一段时间后,休息时小明对小丽说:“我已加工了28kg ,你呢?”小丽思考了一会儿说:“我来考考你. 图(1)、图(2)分别表示你和我的工作量与工作时间的关系,你能算出我加工了多少千克吗?”小明思考后回答:“你难不倒我,你现在加工了______kg.”三、解答题17.已知y 是x 的正比例函数,当x=﹣3时,y=12.(1)求y 关于x 的函数解析式;(2)当12x =-时的函数值.18.如图所示,正比例函数图象经过点A ,求这个正比例函数的解析式.19.已知正比例函数()y k 2x =-. (1)若y 的值随着x 值的增大而减小,则k 的范围是什么?(2)点()23-,在它的图象上,求这个函数的表达式. (3)在()2的结论下,若x 的取值范围是2x 4-≤≤,求y 的取值范围.参考答案1.C2.A3.D4.D5.C6.D7.C8.D9.A10.C11.y kx =(k 是常数,0k ≠) k 12.(2)(4)13.4p a = 60s t = 2c r π= 14.23y x =或2-3y x = 15.53>- 16.2017.(1)由题意可设y=kx (k ≠0).则 12=﹣3k ,解得,k=﹣4,所以y 关于x 的函数解析式是y=﹣4x ; (2)由(1)知,y=﹣4x ,当x=﹣12时,y=﹣4×(﹣12)=2. 即当12x =-时的函数值是2.18.解:设该正比例函数的解析式为y =kx (k ≠0), 由图象可知,该函数图象过点A (1,3), ∴k =3,∴该正比例函数的解析式为y =3x . 19.解:()1y 的值随着x 的值增大而减小, ∴ k 20-<,解得2k <.()2将点()23-,代入函数解析式可得()32k 2-=-, 解得12k =, ∴这个函数的表达式为3y x 2=-. ()3当x 2=-时,()3y 232=-⨯-=, 当x 4=时,3y 462=-⨯=-, 302-<,∴ y 随x 的增大而减小, ∴ 当2x 4-≤≤时,6y 3-≤≤.。
北师大版八年级数学上《4.2一次函数与正比例函数》同步测试含答案

八年级数学上册 第四章 一次函数 4.2 一次函数与正比例函数 同步测试题1.下列函数中,正比例函数是( )A .y =-xB .y =x +1C .y =x 2+1D .y =1x 2.下列函数关系式:①y =-x ;②y =2x +11;③y =x 2+x +1;④y =-3x,其中一次函数的个数是( ) A .1个 B .2个 C .3个 D .4个3.下列函数既是一次函数又是正比例函数的是( )A .y =3x 2B .y =xC .y =5x -4D .y =-3x4.下列函数中,是一次函数但不是正比例函数的是( )A .y =-x 2B .y =-5xC .y =-x -12D .y =x 2-1x5.下列变量之间的变化关系不是一次函数的是( )A .圆的周长和它的半径B .圆的面积和它的半径C .2x +y =5中的y 和xD .正方形的周长C 和它的边长a6.下列说法中不正确的是( )A .一次函数不一定是正比例函数B .不是一次函数就一定不是正比例函数C .正比例函数是特殊的一次函数D .不是正比例函数就一定不是一次函数7.若函数y =x +3+b 是正比例函数,则b =____.8.对于函数y =(k -3)x +k +3,当k =____时,它是正比例函数;当k____时,它是一次函数.9.已知一次函数y =2x +1,当x =0时,函数y 的值是____.10.把式子3x -y =2写成y =kx +b 的形式,则y = ,其中k =____,b =____.当x =-2时,y =____;当y =0时,x = .11.火车“动车组”以250千米/时的速度行驶,则行驶的路程s(千米)与行驶时间t(小时)之间的函数关系式是 ,它是 函数.(填“正比例”或“一次”)12.某城市的出租车收费标准如下:3公里内起步价为10元,超过3公里以后,以每公里2.4元记价.若某人坐出租车行驶x 公里,付给司机19.6元,则x = .13.下面由火柴棒拼出的一列图形中,第n 个图形由n 个正方形组成:通过观察可以发现:第4个图形中,火柴棒有____根,第n 个图形中,火柴棒有 根,若用y 表示火柴棒的根数,x 表示正方形的个数,则y 与x 的函数关系式是 ,y 是x 的____函数.14. 弹簧挂上物体后会伸长,测得某一弹簧的长度y(cm )与悬挂物体的质量x(kg )有下面一组对应值. 根据上述对应值回答:(1)弹簧不挂物体时的长度是多少?(2)当所挂物体的质量x每增加1 kg,弹簧长度如何变化?(3)求弹簧总长y( cm)与所挂物体质量x( kg)的函数关系式,并指出是什么函数?(4)答案1---6 ABDCDB7. 38. -3 ≠39. 110. 3x-2 3 -2 -8 2 311. s=250t 正比例12. 7公里13. 13 (3n+1) y=3x+1 一次14. 解:(1)12 cm(2)弹簧长度增加0.5 cm(3)y=12+0.5x,是一次函数(4)17 cm。
4.2 一次函数与正比例函数 北师大版八年级数学上册同步练习2及答案
新版北师大版八年级数学上册第4章《一次函数》同步练习及答案—4.2一次函数与正比例函数(2)
(1)基础训练
1.下列函数中,是一次函数但不是正比例函数的是().
A. B. C. D.
2.若函数是正比例函数,则= .
3.某学生的家离学校2km,他以km/min的速度骑车到学校,写出他与学校的距离s (km)和骑车的时间t(min)的函数关系式为,s是t的函数.
(2)提高训练
4.如图,在三角形ABC中,∠B与∠C的平分线交于点P,
设∠A=,∠BPC=,当∠A变化时,求与之间的函数关
系式,并判断是不是的一次函数.
5.将长为13.5cm,宽为8cm的长方形白纸,按照图所示的方法粘合起来,粘合部分宽为1.5cm.
(1)求5张白纸粘合后的长度;
(2)设张白纸粘合后的总长度为cm,求与之间的函数关系式.
(3)知识拓展
6.新华书店出售数学词典每本定价20元,代数习题集每售价5元,该店制定两种对学生的优惠政策:(1)买一本数学词典,赠送一本代数习题集;(2)如果不赠送,那么一律九折.某位同学购买4本数学词典和不少于4本的代数习题集.若以购买代数习题集为本、付
款元分别建立以上两种优惠方案中的与的函数关系式,并讨论该生买同样多的习题
集时,用哪种办法最省钱?
参考答案:
1. C.
2..
3.,();一次函数.
4.,;是的一次函数.
5.61.5cm;.
