八年级数学上学期正比例函数同步练习题及答案
北师大版数学八年级上册42一次函数与正比例函数 同步练习(含简单答案)

北师大版数学八年级上册 4.2一次函数与正比例函数同步练习一、选择题1. 若函数y =(k +3)x +k −1是正比例函数,则k 的值是( )A. 3B. 2C. 1D. 任意实数2. 已知y 关于x 成正比例,且当x =2时,y =−6,则当x =1时,y 的值为( )A. 3B. −3C. 12D. −123. 下表列出了一项试验统计数据,表示将皮球从高处d 落下时,弹跳高度b 与下落高度d 的关系.下面能表示这种关系的函数式是.( ) d 50 80 100 150 b25405075A. b =d 2B. b =2dC. b =0.5dD. b =d +254. 若函数y =(k −4)x +5是一次函数,则k 应满足的条件为( )A. k >4B. k <4C. k =4D. k ≠45. 若一次函数y =(k −2)x +17,当x =−3时,y =2,则k 的值为( )A. −4B. 8C. −3D. 76. 下列说法中,正确的是( )A. 一次函数也是正比例函数B. 一个函数不是一次函数就是正比例函数C. 一个函数不是正比例函数,就一定不是一次函数D. 正比例函数也是一次函数7. 下列函数:①y =xπ;②y =2x +1;③y =−1x;④y =x 2+1中,是一次函数的有( )A. 4个B. 3个C. 2个D. 1个8. 若直线y =kx +b 经过A (0,2)和B (3,0)两点,那么这个一次函数关系式是( )A. y =2x +3B. y =−23x +2C. y =3x +2D. y =x −1二、填空题9.y=−2x−5是函数,其中k=,b=310.若函数y=(m−2)x|m|−1是一次函数,则m=.11.某实验前4次获得的实验数据如下表.若此项实验结果y与次数x之间近似为一次函数关系,则该函数表达式为.12.已知y与x+1成正比例,当x=5时,y=12,则y关于x的函数表达式是.13.为节约用水,某市居民生活用水按级收费,具体收费标准如下表:设某户居民家的月用水量为x(x>31)吨,应付水费为y元,则y关于x的函数表达式为.14.已知一次函数y=kx+b(k≠0)的图象经过A(1,−1)、B(−1,3)两点,则k______0(填“>”或“<”).三、解答题15.已知y与x−1成正比例,且x=3时y=−4.(1)求y与x之间的函数关系式;(2)当y=8时,求x的值.16.已知一次函数的图象经过点(2,1)和(0,−2).(1)求出该函数图象与x轴的交点坐标;(2)判断点(−4,6)是否在该函数图象上.17.在直角坐标系xOy中,直线l过(1,3)和(3,1)两点,且与x轴,y轴分别交于A,B两点.(1)求直线l的函数关系式;(2)求△AOB的面积.18.鞋子的“鞋码”(号)和鞋长(cm)存在一种换算关系,下表是几组“鞋码”与鞋长换算的对应数值(注:“鞋码”是表示鞋子大小的一种号码):鞋长(cm)16192124鞋码(号)22283238(1)设鞋长为x(cm),“鞋码”为y(号),试判断x和y满足何种函数关系;(2)求x,y之间的函数表达式;(3)如果某人穿44号“鞋码”的鞋,那么他的鞋长是多少?19.已知直线l1:y=2x,直线l2过点A(0,6)与B(6,0),两直线交于点C.(1)求直线l2的解析式,并求出交点C的坐标;(2)过点P(3,0)且垂直于x轴的直线与l1,l2的交点分别为D,E,求线段DE的长.20.某市为了鼓励居民节约用电,采用分段计费的方法按月计算每户家庭的电费.月用电量不超过200度时,按0.55元/度计费;月用电量超过200度时,其中的200度仍按0.55元/度计费,超过部分按0.70元/度计费.设某户家庭月用电量为x度时,应交电费y元.(1)分别求出0≤x≤200和x>200时,y与x之间的函数关系式.(2)小明家5月份交电费117元,小明家这个月用电多少度?参考答案1.C2.B3.C4.D5.D6.D7.C8.B9.一次,−2,−5310.−211.y=3x+3712.y=2x+213.y=7x−96(x>31)14.<15.解:(1)∵y与x−1成正比例,∴设y=k(x−1),∴y=kx−k,∵当x=3时,y=−4,∴−4=3k−k,解得k=−2,把k=−2代入y=kx−k,得y=−2x+2,∴y与x之间的函数关系式为y=−2x+2;(2)把y=8代入y=−2x+2得−2x+2=8解得x=−3,∴x的值为−3.16.解:(1)设该函数解析式为y =kx +b ,把点(2,1)和(0,−2)代入解析式得2k +b =1,b =−2, 解得k =32,b =−2, ∴该函数解析式为y =32x −2;令y =0,则32x −2=0,解得x =43,∴该函数图象与x 轴的交点为(43,0); (2)当x =−4时,y =32×(−4)−2=−8≠6,∴点(−4,6)不在该函数图象上.17.解:(1)设直线l 的函数关系式为y =kx +b(k ≠0),把(3,1),(1,3)代入得{3k +b =1k +b =3,解方程组得{k =−1b =4,∴直线l 的函数关系式为y =−x +4;(2)当x =0时,y =4,∴B(0,4), 当y =0,−x +4=0, 解得x =4, ∴A(4,0),∴S △AOB =12AO ⋅BO =12×4×4=8.18.