(完整版)正比例函数练习题及答案
第1课时--正比例函数的图象和性质-练习题(含答案)(1)

第1课时正比例函数的图象和性质一.选择题(共10小题)1.下列函数表达式中,y是x的正比例函数的是()A.y=﹣2x2B.y=C.y=D.y=x﹣2 2.若y=x+2﹣b是正比例函数,则b的值是()A.0B.﹣2C.2D.﹣0.5 3.若函数是关于x的正比例函数,则常数m的值等于()A.±2B.﹣2C.D.4.下列说法正确的是()A.圆面积公式S=πr2中,S与r成正比例关系B.三角形面积公式S=ah中,当S是常量时,a与h成反比例关系C.y=中,y与x成反比例关系D.y=中,y与x成正比例关系5.下列各选项中的y与x的关系为正比例函数的是()A.正方形周长y(厘米)和它的边长x(厘米)的关系B.圆的面积y(平方厘米)与半径x(厘米)的关系C.如果直角三角形中一个锐角的度数为x,那么另一个锐角的度数y与x间的关系D.一棵树的高度为60厘米,每个月长高3厘米,x月后这棵的树高度为y厘米6.若函数y=(m﹣3)x|m|﹣2是正比例函数,则m值为()A.3B.﹣3C.±3D.不能确定7.已知正比例函数y=(k﹣2)x+k+2的k的取值正确的是()A.k=2B.k≠2C.k=﹣2D.k≠﹣2 8.已知正比例函数y=kx(k≠0)的图象如图所示,则在下列选项中k值可能是()A.1B.2C.3D.48题图9题图9.如图所示,在同一直角坐标系中,一次函数y=k1x、y=k2x、y=k3x、y=k4x的图象分别为l1、l2、l3、l4,则下列关系中正确的是()A.k1<k2<k3<k4B.k2<k1<k4<k3C.k1<k2<k4<k3D.k2<k1<k3<k4 10.在直角坐标系中,既是正比例函数y=kx,又是y的值随x的增大而减小的图象是()A.B.C.D.二.填空题(共9小题)11.若函数y﹦(m+1)x+m2﹣1是正比例函数,则m的值为_________ .12.已知y=(k﹣1)x+k2﹣1是正比例函数,则k= _________ .13.写出一个正比例函数,使其图象经过第二、四象限:_________ .14.请写出直线y=6x上的一个点的坐标:_________ .15.已知正比例函数y=kx(k≠0),且y随x的增大而增大,请写出符合上述条件的k的一个值:_________ .16.已知正比例函数y=(m﹣1)的图象在第二、第四象限,则m的值为_________ .17.若p1(x1,y1)p2(x2,y2)是正比例函数y=﹣6x的图象上的两点,且x1<x2,则y1,y2的大小关系是:y1_________ y2.点A(-5,y1)和点B(-6,y2)都在直线y= -9x的图像上则y1__________y218.正比例函数y=(m﹣2)x m的图象的经过第_________ 象限,y随着x的增大而_________ .19.函数y=﹣7x的图象在第_________ 象限内,经过点(1,_________ ),y随x的增大而_________ .三.解答题(共3小题)20.已知:如图,正比例函数的图象经过点P和点Q(﹣m,m+3),求m的值.21.已知y+2与x﹣1成正比例,且x=3时y=4.(1)求y与x之间的函数关系式;(2)当y=1时,求x的值.22.已知y=y1+y2,y1与x2成正比例,y2与x﹣2成正比例,当x=1时,y=5;当x=﹣1时,y=11,求y与x 之间的函数表达式,并求当x=2时y的值.x kW h g与应付饱费y(元)的关23. 为缓解用电紧张矛盾,某电力公司特制定了新的用电收费标准,每月用电量()系如图所示。
(完整版)正比例函数和一次函数基础练习题