6.,×;
当时,选择(2)方案;
当时,选择两个方案都一样;
当时,选择(1)方案.。
八年级数学上册4.2一次函数与正比例函数正比例函数同步练习含解析
正比例函数一、选择题1.已知函数y=(k-1)2k x 为正比例函数,则() A.k≠±1B.k=±1C.k=-1D.k=12.若y=x+2-b 是正比例函数,则b 的值是() A.0B.-2C.2D.-0.53.(易错题)正比例函数y=x 的大致图像是()4. P 1(x 1,y 1),P 2(x 2,y 2)是正比例函数y=-12x 图像上的两点,下列判断中,正确的是() A.y 1>y 2B.y 1<y 2C.当x 1<x 2时,y 1<y 2D.当x 1<x 2时,y 1>y 25.(易错题)已知在正比例函数y=(a-1)x 的图像中,y 随x 的增大而减小,则a 的取值范围是()A.a <1B.a >1C.a≥1D.a≤16.若正比例函数的图象经过点(-1,2),则这个图象必经过点() A.(1,2) B.(-1,-2) C.(-2,-1)D.(1,-2)7.(北京景山学校月考)若点A (-2,m )在正比例函数y=- 12x 的图象上,则m 的值是() A.14B.14-C.1D.-18.(北京师大附中月考)某正比例函数的图像如图19-2-1所示,则此正比例函数的表达式为() A.y=-12-xB.y=12x C.y=-2xD.y=2x9.(天津河西区模拟)对于函数y=-k2x(k是常数,k≠0)的图象,下列说法不正确的是()A.是一条直线B.过点(1,kk-)C.经过一、三象限或二、四象限D.y随着x增大而减小二、填空题10.(教材习题变式)直线y= 32x经过第________象限,经过点(1,________),y随x增大而________;直线y=-(a2+1)x经过第________象限,y随x增大而________.三、解答题11.已知正比例函数y=(2m+4)x,求:(1)m为何值时,函数图象经过第一、三象限?(2)m为何值时,y随x的增大而减小?(3)m为何值时,点(1,3)在该函数的图象上?12.已知4y+3m与2x-5n成正比例,证明:y是x的一次函数.13.(教材例题变式)画正比例函数y= 13x与y=-13x的图象.14.已知点(12,1)在函数y=(3m-1)x的图象上.(1)求m的值;(2)求这个函数的分析式.15.已知y-3与2x-1成正比例,且当x=1时,y=6.(1)求y与x之间的函数解析式;(2)如果y的取值范围为0≤y≤5,求x的取值范围;(3)若点A(x1,y1),B(x2,y2)都在该函数的图象上,且y1>y2,试判断x1,x2的大小关系.16.(湖北启黄中学月考)已知函数()2321-=-my m x的图象是一条过原点的直线,且y随x的增大而减小,求m的值。
北师大版初中数学八年级上册《4.2 一次函数与正比例函数》同步练习卷(含答案解析
北师大新版八年级上学期《4.2 一次函数与正比例函数》同步练习卷一.填空题(共60小题)1.如图,直线y=kx+b分别交x轴和y轴于点A(﹣2,0)、B(0,3),则关于x 的方程kx+b=0的解为.2.已知y﹣3与x﹣1成正比例,当x=3时,y=7,那么y与x的函数关系式是.3.一次函数y=kx+b(k、b是常数)当自变量x的取值为1≤x≤5时,对应的函数值的范围为﹣2≤y≤2,则此一次函数的解析式为.4.函数y=2x﹣2+b是正比例函数,则b=.5.汽车油箱内存油45L,每行驶100km耗油10L,行驶过程中油箱内剩余油量yL与行驶路程skm的函数关系式是.6.当a=时,y=x2a﹣1是正比例函数.7.若方程x﹣3=0的解也是直线y=(2k﹣1)x+6与x轴的交点的横坐标,则k 的值为.8.已知y与x﹣1成正比例,当x=3时,y=4;那么当x=﹣3时,y=.9.函数y=(k+1)x﹣7中,当k满足时,它是一次函数.10.已知一次函数y=mx+n与x轴的交点为(﹣3,0),则方程mx+n=0的解是.11.已知点P(1,2)关于x轴的对称点为P′,关于原点的对称点为P″,则过点P′与点P″所在直线的解析式为.12.如图,点A的坐标为(4,2).将点A绕坐标原点O旋转90°后,再向左平移1个单位长度得到点A′,则过点A′的正比例函数的解析式为.13.实验室里有一个水平放置的长方体容器,从内部量得它的高是15cm,底面的长是30cm,宽是20cm,容器内的水深为x cm.现往容器内放入如图的长方体实心铁块(铁块一面平放在容器底面),过顶点A的三条棱的长分别10cm,10cm,y cm(y≤15),当铁块的顶部高出水面2cm时,x,y满足的关系式是.14.如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是.15.如图,已知一次函数y=kx+3和y=﹣x+b的图象交于点P(2,4),则关于x 的方程kx+3=﹣x+b的解是.16.若函数y=(m﹣1)x|m|是正比例函数,则该函数的图象经过第象限.17.已知关于x的方程mx+3=4的解为x=1,则直线y=(m﹣2)x﹣3一定不经过第象限.18.已知y是x的一次函数,当x=3时,y=1;当x=﹣2时,y=﹣4,求这个一次函数的解析式.19.某水库的水位在5小时内持续上涨,初始的水位高度为6米,水位以每小时0.3米的速度匀速上升,则水库的水位高度y米与时间x小时(0≤x≤5)的函数关系式为.20.某登山队大本营所在地的气温为5℃,海拔每升高1km气温下降6℃.登山队员由大本营向上登高xkm时,他们所在位置的气温是y℃,用函数解析式表示y与x的关系为.21.已知函数y=kx+b(k≠0)的图象与y轴交点的纵坐标为﹣2,且当x=2时,y=1.那么此函数的解析式为.22.已知正比例函数y=kx的图象经过点A(﹣1,2),则正比例函数的解析式为.23.已知一次函数y=kx+b(k、b为常数且k≠0)的图象经过点A(0,﹣2)和点B(1,0),则k=,b=.24.已知一次函数y=kx+k﹣3的图象经过点(2,3),则k的值为.25.一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x的方程kx+b=0的解为.26.如图,直线l过A、B两点,A(0,﹣1),B(1,0),则直线l的解析式为.27.“一根弹簧原长10cm,在弹性限度内最多可挂质量为5kg的物体,挂上物体后弹簧伸长的长度与所挂物体的质量成正比,,则弹簧的总长度y(cm)与所挂物体质量x(kg)之间的函数关系式为y=10+0.5x(0≤x≤5).”