解:(1)满足一次函数关系.(2)y =2x −10(x 不是连续的值). (3)此人的鞋长为27 cm .19.解:(1)设直线l 2的解析式为y =kx +b ,把点A(0,6)、B(6,0)分别代入得:{b =66k +b =0. 解得{k =−1b =6.故直线l 2的解析式为y =−x +6. 联立{y =−x +6y =2x,解得{x =2y =4.故C(2,4);(2)把x=3代入直线l1:y=2x,得y=6,即D(2,6).把x=3代入y=−x+6,得y=3,即E(3,3).故DE=|6−3|=3.所以线段DE的长度是3.20.解:(1)当0≤x≤200时,y与x之间的函数表达式是y=0.55x;当x>200时,y与x之间的函数表达式是y=0.55×200+0.7(x−200),即y=0.7x−30.(2)小明家5月份用电210度.。
4.2 一次函数与正比例函数同步练习(含答案)北师大版八年级数学上册

4.2 一次函数与正比例函数 同步练习 北师大版八年级数学上册一、单选题1.一辆汽车从甲地以50/km h 的速度驶往乙地,已知甲地与乙地相距150km ,则汽车距乙地的距离()s km 与行驶时间()t h 之间的函数解析式是( )A .15050(0)s t t =+…B .15050(3)s t t =-…C .15050(03)s t t =-<<D .15050(03)s t t =-……2.下列函数:下列函数:①y =-8x ;② y =-8x;③y =2x -3;④ y =-8x 2+6;⑤ y =0.5x -1中,是一次函数的有( )A .1个B .2个C .3个D .4个3.下列函数中是一次函数的是( )A .221y x =-B .13x y +=C .1y x=-D .2231y x x =+-4.EF 是BC 的垂直平分线,交BC 于点D ,点A 是直线EF 上一动点,它从点D 出发沿射线DE 方向运动,当BAC ∠减少x ︒时,ABC ∠增加y ︒,则y 与x 的函数表达式是( )A .y x=B .12y x =C .90y x =-D .1902y x =-5.已知汽车油箱内有油40L ,每行驶100km 耗油10L ,则汽车行驶过程中油箱内剩余的油量Q (L )与行驶路程s (km )之间的函数表达式是( )A .Q=40﹣100s B .Q=40+100s C .Q=40﹣10s D .Q=40+10s 6.李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长度恰好为24米。
要围成的菜园是如图所示的长方形ABCD 。
设BC 边的长为x 米,AB 边的长为y 米,则y 与x 之间的函数关系式是( )A .y=-12x+12B .y=-2x+24C .y=2x-24D .y=12x-127.有一个装有水的容器,其水面高度是10cm.现向容器内注水,在注水过程中,水面高度以每秒0.2cm的速度匀速增加,则容器内的水面高度h(cm)关于注水时间为t(s)的函数表达式是( ).A .h=0.2t+10B .h=0.2tC .h=10t+0.2D .h=t+108.下列函数中,y 是x 的一次函数的是( )①y=x ﹣6;②y= 2x ;③y= 8x;④y=7﹣x .A .①②③B .①③④C .①②③④D .②③④9.下列函数中,y 是x 的正比例函数的是( )A .y=2xB .y=﹣8xC .y=52x +6D .y=0.5x ﹣110.设圆的面积为S ,半径为R , 那么下列说法正确的是( )A .S 是R 的一次函数B .S 是R 的正比例函数C .S 是R 2的正比例函数D .以上说法都不正确二、填空题11.当m= 时,函数y=(2m -1)X 32m 是正比例函数。
沪教版(上海)八年级上册数学 18.2正比例函数 同步练习

18.2正比例函数同步练习一.选择题(共10小题)1.下列函数表达式中,y是x的正比例函数的是()A. y=﹣2x2B. y=C. y=D. y=x﹣22.若y=x+2﹣b是正比例函数,则b的值是()A. 0 B.﹣2 C. 2 D.﹣0.53.若函数是关于x的正比例函数,则常数m的值等于()A.±2 B.﹣2 C.D.4.下列说法正确的是()A.圆面积公式S=πr2中,S与r成正比例关系B.三角形面积公式S=ah中,当S是常量时,a与h成反比例关系C. y=中,y与x成反比例关系D. y=中,y与x成正比例关系5.下列各选项中的y与x的关系为正比例函数的是()A.正方形周长y(厘米)和它的边长x(厘米)的关系B.圆的面积y(平方厘米)与半径x(厘米)的关系C.如果直角三角形中一个锐角的度数为x,那么另一个锐角的度数y与x间的关系D.一棵树的高度为60厘米,每个月长高3厘米,x月后这棵的树高度为y厘米6.若函数y=(m﹣3)x|m|﹣2是正比例函数,则m值为()A. 3 B.﹣3 C.±3 D.不能确定7.已知正比例函数y=(k﹣2)x+k+2的k的取值正确的是()A. k=2 B.k≠2C. k=﹣2 D.k≠﹣28.已知正比例函数y=kx(k≠0)的图象如图所示,则在下列选项中k值可能是()A.1B.2C.3D. 48题图 9题图9.