1.下列关系中的两个量成正比例的是( )A .从甲地到乙地,所用的时间和速度;B .正方形的面积与边长C .买同样的作业本所要的钱数和作业本的数量;D .人的体重与身高2.下列函数中,y 是x 的正比例函数的是( )A .y=4x+1B .y=2x 2C .. 3.下列说法中不成立的是( )A .在y=3x-1中y+1与x 成正比例;B .在y=-2x 中y 与x 成正比例 C .在y=2(x+1)中y 与x+1成正比例; D .在y=x+3中y 与x 成正比例4.若函数y=(2m+6)x 2+(1-m )x 是正比例函数,则m 的值是( )A .m=-3B .m=1C .m=3D .m>-35.已知(x 1,y 1)和(x 2,y 2)是直线y=-3x 上的两点,且x 1>x 2,则y 1与y 2•的大小关系是( )A .y 1>y 2B .y 1<y 2C .y 1=y 2D .以上都有可能6.形如___________的函数是正比例函数.7.若x 、y 是变量,且函数y=(k+1)x k2是正比例函数,则k=_________.8.正比例函数y=kx (k 为常数,k<0)的图象依次经过第________象限,函数值随自变量的增大而_________.9.已知y 与x 成正比例,且x=2时y=-6,则y=9时x=________.10.写出下列各题中x 与y 的关系式,并判断y 是否是x 的正比例函数?(1)电报收费标准是每个字0.1元,电报费y (元)与字数x (个)之间的函数关系;(2)地面气温是28℃,如果每升高1km ,气温下降5℃,则气温x (•℃)•与高度y (km )的关系;(3)圆面积y (cm 2)与半径x (cm )的关系.11.在函数y=-3x 的图象上取一点P ,过P 点作PA ⊥x 轴,已知P 点的横坐标为-•2,求△POA 的面积(O 为坐标原点).一、选择题1、下列函数中,y 是x 的一次函数的是( )①y=x-6;②y= -3x –1;③y=-0.6x ;④y=7-xA 、①②③B 、①③④C 、①②③④D 、②③④2、一次函数y= -3x+2的图象经过第( ) 象限A 、一、二、三;B 、一、二、四;C 、一、三、四 ;D 、二、三、四。
完整版)正比例函数和一次函数基础练习题

完整版)正比例函数和一次函数基础练习题1.下列关系中成正比例的是()A.从甲地到乙地,所用的时间和速度;B.正方形的面积与边长;C.买同样的作业本所要的钱数和作业本的数量;D.人的体重与身高。
2.下列函数中,y是x的正比例函数的是()B.y=2x。
3.下列说法中不成立的是()A.在y=3x-1中y+1与x成正比例;B.在y=-x^2中y与x成正比例;C.在y=2(x+1)中y与x+1成正比例;D.在y=x+3中y与x成正比例。
4.若函数y=(2m+6)x^2+(1-m)x是正比例函数,则m 的值是()D.m>-3.5.已知(x1,y1)和(x2,y2)是直线y=-3x上的两点,且x1>x2,则y1与y2的大小关系是()B.y1<y2.6.形如y=kx(k为常数)的函数是正比例函数。
7.若x、y是变量,且函数y=(k+1)xk^2是正比例函数,则k=0.8.正比例函数y=kx(k为常数,k<0)的图象依次经过第二象限,函数值随自变量的增大而减小。
9.已知y与x成正比例,且x=2时y=-6,则y=9时x=3.10.1)电报费y(元)=0.1x(个),y是x的正比例函数。
2)气温下降5℃对应高度上升1km,可得y=28-5x,y不是x的正比例函数。
3)圆面积y(cm^2)=πx^2,y是x的正比例函数。
11.题目中的函数为y=-3x,P点的坐标为(-√2.3√2),PA的长度为3√2,故△POA的面积为3.一、选择题1、下列函数中,y是x的一次函数的是()①y=x-6;②y= -3x–1;③y=-0.6x;④y=7-xB、①③④2、一次函数y= -3x+2的图象经过第三象限。
C、一、三、四。
3、如果一次函数y=kx+b的图象经过点(-2,-1)和点(1,2),那么它的图象不会经过第三象限。
4、正确的说法是:C、正比例函数不是一次函数。
5、当ab>0,ac<0时,直线ax+by+c=0不通过第三象限。
八年级数学-正比例函数练习题(含解析)