王刚同学在阅读上面材料时发现部分内容被墨迹污染,被污染的部分是确定函数关系式的一个条件,你认为该条件可以是:(只需写出1个).28.直线y=2x+b与x轴的交点坐标是(2,0),则关于x的方程是2x+b=0的解是x=.29.用m根火柴可以拼成如图1所示的x个正方形,还可以拼成如图2所示的2y个正方形,那么用含x的代数式表示y,得.30.为迎接省运会在我市召开,市里组织了一个梯形鲜花队参加开幕式,要求共站60排,第一排40人,后面每一排都比前一排都多站一人,则每排人数y 与该排排数x之间的函数关系式为.31.如果正比例函数y=kx的图象经过点(1,﹣2),那么k的值等于.32.达成铁路扩能改造工程将于今年6月底完工,届时达州至成都运营长度约为350千米,若一列火车以170千米/时的平均速度从达州开往成都,则火车距成都的路程y(千米)与行驶时间x(时)之间的函数关系式为.33.一次函数y=3x+b的图象过坐标原点,则b的值为.34.已知y是x的一次函数,下表给出了部分对应值,则m的值是.35.已知一次函数的图象过点(3,5)与(﹣4,﹣9),则该函数的图象与y轴交点的坐标为.36.如图,已知函数y=2x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),根据图象可得方程2x+b=ax﹣3的解是.37.图象经过(1,2)的正比例函数的表达式为.38.已知y是x的一次函数,右表列出了部分对应值,则m=.39.已知一次函数y=2x+1,当x=0时,函数y的值是.40.直线y=kx+b经过点A(﹣2,0)和y轴正半轴上的一点B,如果△ABO(O 为坐标原点)的面积为2,则b的值为.41.在加油站,加油机显示器上显示的某一种油的单价为每升4.75元,总价从0元开始随着加油量的变化而变化,则总价y(元)与加油量x(升)的函数关系式是.42.随着海拔高度的升高,大气压强下降,空气中的含氧量也随之下降,即含氧量y(g/m3)与大气压强x(kPa)成正比例函数关系.当x=36(kPa)时,y=108(g/m3),请写出y与x的函数关系式.43.如图,在平面直角坐标系中,已知O为坐标原点,点A(3,0),B(0,4),以点A为旋转中心,把△ABO顺时针旋转,得△ACD,记旋转角为α,∠ABO 为β.(1)连结BC,当BC∥x轴时,α与β的数量关系为;(2)当旋转后满足∠AOD=β时,则直线CD的解析式为.44.若函数y=2x k﹣2+(k+1)是关于y是x的一次函数,则k=.45.请写出一个经过第二、三、四象限,并且与y轴交于点(0,﹣2)的直线解析式.46.已知一次函数y=kx+b经过(﹣1,2),且与y轴交点的纵坐标为4,则它的解析式为.47.一次函数y=kx+3的图象如图所示,则方程kx+3=0的解为.48.如图,在平面直角坐标系中,已知OA=4,则点A的坐标为,直线OA的解析式为.49.已知y+2与x﹣3成正比例,且当x=0时,y=1,则当y=4时,x的值为.50.一次函数y=kx+b,当1≤x≤4时,3≤y≤6,则kb的值是.51.已知函数y=mx+m﹣5是正比例函数,则m=.52.若y=x﹣b是正比例函数,则b的值是.53.如图,将含45°角的直角三角尺放置在平面直角坐标系中,其中A(﹣2,0),B(0,1),则直线BC的函数表达式为.54.已知函数y=kx+b的部分函数值如表所示,则关于x的方程kx+b+3=0的解是.55.如果+3是一次函数,则m的值是.56.当m=时,函数y=(2m﹣1)x3m﹣2是正比例函数.57.含45°角的直角三角板如图放置在平面直角坐标系中,其中A(﹣2,0),B (0,1),则直线BC的解析式为.58.已知函数y=(m﹣1)x﹣n+2是正比例函数,则n=.59.一条直线经过点(﹣1,1),这条直线的表达式可能是(写出一个即可).60.某正比例函数的图象经过点(﹣1,2),则此函数关系式为.北师大新版八年级上学期《4.2 一次函数与正比例函数》同步练习卷参考答案与试题解析一.填空题(共60小题)1.如图,直线y=kx+b分别交x轴和y轴于点A(﹣2,0)、B(0,3),则关于x 的方程kx+b=0的解为x=﹣2.【分析】方程kx+b=0的解其实就是当y=0时一次函数y=kx+b与x轴的交点横坐标.【解答】解:∵直线y=kx+b与x轴交于点A(﹣2,0),即当x=﹣2时,y=kx+b=0,∴关于x的方程kx+b=0的解为:x=﹣2.故答案为x=﹣2.【点评】本题主要考查了一次函数与一元一次方程的关系.任何一元一次方程都可以转化为ax+b=0 (a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.2.已知y﹣3与x﹣1成正比例,当x=3时,y=7,那么y与x的函数关系式是y=2x+1.【分析】设y﹣3=k(x﹣1)(k≠0).把x、y的值代入该解析式,列出关于k的方程,通过解方程可以求得k的值;【解答】解:设y﹣3=k(x﹣1)(k≠0).∵当x=3时,y=7,∴7﹣3=k(3﹣1),解得,k=2.∴y﹣3=2x﹣2∴y与x之间的函数关系式是y=2x+1;故答案为:y=2x+1【点评】本题考查了待定系数法求一次函数解析式.求正比例函数,只要一对x,y的值就可以,因为它只有一个待定系数;而求一次函数y=kx+b,则需要两组x,y的值.3.一次函数y=kx+b(k、b是常数)当自变量x的取值为1≤x≤5时,对应的函数值的范围为﹣2≤y≤2,则此一次函数的解析式为y=x﹣3或y=﹣x+3.【分析】分k>0及k<0两种情况考虑:当k>0时,y值随x的增大而增大,由x、y的取值范围可得出点的坐标,由点的坐标利用待定系数法即可求出一次函数解析式;当k<0时,y值随x的增大而减小,由x、y的取值范围可得出点的坐标,由点的坐标利用待定系数法即可求出一次函数解析式.综上即可得出结论.【解答】解:当k>0时,y值随x的增大而增大,∴,解得:,∴一次函数的解析式为y=x﹣3;当k<0时,y值随x的增大而减小,∴,解得:,∴一次函数的解析式为y=﹣x+3.综上所述:一次函数的解析式为y=x﹣3或y=﹣x+3.故答案为:y=x﹣3或y=﹣x+3.【点评】本题考查了待定系数法求一次函数解析式以及一次函数的性质,分k>0及k<0两种情况利用待定系数法求出函数解析式是解题的关键.4.函数y=2x﹣2+b是正比例函数,则b=2.【分析】根据正比例函数的定义得出﹣2+b=0,求出即可.【解答】解:∵函数y=2x﹣2+b是正比例函数,∴﹣2+b=0,解得:b=2,故答案为:2.