如图所示,在同一直角坐标系中,一次函数y=k1x、y=k2x、y=k3x、y=k4x的图象分别为l1、l2、l3、l4,则下列关系中正确的是()A. k1<k2<k3<k4B. k2<k1<k4<k3C. k1<k2<k4<k3D. k2<k1<k3<k4 10.在直角坐标系中,既是正比例函数y=kx,又是y的值随x的增大而减小的图象是()A.B.C.D.二.填空题(共9小题)11.若函数y﹦(m+1)x+m2﹣1是正比例函数,则m的值为_________ .12.已知y=(k﹣1)x+k2﹣1是正比例函数,则k= _________ .13.写出一个正比例函数,使其图象经过第二、四象限:_________ .14.请写出直线y=6x上的一个点的坐标:_________ .15.已知正比例函数y=kx(k≠0),且y随x的增大而增大,请写出符合上述条件的k的一个值:_________ .16.已知正比例函数y=(m﹣1)的图象在第二、第四象限,则m的值为_________ .17.若p1(x1,y1) p2(x2,y2)是正比例函数y=﹣6x的图象上的两点,且x1<x2,则y1,y2的大小关系是:y1_________ y2.点A(-5,y1)和点B(-6,y2)都在直线y= -9x的图像上则y1__________y218.正比例函数y=(m﹣2)x m的图象的经过第_________ 象限,y随着x的增大而_________ .19.函数y=﹣7x的图象在第_________ 象限内,经过点(1,_________ ),y随x的增大而_________ .三.解答题(共3小题)20.已知:如图,正比例函数的图象经过点P和点Q(﹣m,m+3),求m的值.21.已知y+2与x﹣1成正比例,且x=3时y=4.(1)求y与x之间的函数关系式;(2)当y=1时,求x的值.22.已知y=y1+y2,y1与x2成正比例,y2与x﹣2成正比例,当x=1时,y=5;当x=﹣1时,y=11,求y与x之间的函数表达式,并求当x=2时y的值.23. 为缓解用电紧张矛盾,某电力公司特制定了新的用电收费标准,每月用电量()x kW h 与应付饱费y (元)的关系如图所示。
八年级数学-正比例函数练习题(含解析)

八年级数学-正比例函数练习题(含解析)一、单选题1.下列函数中,y 是x 的正比例函数的是( )A .3xy = B .21y x =- C .22y x = D .21y x =-+2.经过以下一组点可以画出函数2y x =图象的是( )A .(0,0)和(2,1)B .(1,2)和(1,2)--C .(1,2)和(2,1)D .(1,2)-和(1,2)3.对于正比例函数2y x =-,当自变量x 的值增加1时,函数y 的值增加( )A .12 B .12- C .2 D .-24.已知长方体的高是1,长和宽分别是a 、b ,体积是V ,则下列说法正确的是()A .V 是b 的正比例函数B .V 是a 的正比例函数C .V 是a 或b 的正比例函数D .V 是ab 的正比例函数5.某正比例函数的图象如图所示,则此正比例函数的表达式为()A .y=12-x B .y=12x C .y=-2x D .y=2x6.函数y=(2﹣a )x+b ﹣1是正比例函数的条件是( )A .a≠2B .b=1C .a≠2且b=1 D .a,b 可取任意实数7.已知y =(m +3)x m2−8是正比例函数,则m 的值是( ) A .8 B .4 C .±3D .3 8.关于x 的正比例函数,y=(m+1)23mx -若y 随x 的增大而减小,则m 的值为 ( )A .2B .-2C .±2D .-129.若函数y=(k-1)x |k|+b+1是正比例函数,则k 和b 的值为( )A .k=±1,b=-1B .k=±1,b=0C .k=1,b=-1D .k=-1,b=-110.如图,三个正比例函数的图像分别对应的解析式是:①y ax =;②y bx =;③y cx =,则a 、b 、c 的大小关系是( ).A .a b c >>B .c b a <<C .b a c >>D .b c a >>二、填空题 11.正比例函数的图像一定经过的点的坐标为______.12.已知y 与x 成正比例,并且x =-3时,y =6,则y 与x 的函数关系式为________.13.若点(1,)b 和点(2,1)-都在同一个正比例函数的图象上,则b=________.14.已知函数y =(m ﹣1)x+m 2﹣1是正比例函数,则m =_____.15.如果函数()1y ax a =+-是正比例函数,那么这个函数的解析式是______.16.若2(1)(2)a y a x b =++-是正比例函数,则2020()a b -的值是________.三、解答题 17.在同一平面直角坐标系中画出函数2y x =,13y x =-,0.6y x =-的图象18.写出下列各题中x 与y 之间的关系式,并判断y 是否为x 的一次函数?是否为正比列函数?(1)汽车以60千米/时的速度匀速行驶,行驶路程y (千米)与行驶时间x (时)之间的关系;(2)圆的面积y (平方厘米)与它的半径x (厘米)之间的关系;(3)一棵树现在高50厘米,每个月长高2厘米,x 月后这棵树的高度为y (厘米)19.已知关于x 的函数y =(m +3)x |m +2|是正比例函数,求m 的值.20.已知正比例函数()231k y k x -=-,当k 为何值时,y 随x 的增大而减小?21.已知正比例函数图象上一个点A 到x 轴的距离为4,点A 的横坐标为-2,请回答下列问题:(1)求这个正比例函数;(2)这个正比例函数图象经过哪几个象限?(3)这个正比例函数的函数值y是随着x的增大而增大?还是随着x的增大而减小?22.如今餐馆常用一次性筷子,有人说这是浪费资源,破坏生态环境. 已知用来生产一次性筷子的大树的数量(万棵)与加工成一次性筷子的数量(亿双)成正比例关系,且100万棵大树能加工成18亿双一次性筷子.(1)求用来生产一次性筷子的大树的数量y(万棵)与加工成一次性筷子的数量x(亿双)的函数解析式;(2)据统计,我国一年要耗费一次性筷子约450亿双,生产这些一次性筷子约需要多少万棵大树?每1万棵大树占地面积为0.08平方千米,照这样计算,我国的森林面积每年因此将会减少大约多少平方千米?开放探究提优参考答案1.A【解析】 A. 3x y =是正比例函数,故A 符合题意; B. 21y x =-不是正比例函数,故B 不符合题意;C. 22y x =不是正比例函数,故C 不符合题意;D. 21y x =-+不是正比例函数,故D 不符合题意.故选A.2.B【解析】解:A 项,当2x =时,41y =≠,∴点(2,1)不符合,故本选项错误;B 项,当1x =时,2y =;当1x =-时,2y =-,∴两组数据均符合,故本选项正确;C 项,当2x =时,41y =≠,∴点(2,1)不符合,故本选项错误D 项,当1x =-时,22y =-≠,∴点(1,2)-不符合,故本选项错误.故选B.3.D【解析】解:令x a =,则2y a =-令1x a =+,则2(1)22y a a =-+=--,所以y 减少2.故选D.4.D【解析】解:∵长方体的高是1,长和宽分别是a 、b ,体积是V∴1V ab ab ==∴V 是ab 的正比例函数故选D.5.A【解析】解:正比例函数的图象过点M(−2,1),∴将点(−2,1)代入y=kx,得:1=−2k, ∴k=﹣12, ∴y=﹣12x, 故选A .6.C【解析】解:根据正比例函数的定义得:2﹣a ≠0,b ﹣1=0,∴a ≠2,b =1.故选C .7.D【解析】∵y =(m +3)x m 2﹣8是正比例函数,∴m 2﹣8=1且m +3≠0,解得m =3.故选:D .8.B【解析】由题意得:m 2-3=1,且m+1<0,解得:m=-2,故选:B .9.D【解析】形如(0)y kx k k =≠为常数, 的函数,叫做正比例函数,由此可知若函数y =(k ﹣1)x |k |+b +1是正比例函数,则满足:10{110k k b -≠=+=解得,k =﹣1,b =﹣1故选D.10.C【解析】解:根据图像可知,①与②经过一、三象限,③经过二、四象限,∴0a >,0b >,0c <,∵②越靠近y 轴,则b a >,∴大小关系为:b a c >>;故选择:C.11.()0,0【解析】解:∵正比例函数的一般形式为y=kx,∴当x=0时,y=0,∴正比例函数的图象一定经过原点.故答案为:(0,0).12.2y x =-【解析】设y=kx ,6=-3k ,解得k =-2.所以y =-2x .13.12- 【解析】设正比例函数解析式为y=kx,将点(-2,1)代入y=kx 中,得:1=-2k,解得:k=-12,∴正比例函数解析式为y=-12x . ∵点(1,b )在正比例函数y=-12x 的图象上, ∴b=-12, 故答案为-12. 14.-1【解析】解:由正比例函数的定义可得:m 2﹣1=0,且m ﹣1≠0, 解得:m =﹣1,故答案为:﹣1.15.y x =【解析】解:∵函数()1y ax a =+-是正比例函数∴10a -=解得:1a =∴这个函数的解析式是y x =.故答案为:y x =.16.1【解析】解:由2(1)(2)a y a x b =++-是正比例函数,得211020a a b ⎧=⎪+≠⎨⎪-=⎩,解得12a b =⎧⎨=⎩. ∴20202020()(1)1a b -=-=,故答案为:1.17.见解析【解析】解:列表:描点、画图:18.(1)一次函数,正比例函数;(2)不是x的一次函数,不是正比例函数;(3)是x的一次函数,不是正比例函数.【解析】解:(1)行驶路程y(千米)与行驶时间x(时)之间的关系为:y=60x,是x的一次函数,是正比例函数;(2)圆的面积y(平方厘米)与它的半径r(厘米)之间的关系为:y=πx2,不是x的一次函数,不是正比例函数;(3)x月后这棵树的高度为y(厘米)之间的关系为:y=50+2x,是x的一次函数,不是正比例函数.19.m=-1【解析】解:若关于x的函数y=(m+3)x|m+2|是正比例函数,需满足m+3≠0且|m+2|=1,解得m=-1故m的值为-1.k=-.20.2【解析】解:因为函数()231k y k x -=-是正比例函数,所以231k -=且10k -≠,所以2k =±,又因为y 随x 的增大而减小,所以2k =-.21.(1)2y x =或2y x =-;(2)当2y x =时,图象经过第一、三象限;当2y x =-时,图象经过第二、四象限;(3)当2y x =时,函数值y 是随着x 的增大而增大;当2y x =-时,函数值y 是随着x 的增大而减小.