【点评】本题考查了正比例函数的定义,能熟记正比例函数的定义的内容是解此题的关键.5.汽车油箱内存油45L,每行驶100km耗油10L,行驶过程中油箱内剩余油量yL与行驶路程skm的函数关系式是y=45﹣0.1s.【分析】根据每行驶100km耗油10L,可得单位耗油量,根据单位耗油量乘以路程,可得行驶s千米的耗油量,根据总油量减去耗油量,可得剩余油量.【解答】解:单位耗油量10÷100=0.1L,行驶s千米的耗油量0.1s,y=45﹣0.1s,故答案为:y=45﹣0.1s【点评】本题考查了函数关系式,先求出单位耗油量,再求出耗油量,最后求出剩余油量.6.当a=1时,y=x2a﹣1是正比例函数.【分析】根据正比例函数的定义可知2a﹣1=1,从而可求得a的值.【解答】解:∵y=x2a﹣1是正比例函数,∴2a﹣1=1,解得:a=1.故答案为:1.【点评】本题主要考查的是正比例函数的定义,由正比例函数的定义得到2a﹣1=1是解题的关键.7.若方程x﹣3=0的解也是直线y=(2k﹣1)x+6与x轴的交点的横坐标,则k 的值为﹣.【分析】先解方程得到直线与x轴的交点坐标为(3,0),然后把(3,0)代入y=(2k﹣1)x+6中可求出k的值.【解答】解:∵方程x﹣3=0的解x=3,∴直线y=(2k﹣1)x+6与x轴的交点坐标为(3,0),把(3,0)代入y=(2k﹣1)x+6得3(2k﹣1)+6=0,解得k=﹣.故答案为﹣.【点评】本题考查了一次函数与一元一次方程:任何一元一次方程都可以转化为ax+b=0 (a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.8.已知y与x﹣1成正比例,当x=3时,y=4;那么当x=﹣3时,y=﹣8.【分析】首先根据题意设出关系式:y=k(x﹣1),再利用待定系数法把x=3,y=4代入,可得到k的值,再把k的值代入所设的关系式中,可得到答案.【解答】解:∵y与x﹣1成正比例,∴关系式设为:y=k(x﹣1),∵x=3时,y=4,∴4=k(3﹣1),解得:k=2,∴y与x的函数关系式为:y=2(x﹣1)=2x﹣2.故y与x之间的函数关系式为:y=2x﹣2.把x=﹣3代入y=2x﹣2=﹣8,故答案为:﹣8【点评】此题主要考查了待定系数法求一次函数关系式,关键是设出关系式,代入x,y的值求k.9.函数y=(k+1)x﹣7中,当k满足k≠﹣1时,它是一次函数.【分析】根据一次函数的定义,令k+1≠0即可.【解答】解:根据一次函数定义得,k+1≠0,解得k≠﹣1.故答案为:k≠﹣1.【点评】本题主要考查了一次函数的定义,解题关键是掌握一次函数的定义条件:一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.10.已知一次函数y=mx+n与x轴的交点为(﹣3,0),则方程mx+n=0的解是x=﹣3.【分析】直接根据函数图象与x轴的交点进行解答即可.【解答】解:∵一次函数y=mx+n与x轴的交点为(﹣3,0),∴当mx+n=0时,x=﹣3.故答案为:x=﹣3.【点评】本题主要考查了一次函数与一元一次方程的关系.任何一元一次方程都可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.11.已知点P(1,2)关于x轴的对称点为P′,关于原点的对称点为P″,则过点P′与点P″所在直线的解析式为y=﹣2.【分析】根据两个点关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数;关于原点对称时,它们的坐标符号相反;可得点P′与点P″的坐标,再根据待定系数法可得答案.【解答】解:∵点P(1,2)关于x轴的对称点为P′,关于原点的对称点为P″,∴P′(1,﹣2),P″(﹣1,﹣2),设过点P′与点P″所在直线的解析式为y=kx+b,则,解得.故过点P′与点P″所在直线的解析式为y=﹣2.故答案为:y=﹣2.【点评】此题主要考查了待定系数法求一次函数解析式,关于原点对称的点的坐标,以及关于x轴对称点的坐标,关键是掌握点的坐标的变化规律.12.如图,点A的坐标为(4,2).将点A绕坐标原点O旋转90°后,再向左平移1个单位长度得到点A′,则过点A′的正比例函数的解析式为y=﹣x或y=﹣4x.【分析】直接利用旋转的性质结合平移的性质得出对应点位置,再利用待定系数法求出正比例函数解析式.【解答】解:当点A绕坐标原点O逆时针旋转90°后,再向左平移1个单位长度得到点A′,则A′(﹣3,4),设过点A′的正比例函数的解析式为:y=kx,则4=﹣3k,解得:k=﹣,则过点A′的正比例函数的解析式为:y=﹣x,同理可得:点A绕坐标原点O顺时针旋转90°后,再向左平移1个单位长度得到点A″,则A″(1,﹣4),设过点A″的正比例函数的解析式为:y=kx,则﹣4=k,解得:k=﹣4,则过点A″的正比例函数的解析式为:y=﹣4x,故则过点A′的正比例函数的解析式为:y=﹣x或y=﹣4x.故答案为:y=﹣x或y=﹣4x.【点评】此题主要考查了旋转的性质、平移的性质、待定系数法求出正比例函数解析式,正确得出对应点坐标是解题关键.13.实验室里有一个水平放置的长方体容器,从内部量得它的高是15cm,底面的长是30cm,宽是20cm,容器内的水深为x cm.现往容器内放入如图的长方体实心铁块(铁块一面平放在容器底面),过顶点A的三条棱的长分别10cm,10cm,y cm(y≤15),当铁块的顶部高出水面2cm时,x,y满足的关系式是y=(0<x≤)或y=(6≤x<8).【分析】分两种情况:利用实心铁块浸在水中的体积等于容器中水位增加后的体积减去原来水的体积建立方程求解即可.【解答】解:①当长方体实心铁块的棱长为10cm和ycm的那一面平放在长方体的容器底面时,则铁块浸在水中的高度为8cm,此时,水位上升了(8﹣x)cm(x<8),铁块浸在水中的体积为10×8×y=80ycm3,∴80y=30×20×(8﹣x),∴y=,∵y≤15,∴x≥6,即:y=(6≤x<8),②当长方体实心铁块的棱长为10cm和10cm的那一面平放在长方体的容器底面时,同①的方法得,y=(0<x≤),故答案为:y=(0<x≤)或y=(6≤x<8)【点评】此题主要考查了从实际问题列一次函数关系式,正确找出相等关系是解本题的关键.14.如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是x=2.【分析】一次函数y=ax+b的图象与x轴交点横坐标的值即为方程ax+b=0的解.