【解析】解:(1)正比例函数图象上一个点A 到x 轴的距离为4,点A 的横坐标为-2, ∴点A 的坐标为(2,4)-或(2,4)--.设这个正比例函数为(0)y kx k =≠,则42k =-或42k -=-,解得2k =-或2k =,故正比例函数为2y x =或2y x =-.(2)当2y x =时,图象经过第一、三象限;当2y x =-时,图象经过第二、四象限.(3)当2y x =时,函数值y 是随着x 的增大而增大;当2y x =-时,函数值y 是随着x 的增大而减小.22.(1)509y x =;(2)生产这些一次性筷子约需要2500万棵大树,照这样计算,我国的森林面积每年因此将减少大约200平方千米.【解析】解:(1)设y kx =,由题意,得10018k =,解得509k =. 所以用来加工一次性筷子的大树的数量y (万棵)与加工成筷子的数量x (亿双)的函数解析式为509y x =. (2)当450x =时,5045025009y =⨯=,25000.08200⨯=(平方米). 所以生产这些一次性筷子约需要2500万棵大树,照这样计算,我国的森林面积每年因此将减少大约200平方千米.。
正比例函数习题

《正比例函数》习题(含答案)一、单选题1.下列函数中,正比例函数有( ).(1)2y x =-(2)y =3)1yx =-(4)v =5)213y x =-(6)2y r π=(7)22y x =A .1个B .2个C .3个D .4个 2.一个正比例函数的图象经过点(2,4)-,它的表达式为 ( )A .2y x =-B .2y x =C .12y x =-D .12y x = 3.若正比例函数y =(1-2m)x 的图象经过点A(x 1,y 1)和点B(x 2,y 2),当x 1<x 2时,y 1>y 2,则m 的取值范围是( )A .m <0B .m >0C .m <12D .m >12 4.若y 关于x 的函数(2)y a x b =-+是正比例函数,则a ,b 应满足的条件是( ) A .2a ≠ B .0b = C .2a =且0b = D .2a ≠且0b = 5.邮购一种图书,每册定价20元,另加书价的5%作邮资,购书x 册,需付款y (元)与x (册)的函数关系式为( )A .205%y x x =+B .20.5y x =C .20(15%)y x =+D .19.95y x = 6.对于正比例函数2y x =-,当自变量x 的值增加1时,函数y 的值增加( ) A .12 B .12- C .2 D .-2 7.下列四组点中,可以在同一个正比例函数图象上的一组点是( ). A .(2,3),(4,6)- B .(2,3),(4,6)- C .(2,3),(4,6)-- D .(2,3),(4,6)- 8.如果正比例函数y =(a ﹣1)x (a 是常数)的图象在第一、三象限,那么a 的取值范围是( )A .a <0B .a >0C .a <1D .a >1 9.若某正比例函数过(2,3)-,则关于此函数的叙述不.正确的是( ). A .函数值随自变量x 的增大而增大B .函数值随自变量x 的增大而减小C .函数图象关于原点对称D .函数图象过二、四象限 10.如图,三个正比例函数的图像分别对应的解析式是:①y ax =;②y bx =;③y cx =,则a 、b 、c 的大小关系是( ).A .a b c >>B .c b a <<C .b a c >>D .b c a >>二、填空题 11.形如_________的函数叫做正比例函数.其中_______叫做比例系数.12.下列正比例函数中,y 的值随着x 值的增大而减小的有______.(1)8y x =;(2)0.6y x =-;(3)y =;(4)y x =. 13.按下列要求写出解析式:(1)若正方形的周长为p ,边长为a ,那么边长a 与周长p 之间的关系式为_________; (2)一辆汽车的速度为60km/h ,则行使路程()km s 与行使时间()h t 之间的关系式为___________;(3)圆的半径为r ,则圆的周长c 与半径r 之间的关系式为__________.14.正比例函数的图像过A 点,A 点的横坐标为3.且A 点到x 轴的距离为2,则此函数解析式是___________________ .15.正比例函数()35y m x =+,当m ______时,y 随x 的增大而增大.16.放假了,小明和小丽去蔬菜加工厂社会实践,两人同时工作了一段时间后,休息时小明对小丽说:“我已加工了28kg ,你呢?”小丽思考了一会儿说:“我来考考你. 图(1)、图(2)分别表示你和我的工作量与工作时间的关系,你能算出我加工了多少千克吗?”小明思考后回答:“你难不倒我,你现在加工了______kg.”三、解答题17.已知y 是x 的正比例函数,当x=﹣3时,y=12.(1)求y 关于x 的函数解析式;(2)当12x =-时的函数值.18.如图所示,正比例函数图象经过点A ,求这个正比例函数的解析式.19.已知正比例函数()y k 2x =-. (1)若y 的值随着x 值的增大而减小,则k 的范围是什么?(2)点()23-,在它的图象上,求这个函数的表达式. (3)在()2的结论下,若x 的取值范围是2x 4-≤≤,求y 的取值范围.参考答案1.C2.A3.D4.D5.C6.D7.C8.D9.A10.C11.y kx =(k 是常数,0k ≠) k 12.(2)(4)13.4p a = 60s t = 2c r π= 14.23y x =或2-3y x = 15.53>- 16.2017.(1)由题意可设y=kx (k ≠0).则 12=﹣3k ,解得,k=﹣4,所以y 关于x 的函数解析式是y=﹣4x ; (2)由(1)知,y=﹣4x ,当x=﹣12时,y=﹣4×(﹣12)=2. 即当12x =-时的函数值是2.18.解:设该正比例函数的解析式为y =kx (k ≠0), 由图象可知,该函数图象过点A (1,3), ∴k =3,∴该正比例函数的解析式为y =3x . 19.解:()1y 的值随着x 的值增大而减小, ∴ k 20-<,解得2k <.()2将点()23-,代入函数解析式可得()32k 2-=-, 解得12k =, ∴这个函数的表达式为3y x 2=-. ()3当x 2=-时,()3y 232=-⨯-=, 当x 4=时,3y 462=-⨯=-, 302-<,∴ y 随x 的增大而减小, ∴ 当2x 4-≤≤时,6y 3-≤≤.。
北师大版八年级数学上《4.2一次函数与正比例函数》同步测试含答案

八年级数学上册 第四章 一次函数 4.2 一次函数与正比例函数 同步测试题1.下列函数中,正比例函数是( )A .y =-xB .y =x +1C .y =x 2+1D .y =1x 2.下列函数关系式:①y =-x ;②y =2x +11;③y =x 2+x +1;④y =-3x,其中一次函数的个数是( ) A .1个 B .2个 C .3个 D .4个3.下列函数既是一次函数又是正比例函数的是( )A .y =3x 2B .y =xC .y =5x -4D .y =-3x4.下列函数中,是一次函数但不是正比例函数的是( )A .y =-x 2B .y =-5xC .y =-x -12D .y =x 2-1x5.下列变量之间的变化关系不是一次函数的是( )A .圆的周长和它的半径B .圆的面积和它的半径C .2x +y =5中的y 和xD .正方形的周长C 和它的边长a6.下列说法中不正确的是( )A .一次函数不一定是正比例函数B .不是一次函数就一定不是正比例函数C .正比例函数是特殊的一次函数D .不是正比例函数就一定不是一次函数7.若函数y =x +3+b 是正比例函数,则b =____.8.对于函数y =(k -3)x +k +3,当k =____时,它是正比例函数;当k____时,它是一次函数.9.已知一次函数y =2x +1,当x =0时,函数y 的值是____.10.把式子3x -y =2写成y =kx +b 的形式,则y = ,其中k =____,b =____.当x =-2时,y =____;当y =0时,x = .11.火车“动车组”以250千米/时的速度行驶,则行驶的路程s(千米)与行驶时间t(小时)之间的函数关系式是 ,它是 函数.(填“正比例”或“一次”)12.某城市的出租车收费标准如下:3公里内起步价为10元,超过3公里以后,以每公里2.4元记价.若某人坐出租车行驶x 公里,付给司机19.6元,则x = .13.下面由火柴棒拼出的一列图形中,第n 个图形由n 个正方形组成:通过观察可以发现:第4个图形中,火柴棒有____根,第n 个图形中,火柴棒有 根,若用y 表示火柴棒的根数,x 表示正方形的个数,则y 与x 的函数关系式是 ,y 是x 的____函数.14. 弹簧挂上物体后会伸长,测得某一弹簧的长度y(cm )与悬挂物体的质量x(kg )有下面一组对应值. 根据上述对应值回答:(1)弹簧不挂物体时的长度是多少?(2)当所挂物体的质量x每增加1 kg,弹簧长度如何变化?(3)求弹簧总长y( cm)与所挂物体质量x( kg)的函数关系式,并指出是什么函数?(4)答案1---6 ABDCDB7. 38. -3 ≠39. 110. 3x-2 3 -2 -8 2 311. s=250t 正比例12. 7公里13. 13 (3n+1) y=3x+1 一次14. 解:(1)12 cm(2)弹簧长度增加0.5 cm(3)y=12+0.5x,是一次函数(4)17 cm。
4.2 一次函数与正比例函数 北师大版八年级数学上册同步练习2及答案

新版北师大版八年级数学上册第4章《一次函数》同步练习及答案—4.2一次函数与正比例函数(2)
(1)基础训练
1.下列函数中,是一次函数但不是正比例函数的是().
A. B. C. D.
2.若函数是正比例函数,则= .
3.某学生的家离学校2km,他以km/min的速度骑车到学校,写出他与学校的距离s (km)和骑车的时间t(min)的函数关系式为,s是t的函数.
(2)提高训练
4.如图,在三角形ABC中,∠B与∠C的平分线交于点P,
设∠A=,∠BPC=,当∠A变化时,求与之间的函数关
系式,并判断是不是的一次函数.
5.将长为13.5cm,宽为8cm的长方形白纸,按照图所示的方法粘合起来,粘合部分宽为1.5cm.
(1)求5张白纸粘合后的长度;
(2)设张白纸粘合后的总长度为cm,求与之间的函数关系式.