【解答】解:∵一次函数y=ax+b的图象与x轴相交于点(2,0),∴关于x的方程ax+b=0的解是x=2.故答案为x=2.【点评】本题主要考查了一次函数与一元一次方程的关系.任何一元一次方程都可以转化为ax+b=0 (a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.15.如图,已知一次函数y=kx+3和y=﹣x+b的图象交于点P(2,4),则关于x 的方程kx+3=﹣x+b的解是x=2.【分析】函数图象的交点坐标的横坐标即是方程的解.【解答】解:∵已知一次函数y=kx+3和y=﹣x+b的图象交于点P(2,4),∴关于x的方程kx+3=﹣x+b的解是x=2,故答案为:x=2.【点评】考查了一次函数与一元一次方程的知识,解题的关键是了解函数的图象的交点与方程的解的关系,难度不大.16.若函数y=(m﹣1)x|m|是正比例函数,则该函数的图象经过第二、四象限.【分析】根据正比例函数定义可得:|m|=1,且m﹣1≠0,计算出m的值,然后可得解析式,再根据正比例函数的性质可得答案.【解答】解:由题意得:|m|=1,且m﹣1≠0,解得:m=﹣1,函数解析式为y=﹣2x,∵k=﹣2<0,∴该函数的图象经过第二、四象限.故答案为:二、四.【点评】此题主要考查了正比例函数的定义和性质,关键是掌握形如y=kx(k是常数,k≠0)的函数叫做正比例函数;正比例函数y=kx(k是常数,k≠0),当k>0时,直线y=kx依次经过第三、一象限,从左向右上升,y随x的增大而增大;当k<0时,直线y=kx依次经过第二、四象限,从左向右下降,y随x的增大而减小.17.已知关于x的方程mx+3=4的解为x=1,则直线y=(m﹣2)x﹣3一定不经过第一象限.【分析】关于x的方程mx+3=4的解为x=1,于是得到m+3=4,求得m=1,得到直线y=﹣x﹣3,于是得到结论.【解答】解:∵关于x的方程mx+3=4的解为x=1,∴m+3=4,∴m=1,∴直线y=(m﹣2)x﹣3为直线y=﹣x﹣3,∴直线y=(m﹣2)x﹣3一定不经过第一象限,故答案为:一.【点评】本题考查了一次函数与一元一次方程,求得m的值是解题的关键.18.已知y是x的一次函数,当x=3时,y=1;当x=﹣2时,y=﹣4,求这个一次函数的解析式.【分析】一次函数解析式为y=kx+b,将x与y的两对值代入求出k与b的值,即可确定出一次函数解析式.【解答】解:设一次函数解析式为y=kx+b,将x=3,y=1;x=﹣2,y=﹣4代入得:,解得:k=1,b=﹣2.则一次函数解析式为y=x﹣2.【点评】此题考查了待定系数法求一次函数解析式,熟练掌握待定系数法是解本题的关键.19.某水库的水位在5小时内持续上涨,初始的水位高度为6米,水位以每小时0.3米的速度匀速上升,则水库的水位高度y米与时间x小时(0≤x≤5)的函数关系式为y=6+0.3x.【分析】根据高度等于速度乘以时间列出关系式解答即可.【解答】解:因为初始的水位高度为6米,水位以每小时0.3米的速度匀速上升,所以k=0.3,b=6,根据题意可得:y=6+0.3x(0≤x≤5),故答案为:y=6+0.3x.【点评】此题考查函数关系式,关键是根据题中水位以每小时0.3米的速度匀速上升列出关系式.20.某登山队大本营所在地的气温为5℃,海拔每升高1km气温下降6℃.登山队员由大本营向上登高xkm时,他们所在位置的气温是y℃,用函数解析式表示y与x的关系为y=5﹣6x.【分析】登山队员由大本营向上登高xkm时,他们所在地的气温为y℃,根据登山队大本营所在地的气温为5℃,海拔每升高1km气温下降6℃,可求出y 与x的关系式.【解答】解:根据题意得:y=5﹣6x.故答案为:y=5﹣6x.【点评】本题考查根据实际问题列一次函数式,关键知道气温随着高度变化,某处的气温=地面的气温﹣降低的气温.21.已知函数y=kx+b(k≠0)的图象与y轴交点的纵坐标为﹣2,且当x=2时,y=1.那么此函数的解析式为y=x﹣2.【分析】根据题意找出函数图象上两点坐标,代入计算求出k与b的值,即可确定出解析式.【解答】解:将(0,﹣2)与(2,1)代入y=kx+b得:,解得:k=,b=﹣2,则函数解析式为y=x﹣2,故答案为:y=x﹣2.【点评】此题考查了待定系数法求一次函数解析式,熟练掌握待定系数法是解本题的关键.22.已知正比例函数y=kx的图象经过点A(﹣1,2),则正比例函数的解析式为y=﹣2x.【分析】把点A的坐标代入函数解析式求出k值即可得解.【解答】解:∵正比例函数y=kx的图象经过点A(﹣1,2),∴﹣k=2,解得k=﹣2,∴正比例函数的解析式为y=﹣2x.故答案为:y=﹣2x.【点评】本题考查了待定系数法求正比例函数解析式,把点的坐标代入函数解析式计算即可,比较简单.23.已知一次函数y=kx+b(k、b为常数且k≠0)的图象经过点A(0,﹣2)和点B(1,0),则k=2,b=﹣2.【分析】把点A、B的坐标代入函数解析式,利用待定系数法求一次函数解析式解答即可.【解答】解:∵一次函数y=kx+b(k、b为常数且k≠0)的图象经过点A(0,﹣2)和点B(1,0),∴,解得.故答案为:2,﹣2.【点评】本题主要考查了待定系数法求一次函数解析式,待定系数法是求函数解析式常用的方法之一,要熟练掌握并灵活运用.24.已知一次函数y=kx+k﹣3的图象经过点(2,3),则k的值为2.【分析】将点(2,3)代入y=kx+k﹣3可得关于k的方程,解方程求出k的值即可.【解答】解:将点(2,3)代入一次函数y=kx+k﹣3,可得:3=2k+k﹣3,解得:k=2.故答案为:2.【点评】本题考查待定系数法求函数解析式,比较简单,注意掌握待定系数的运用.25.一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x的方程kx+b=0的解为x=﹣1.【分析】先根据一次函数y=kx+b过(2,3),(0,1)点,求出一次函数的解析式,再求出一次函数y=x+1的图象与x轴的交点坐标,即可求出答案.【解答】解∵一次函数y=kx+b过(2,3),(0,1)点,∴,解得:,一次函数的解析式为:y=x+1,∵一次函数y=x+1的图象与x轴交于(﹣1,0)点,∴关于x的方程kx+b=0的解为x=﹣1.故答案为:x=﹣1.【点评】本题考查了一次函数与一元一次方程,关键是根据函数的图象求出一次函数的图象与x轴的交点坐标,再利用交点坐标与方程的关系求方程的解.26.如图,直线l过A、B两点,A(0,﹣1),B(1,0),则直线l的解析式为y=x﹣1.