(3)知识拓展
6.新华书店出售数学词典每本定价20元,代数习题集每售价5元,该店制定两种对学生的优惠政策:(1)买一本数学词典,赠送一本代数习题集;(2)如果不赠送,那么一律九折.某位同学购买4本数学词典和不少于4本的代数习题集.若以购买代数习题集为本、付
款元分别建立以上两种优惠方案中的与的函数关系式,并讨论该生买同样多的习题
集时,用哪种办法最省钱?
参考答案:
1. C.
2..
3.,();一次函数.
4.,;是的一次函数.
5.61.5cm;.
6.,×;
当时,选择(2)方案;
当时,选择两个方案都一样;
当时,选择(1)方案.。
八年级数学上册4.2一次函数与正比例函数正比例函数同步练习含解析

正比例函数一、选择题1.已知函数y=(k-1)2k x 为正比例函数,则() A.k≠±1B.k=±1C.k=-1D.k=12.若y=x+2-b 是正比例函数,则b 的值是() A.0B.-2C.2D.-0.53.(易错题)正比例函数y=x 的大致图像是()4. P 1(x 1,y 1),P 2(x 2,y 2)是正比例函数y=-12x 图像上的两点,下列判断中,正确的是() A.y 1>y 2B.y 1<y 2C.当x 1<x 2时,y 1<y 2D.当x 1<x 2时,y 1>y 25.(易错题)已知在正比例函数y=(a-1)x 的图像中,y 随x 的增大而减小,则a 的取值范围是()A.a <1B.a >1C.a≥1D.a≤16.若正比例函数的图象经过点(-1,2),则这个图象必经过点() A.(1,2) B.(-1,-2) C.(-2,-1)D.(1,-2)7.(北京景山学校月考)若点A (-2,m )在正比例函数y=- 12x 的图象上,则m 的值是() A.14B.14-C.1D.-18.(北京师大附中月考)某正比例函数的图像如图19-2-1所示,则此正比例函数的表达式为() A.y=-12-xB.y=12x C.y=-2xD.y=2x9.(天津河西区模拟)对于函数y=-k2x(k是常数,k≠0)的图象,下列说法不正确的是()A.是一条直线B.过点(1,kk-)C.经过一、三象限或二、四象限D.y随着x增大而减小二、填空题10.(教材习题变式)直线y= 32x经过第________象限,经过点(1,________),y随x增大而________;直线y=-(a2+1)x经过第________象限,y随x增大而________.三、解答题11.已知正比例函数y=(2m+4)x,求:(1)m为何值时,函数图象经过第一、三象限?(2)m为何值时,y随x的增大而减小?(3)m为何值时,点(1,3)在该函数的图象上?12.已知4y+3m与2x-5n成正比例,证明:y是x的一次函数.13.(教材例题变式)画正比例函数y= 13x与y=-13x的图象.14.已知点(12,1)在函数y=(3m-1)x的图象上.(1)求m的值;(2)求这个函数的分析式.15.已知y-3与2x-1成正比例,且当x=1时,y=6.(1)求y与x之间的函数解析式;(2)如果y的取值范围为0≤y≤5,求x的取值范围;(3)若点A(x1,y1),B(x2,y2)都在该函数的图象上,且y1>y2,试判断x1,x2的大小关系.16.(湖北启黄中学月考)已知函数()2321-=-my m x的图象是一条过原点的直线,且y随x的增大而减小,求m的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正比例函数
一、选择题(每小题4分,共12分)
1.正比例函数y=2x的图象所过的象限是( )
A.第一、三象限
B.第二、四象限
C.第一、二象限
D.第三、四象限
2.函数y=2x,y=-3x,y=-x的共同特点是( )
A.图象位于同样的象限随x的增大而减小
随x的增大而增大 D.图象都过原点
3.函数y=(1-k)x中,如果y随着x增大而减小,那么常数k的取值范围是( )
<1 >1 ≤1 ≥1
二、填空题(每小题4分,共12分)
4.(2013·钦州中考)请写出一个图象经过第一、三象限的正比例函数的解析式.
5.(2012·上海中考)已知正比例函数y=kx(k≠0),点(2,-3)在函数图象上,则y 随x的增大而(增大或减小).
6.在正比例函数y=(m-8)x中,如果y随自变量x的增大而减小,那么正比例函数y=(8-m)x的图象在第象限.
三、解答题(共26分)
7.(8分)已知正比例函数y=kx(k是常数,k≠0),当-3≤x≤1时,对应的y的取值范围是-1≤y≤,且y随x的减小而减小,求k的值.
8.(8分)已知函数y=(m-1)x|m|-2,当m为何值时,正比例函数y随x的增大而增大
【拓展延伸】
9.(10分)正比例函数y=2x的图象如图所示,点A的坐
标为(2,0),y=2x的函数图象上是否存在一点P,使△
OAP的面积为4,如果存在,求出点P的坐标,如果不存在,
请说明理由.
答案解析
1.【解析】选A.∵正比例函数y=2x中,k=2>0,
∴此函数的图象经过第一、三象限.
2.【解析】选D.三个函数都是正比例函数,图象都是过原点的直线,而y=2x与其他两个函数的比例系数的符号不同,所以它们经过的象限及增减性有所不同.