【分析】从图象上找到直线所过的两个点的坐标,利用待定系数法求解即可.【解答】解:设函数解析式为y=kx+b,将(1,0),(0,﹣1)分别代入解析式得,,解得,函数解析式为y=x﹣1.故答案为y=x﹣1.【点评】此题考查了待定系数法求函数解析式,从图象所在坐标系找出关键点是列方程组的必要步骤.27.“一根弹簧原长10cm,在弹性限度内最多可挂质量为5kg的物体,挂上物体后弹簧伸长的长度与所挂物体的质量成正比,,则弹簧的总长度y(cm)与所挂物体质量x(kg)之间的函数关系式为y=10+0.5x(0≤x≤5).”王刚同学在阅读上面材料时发现部分内容被墨迹污染,被污染的部分是确定函数关系式的一个条件,你认为该条件可以是:每增加1千克重物弹簧伸长0.5cm(只需写出1个).【分析】解题时可以将污染部分看做问题的结论,把问题的结论看作问题的条件,根据条件推得结论即可.【解答】解:根据弹簧的总长度y(cm)与所挂物体质量x(kg)之间的函数关系式为y=10+0.5x(0≤x≤5)可以得到:当x=1时,弹簧总长为10.5cm,当x=2时,弹簧总长为11cm,…∴每增加1千克重物弹簧伸长0.5cm,故答案为:每增加1千克重物弹簧伸长0.5cm.【点评】本题考查了根据实际问题列一次函数关系式,同时训练了学生的开放性思维,也考查了同学们逆向思考的能力.28.直线y=2x+b与x轴的交点坐标是(2,0),则关于x的方程是2x+b=0的解是x=2.【分析】根据直线y=2x+b与x轴的交点坐标是(2,0),求得b,再把b代入方程2x+b=0,求解即可.【解答】解:把(2,0)代入y=2x+b,得:b=﹣4,把b=﹣4代入方程2x+b=0,得:x=2.故答案为:2.【点评】考查了一次函数与坐标轴的交点坐标问题,还考查了方程解的定义.29.用m根火柴可以拼成如图1所示的x个正方形,还可以拼成如图2所示的2y个正方形,那么用含x的代数式表示y,得y=x﹣.【分析】分别根据图1,求出组装x个正方形用的火柴数量,即m与x之间的关系,再根据图2找到y与m之间的等量关系,最后利用m相同写出关于x,y 的方程,整理即可表示出y与x之间的关系.【解答】解:由图1可知:一个正方形有4条边,两个正方形有4+3条边,∴m=1+3x,由图2可知:一组图形有7条边,两组图形有7+5条边,∴m=2+5y,所以:1+3x=2+5y即y=0.6x﹣0.2.【点评】读懂题意,根据实际意义列出关于两个变量之间的等式是求得函数关系式的关键.本题要注意分别找到x,y与m之间的相等关系,利用m作为等量关系列方程整理即可表示.30.为迎接省运会在我市召开,市里组织了一个梯形鲜花队参加开幕式,要求共站60排,第一排40人,后面每一排都比前一排都多站一人,则每排人数y 与该排排数x之间的函数关系式为y=39+x(x为1≤x≤60的整数).【分析】根据“第一排40人,后面每一排都比前一排都多站一人”可列出y与x 之间的关系式y=40+(x﹣1)×1,整理即可求解,注意x的取值范围是1到60的整数.【解答】解:根据题意得y=40+(x﹣1)×1=x+39(x为1≤x≤60的整数).故答案为:y=x+39(x为1≤x≤60的整数).【点评】读懂题意,根据实际意义列出关于两个变量之间的等式是求得函数关系式的关键.31.如果正比例函数y=kx的图象经过点(1,﹣2),那么k的值等于﹣2.【分析】把点的坐标代入函数解析式,就可以求出k的值.【解答】解:∵图象经过点(1,﹣2),∴1×k=﹣2,解得:k=﹣2.故答案为:﹣2.【点评】本题主要考查函数图象经过点的意义,经过点,说明点的坐标满足函数解析式.32.达成铁路扩能改造工程将于今年6月底完工,届时达州至成都运营长度约为350千米,若一列火车以170千米/时的平均速度从达州开往成都,则火车距成都的路程y(千米)与行驶时间x(时)之间的函数关系式为y=350﹣170x.【分析】根据火车距成都的路程=350﹣行驶路程得出.【解答】解:根据题意可得:y=350﹣170x.【点评】根据题意,找到所求量的等量关系是解决问题的关键.本题用到行程问题的基本关系式:路程=速度×时间.解答本题时需注意:这里y不是表示火车行驶的路程,而是表示火车距成都的路程.33.一次函数y=3x+b的图象过坐标原点,则b的值为0.【分析】可根据一次函数的特点求出b的值.【解答】解:解答本题有两种方法:(1)一次函数y=3x+b的图象过坐标原点,则函数为正比例函数,解析式为y=3x;(2)把(0,0)代入y=3x+b,得b=0;解析式为y=3x.故答案为0.【点评】本题要熟悉一次函数的性质,且明确正比例函数是一次函数的特殊情况.34.已知y是x的一次函数,下表给出了部分对应值,则m的值是﹣7.【分析】一次函数的一般形式为y=kx+b,根据待定系数法即可求解.【解答】解:设该一次函数的解析式为y=kx+b.由题意得,解得,故m的值是﹣7.【点评】本题要注意利用一次函数的特点,列出方程组,求出未知数.35.已知一次函数的图象过点(3,5)与(﹣4,﹣9),则该函数的图象与y轴交点的坐标为(0,﹣1).【分析】一次函数的图象过点(3,5)与(﹣4,﹣9),用待定系数法可求出函数关系式,再求出该函数的图象与y轴交点的坐标.【解答】解:因为一次函数的图象过点(3,5)与(﹣4,﹣9),设一次函数的解析式为y=kx+b,所以,解得:,。
人教版 八年级数学上册 (11.2.1 正比例函数) 同步优化训练习题(含答案)
11.2 一次函数11.2.1 正比例函数5分钟训练(预习类训练,可用于课前)1.画出下列正比例函数的图象: (1)y=3x; (2)y=13x;(3)y=-5x. 解: (1)y=3x(2)y=13x(3)y=-5x2.观察上题所画函数图象,完成下列问题.(1)正比例函数图象是一条_________,它一定经过_________.(2)因为过两点有且只有一条直线,我们在画正比例函数图象时,只需确定两点,即_________和_________.(3)当k>0 时,直线经过_________象限,y 随x 的增大而_________;(4)当k<0 时,直线经过_________象限,y 随x 的增大而_________.答案:(1)直线 原点 (2)(0,0) (1,k) (3)一、三 增大 (4)二、四 减小10分钟训练(强化类训练,可用于课中)1.下列函数中,哪些是正比例函数?(1)y=-1x ; (4)y=23x -1; (5)y=2πr; (6)y=2x 2.思路解析:根据正比例函数的定义判定,形如y =kx (k 是常数,k ≠0)的函数叫正比例函数.要特别注意的是x 的指数只能为1.答案:(1)、(5)是正比例函数.2.当a=________时,函数y=(a -3)x +a 2-9是正比例函数.思路解析:要使该函数是正比例函数,必须有a -3≠0,且a 2-9=0.∴a=-3.答案:-33.列出下列函数关系式,并判断是否为正比例函数.(1)圆的面积S 与其半径r;(2)面积为常数S ,矩形的长y 与宽x;(3)某报纸售价0.5元,每卖一份报纸可得20%的利润,其利润y(元)与出售份数x(份)的关系式;(4)冲一卷胶卷手续费3元,洗一张照片0.3元,冲一卷胶卷与洗x 张照片所需费用y(元)的关系式. 思路分析:根据实际意义列出函数表达式,再根据正比例函数的概念进行判断.解:(1)S=πr 2,不是正比例函数. (2)y=S x,不是正比例函数. (3)y=0.1x,是正比例函数.(4)y=0.3x+3,不是正比例函数.4.如图11-2-1所示,若正方形ABCD 的边长为2,P 为DC 上一动点,设DP=x ,求△APD 的面积y 与x 的函数关系式,并画出函数的图象.图11-2-1思路分析:从图中可以看出△ADP 是直角三角形,用三角形的面积公式可以列出函数关系式,但要注意0<DP ≤2.解:如题图,△ADP 是直角三角形,y =12x ·2,即y=x. ∵点P 在DC 上移动且要构成△ADP ,∴0<x ≤2.∴y=x(0<x ≤2),图象是直线的一部分.(注:点O 处的图象是空心点)快乐时光母亲:“你不在时,你养的鹦鹉飞走了.”儿子懊恼地说:“我早有预感,昨晚我复习地理时,它一直站在我肩膀上,看来它是在观察出走的路线.”30分钟训练(巩固类训练,可用于课后)1.下列关系中,符合正比例函数关系的是( )A.边长一定,三角形的面积与该边上的高B.质量一定时,体积与密度C.路程一定时,速度与时间D.长方形的面积一定时,它的长与宽答案:A2.已知正比例函数y=(2m-1)x的图象上两点A(x1,y1)、B(x2,y2),当x1<x2时,有y1>y2,那么m的取值范围是( )A.m<12B.m>12C.m<2D.m>0思路解析:根据题意,可以知道y随x的增大而减小,所以k=2m-1<0,解得m<12.答案:A3.在直角坐标系中,是正比例函数y=kx,且k<0的图象是( )图11-2-2思路解析:正比例函数图象必过原点,k<0说明是一条从左到右下降的直线,所以选C.答案:C4.若函数y=kx的图象经过点(2,-6),则k=_________思路解析:图象经过一点,则该点在图象上,所以应满足函数表达式,即-6=2k,解得k=-3.答案:-35.正比例函数y=kx,若自变量取值增加1,函数值相应减小4,则k=_________.思路解析:k可以看作是比例系数,函数值变化是自变量的|k|倍,所以|k|=4.又因为函数值随自变量的增加而减少,则k为负数,所以k=-4.答案:-46.已知y-5与3x-4成正比例,且当x=1时,y=2,求当y=11时,x的值.思路分析:把y-5与3x-4作为整体,用待定系数法求解,则可设y-5=k(3x-4),再代入x、y的值,建立方程即可求出k的值,然后再代入y的值,则可求x的值.解:设y-5=k(3x-4),把x=1,y=2代入,得2-5=k(3×1-4),解得k=3.∴y-5=3(3x-4),即y=9x-7.当y=11时,有11=9x-7,解得x=2.7.水产品养殖加工厂有200名工人,每名工人每天平均捕捞水产品50千克,或者将当日所捕捞的水产品40千克进行精加工.已知每千克水产品直接出售可获得利润6元,精加工后再出售,可获得利润18元.设每天安排x名工人进行水产品精加工,求每天做水产品精加工所得利润y(元)与x的函数关系式.思路分析:此题最关键的是从所给的所有信息中排除干扰,找到有用的信息,这里只要求每天做水产品精加工所得利润y(元)与x的函数关系式.利润=每千克利润×人数×每人加工量.解:每天做水产品精加工所得利润y(元)与x的函数关系式为y=18×40x,即y=720x.8.甲、乙两人在一次赛跑中,路程s与时间t的关系如图11-2-3所示,看图回答下列问题:(1)这是一次多少米赛跑?(2)谁先到达终点?(3)乙在这次赛跑中的速度是多少?(4)求甲、乙两人的函数关系式.图11-2-3思路分析:解决这类问题的关键是要认真观察图象.从图象看,两个函数都是正比例函数,用待定系数法可以求出它们的解析式.从最大纵坐标可看出这次赛跑总长度,从横坐标可以看出甲用时12 s,乙用时12.5 s.解:(1)这是一次100 m赛跑.(2)甲先到达终点.(3)乙的速度为100÷12.5=8 m/s.(4)设甲的函数关系式为y=k1x,把x=12,y=100代入,得100=12k1,k1=25 3.∴甲的关系式为y=253x(0≤x≤12).设乙的函数关系式为y=k2x,把x=12.5,y=100代入,得100=12.5k2,k2=8.∴乙的关系式为y=8x(0≤x≤12.5).9.某地举办乒乓球比赛的费用y(元)包括两部分:一部分是租用比赛场地等固定不变的费用b(元),另一部分费用与参加比赛的人数x(人)成正比.当x=20时,y=1 600;当x=30时,y=2 000.(1)求y与x之间的函数关系式;(2)如果有50名运动员参加比赛,且全部费用由运动员分摊,那么每名运动员需要支付多少元?思路分析:用待定系数法,由题意可设y与x之间的函数关系式为y=kx+b,代入x、y的值求出k、b的值,由此可算出50名运动员的总费用.解:(1)设y=kx+b,则201600, 302000.k bk b+=⎧⎨+=⎩解得k=40,b=800.∴y与x之间的函数关系式为y=40x+800. (2)当x=50时,y=2 800,∴2 800÷50=56元. 答:每名运动员需要支付56元.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正比例函数
一、选择题(每小题4分,共12分)
1.正比例函数y=2x的图象所过的象限是( )
A.第一、三象限
B.第二、四象限
C.第一、二象限
D.第三、四象限
2.函数y=2x,y=-3x,y=-x的共同特点是( )
A.图象位于同样的象限随x的增大而减小
随x的增大而增大 D.图象都过原点
3.函数y=(1-k)x中,如果y随着x增大而减小,那么常数k的取值范围是( )
<1 >1 ≤1 ≥1
二、填空题(每小题4分,共12分)
4.(2013·钦州中考)请写出一个图象经过第一、三象限的正比例函数的解析式.