3.【解析】选B.∵函数y=(1-k)x中,y随着x的增大而减小,∴1-k<0,解得k>1.
4.【解析】设此正比例函数的解析式为y=kx(k≠0),
∵此正比例函数的图象经过第一、三象限,∴k>0,
∴符合条件的正比例函数解析式可以为:y=x(答案不唯一).
答案:y=x(答案不唯一)
5.【解析】∵点(2,-3)在正比例函数y=kx(k≠0)的图象上,∴2k=-3,
解得:k=-,∴正比例函数解析式是:y=-x,
∵k=-<0,∴y随x的增大而减小.
答案:减小
6.【解析】因为在正比例函数y=(m-8)x中,y的值随自变量x的增大而减小,所以m-8<0,所以8-m>0,所以函数y=(8-m)x的图象在第一、三象限.
答案:一、三
7.【解析】∵y随x的减小而减小,∴k>0,则有x=-3时,y=-1;x=1时,y=,所以点(-3,-1),(1,)在函数y=kx(k是常数,k≠0)的图象上,所以-1= k·(-3),所以k=.
8.【解析】因为此函数是正比例函数,
所以|m|-2=1,所以m=±3,
因为正比例函数y随x的增大而增大,
所以m-1>0,所以m=-3不合题意,应舍去.
所以m=3时,正比例函数y随x的增大而增大.
9.【解析】因为点A的坐标为(2,0),所以OA=2,设点P的坐标为(n,m),
因为△OAP的面积为4,
所以×OA×|m|=4,
即×2×|m|=4,所以m=±4,
当m=4时,把x=n,y=m=4代入y=2x,得4=2n,
所以n=2,此时点P的坐标为(2,4),
当m=-4时,把x=n,y=m=-4代入y=2x,
得-4=2n,所以n=-2,
此时点P的坐标为(-2,-4),
综上所述,存在点P的坐标为(2,4)或(-2,-4).
正比例函数
一、选择题(每小题4分,共12分)
1.(2012·南充中考)下列函数中,是正比例函数的是( )
=-8x =
=5x2+6 =
2.下列函数解析式中,不是正比例函数的是( )
=-2 +8x=0
=4y =-x
3.若函数y=(2m+1)x2+(1-2m)x(m为常数)是正比例函数,则m的值为( )
>=<=-
二、填空题(每小题4分,共12分)
4.函数y=(2-k)x是正比例函数,则k的取值范围是.
5.我国是一个严重缺水的国家,大家应倍加珍惜水资源,节约用水.据测试,拧不紧的水龙头每秒钟会滴下2滴水,每滴水约.小明同学在洗手后,没有把水龙头拧紧,当小明离开xh后水龙头滴了ymL水.则y关于x的函数解析式为.
6.某商店进一批货,每件50元,售出时每件加价8元,如果售出x件应得货款为y 元,那么y与x的函数解析式是,售出10件时,所得货款为元.
三、解答题(共26分)
7.(8分)已知函数y=(2m-1)x+1-3m,m为何值时,这个函数是正比例函数
8.(8分)已知y与(x-1)成正比例,当x=4时,y=-12.
(1)写出y与x之间的函数解析式.
(2)当x=-2时,求函数值y.
(3)当y=20时,求自变量x的值.
【拓展延伸】
9.(10分)已知:y=y1+y2,y1与x成正比例,y2与x2成正比例,当x=1时,y=6,当x=3时,y=8,求y关于x的解析式.
答案解析
1.【解析】选,y=-8x是正比例函数,故本选项正确;B,y=,自变量x在分母上,不是正比例函数,故本选项错误;C,y=5x2+6,自变量x的指数是2,不是1,不是正比例函数,故本选项错误;D,y=不符合正比例函数的定义,故本选项错误.
2.【解析】选A.根据正比例函数的定义:一般地,两个变量x,y之间的解析式可以表示成形如y=kx(k为常数,且k≠0)的函数,那么y就叫做x的正比例函数.不是正比例函数的是A.
3.【解析】选D.根据正比例函数的定义,2m+1=0,1-2m≠0.从而求解.解得m=-.
4.【解析】由正比例函数的定义可得2-k≠0,
解得k≠2.
答案:k≠2
5.【解析】因为水龙头每秒钟会滴下2滴水,每滴水约 mL,所以当小明离开xh 后水龙头的滴水量y=3600×2×=360x.
答案:y=360x
6.【解析】由题意可得y=58x,当x=10时,y=580.
答案:y=58x 580
7.【解析】根据正比例函数的定义,得1-3m=0,且2m-1≠0,解得m=.
8.【解析】(1)设y与x之间的函数解析式为y=k(x-1),
因为当x=4时,y=-12,所以-12=k(4-1),解得k=-4,所以y与x之间的函数解析式为y=-4x+4.
(2)当x=-2时,y=-4×(-2)+4=12.
(3)当y=20时,20=-4x+4,解得x=-4.
9.【解析】∵y1与x成正比例,设y1=k1x,
又∵y2与x2成正比例,设y2=k2x2,y=y1+y2= k1x+ k2x2,当x=1时,y=6,当x=3时,y=8,
可得解得
∴y关于x的解析式为y=x-x2.。