5.(2012·上海中考)已知正比例函数y=kx(k≠0),点(2,-3)在函数图象上,则y 随x的增大而(增大或减小).
6.在正比例函数y=(m-8)x中,如果y随自变量x的增大而减小,那么正比例函数y=(8-m)x的图象在第象限.
三、解答题(共26分)
7.(8分)已知正比例函数y=kx(k是常数,k≠0),当-3≤x≤1时,对应的y的取值范围是-1≤y≤,且y随x的减小而减小,求k的值.
8.(8分)已知函数y=(m-1)x|m|-2,当m为何值时,正比例函数y随x的增大而增大
【拓展延伸】
9.(10分)正比例函数y=2x的图象如图所示,点A的坐
标为(2,0),y=2x的函数图象上是否存在一点P,使△
OAP的面积为4,如果存在,求出点P的坐标,如果不存在,
请说明理由.
答案解析
1.【解析】选A.∵正比例函数y=2x中,k=2>0,
∴此函数的图象经过第一、三象限.
2.【解析】选D.三个函数都是正比例函数,图象都是过原点的直线,而y=2x与其他两个函数的比例系数的符号不同,所以它们经过的象限及增减性有所不同.
3.【解析】选B.∵函数y=(1-k)x中,y随着x的增大而减小,∴1-k<0,解得k>1.
4.【解析】设此正比例函数的解析式为y=kx(k≠0),
∵此正比例函数的图象经过第一、三象限,∴k>0,
∴符合条件的正比例函数解析式可以为:y=x(答案不唯一).
答案:y=x(答案不唯一)
5.【解析】∵点(2,-3)在正比例函数y=kx(k≠0)的图象上,∴2k=-3,
解得:k=-,∴正比例函数解析式是:y=-x,
∵k=-<0,∴y随x的增大而减小.
答案:减小
6.【解析】因为在正比例函数y=(m-8)x中,y的值随自变量x的增大而减小,所以m-8<0,所以8-m>0,所以函数y=(8-m)x的图象在第一、三象限.
答案:一、三
7.【解析】∵y随x的减小而减小,∴k>0,则有x=-3时,y=-1;x=1时,y=,所以点(-3,-1),(1,)在函数y=kx(k是常数,k≠0)的图象上,所以-1= k·(-3),所以k=.
8.【解析】因为此函数是正比例函数,
所以|m|-2=1,所以m=±3,
因为正比例函数y随x的增大而增大,
所以m-1>0,所以m=-3不合题意,应舍去.
所以m=3时,正比例函数y随x的增大而增大.
9.【解析】因为点A的坐标为(2,0),所以OA=2,设点P的坐标为(n,m),
因为△OAP的面积为4,
所以×OA×|m|=4,
即×2×|m|=4,所以m=±4,
当m=4时,把x=n,y=m=4代入y=2x,得4=2n,
所以n=2,此时点P的坐标为(2,4),
当m=-4时,把x=n,y=m=-4代入y=2x,
得-4=2n,所以n=-2,
此时点P的坐标为(-2,-4),
综上所述,存在点P的坐标为(2,4)或(-2,-4).
正比例函数
一、选择题(每小题4分,共12分)
1.(2012·南充中考)下列函数中,是正比例函数的是( )
=-8x =
=5x2+6 =
2.下列函数解析式中,不是正比例函数的是( )
=-2 +8x=0
=4y =-x
3.若函数y=(2m+1)x2+(1-2m)x(m为常数)是正比例函数,则m的值为( )
>=<=-
二、填空题(每小题4分,共12分)
4.函数y=(2-k)x是正比例函数,则k的取值范围是.
5.我国是一个严重缺水的国家,大家应倍加珍惜水资源,节约用水.据测试,拧不紧的水龙头每秒钟会滴下2滴水,每滴水约.小明同学在洗手后,没有把水龙头拧紧,当小明离开xh后水龙头滴了ymL水.则y关于x的函数解析式为.
6.某商店进一批货,每件50元,售出时每件加价8元,如果售出x件应得货款为y 元,那么y与x的函数解析式是,售出10件时,所得货款为元.
三、解答题(共26分)
7.(8分)已知函数y=(2m-1)x+1-3m,m为何值时,这个函数是正比例函数
8.(8分)已知y与(x-1)成正比例,当x=4时,y=-12.
(1)写出y与x之间的函数解析式.
(2)当x=-2时,求函数值y.
(3)当y=20时,求自变量x的值.
【拓展延伸】
9.(10分)已知:y=y1+y2,y1与x成正比例,y2与x2成正比例,当x=1时,y=6,当x=3时,y=8,求y关于x的解析式.
答案解析
1.【解析】选,y=-8x是正比例函数,故本选项正确;B,y=,自变量x在分母上,不是正比例函数,故本选项错误;C,y=5x2+6,自变量x的指数是2,不是1,不是正比例函数,故本选项错误;D,y=不符合正比例函数的定义,故本选项错误.
2.【解析】选A.根据正比例函数的定义:一般地,两个变量x,y之间的解析式可以表示成形如y=kx(k为常数,且k≠0)的函数,那么y就叫做x的正比例函数.不是正比例函数的是A.
3.【解析】选D.根据正比例函数的定义,2m+1=0,1-2m≠0.从而求解.解得m=-.
4.【解析】由正比例函数的定义可得2-k≠0,
解得k≠2.
答案:k≠2
5.【解析】因为水龙头每秒钟会滴下2滴水,每滴水约 mL,所以当小明离开xh 后水龙头的滴水量y=3600×2×=360x.
答案:y=360x
6.【解析】由题意可得y=58x,当x=10时,y=580.
答案:y=58x 580
7.【解析】根据正比例函数的定义,得1-3m=0,且2m-1≠0,解得m=.
8.【解析】(1)设y与x之间的函数解析式为y=k(x-1),
因为当x=4时,y=-12,所以-12=k(4-1),解得k=-4,所以y与x之间的函数解析式为y=-4x+4.
(2)当x=-2时,y=-4×(-2)+4=12.
(3)当y=20时,20=-4x+4,解得x=-4.
9.【解析】∵y1与x成正比例,设y1=k1x,
又∵y2与x2成正比例,设y2=k2x2,y=y1+y2= k1x+ k2x2,当x=1时,y=6,当x=3时,y=8,
可得解得
∴y关于x的解析式为y=x-x2.。