八年级数学-正比例函数练习题(含解析)一、单选题1.下列函数中,y 是x 的正比例函数的是( )A .3xy = B .21y x =- C .22y x = D .21y x =-+2.经过以下一组点可以画出函数2y x =图象的是( )A .(0,0)和(2,1)B .(1,2)和(1,2)--C .(1,2)和(2,1)D .(1,2)-和(1,2)3.对于正比例函数2y x =-,当自变量x 的值增加1时,函数y 的值增加( )A .12 B .12- C .2 D .-24.已知长方体的高是1,长和宽分别是a 、b ,体积是V ,则下列说法正确的是()A .V 是b 的正比例函数B .V 是a 的正比例函数C .V 是a 或b 的正比例函数D .V 是ab 的正比例函数5.某正比例函数的图象如图所示,则此正比例函数的表达式为()A .y=12-x B .y=12x C .y=-2x D .y=2x6.函数y=(2﹣a )x+b ﹣1是正比例函数的条件是( )A .a≠2B .b=1C .a≠2且b=1 D .a,b 可取任意实数7.已知y =(m +3)x m2−8是正比例函数,则m 的值是( ) A .8 B .4 C .±3D .3 8.关于x 的正比例函数,y=(m+1)23mx -若y 随x 的增大而减小,则m 的值为 ( )A .2B .-2C .±2D .-129.若函数y=(k-1)x |k|+b+1是正比例函数,则k 和b 的值为( )A .k=±1,b=-1B .k=±1,b=0C .k=1,b=-1D .k=-1,b=-110.如图,三个正比例函数的图像分别对应的解析式是:①y ax =;②y bx =;③y cx =,则a 、b 、c 的大小关系是( ).A .a b c >>B .c b a <<C .b a c >>D .b c a >>二、填空题 11.正比例函数的图像一定经过的点的坐标为______.12.已知y 与x 成正比例,并且x =-3时,y =6,则y 与x 的函数关系式为________.13.若点(1,)b 和点(2,1)-都在同一个正比例函数的图象上,则b=________.14.已知函数y =(m ﹣1)x+m 2﹣1是正比例函数,则m =_____.15.如果函数()1y ax a =+-是正比例函数,那么这个函数的解析式是______.16.若2(1)(2)a y a x b =++-是正比例函数,则2020()a b -的值是________.三、解答题 17.在同一平面直角坐标系中画出函数2y x =,13y x =-,0.6y x =-的图象18.写出下列各题中x 与y 之间的关系式,并判断y 是否为x 的一次函数?是否为正比列函数?(1)汽车以60千米/时的速度匀速行驶,行驶路程y (千米)与行驶时间x (时)之间的关系;(2)圆的面积y (平方厘米)与它的半径x (厘米)之间的关系;(3)一棵树现在高50厘米,每个月长高2厘米,x 月后这棵树的高度为y (厘米)19.已知关于x 的函数y =(m +3)x |m +2|是正比例函数,求m 的值.20.已知正比例函数()231k y k x -=-,当k 为何值时,y 随x 的增大而减小?21.已知正比例函数图象上一个点A 到x 轴的距离为4,点A 的横坐标为-2,请回答下列问题:(1)求这个正比例函数;(2)这个正比例函数图象经过哪几个象限?(3)这个正比例函数的函数值y是随着x的增大而增大?还是随着x的增大而减小?22.如今餐馆常用一次性筷子,有人说这是浪费资源,破坏生态环境. 已知用来生产一次性筷子的大树的数量(万棵)与加工成一次性筷子的数量(亿双)成正比例关系,且100万棵大树能加工成18亿双一次性筷子.(1)求用来生产一次性筷子的大树的数量y(万棵)与加工成一次性筷子的数量x(亿双)的函数解析式;(2)据统计,我国一年要耗费一次性筷子约450亿双,生产这些一次性筷子约需要多少万棵大树?每1万棵大树占地面积为0.08平方千米,照这样计算,我国的森林面积每年因此将会减少大约多少平方千米?开放探究提优参考答案1.A【解析】 A. 3x y =是正比例函数,故A 符合题意; B. 21y x =-不是正比例函数,故B 不符合题意;C. 22y x =不是正比例函数,故C 不符合题意;D. 21y x =-+不是正比例函数,故D 不符合题意.故选A.2.B【解析】解:A 项,当2x =时,41y =≠,∴点(2,1)不符合,故本选项错误;B 项,当1x =时,2y =;当1x =-时,2y =-,∴两组数据均符合,故本选项正确;C 项,当2x =时,41y =≠,∴点(2,1)不符合,故本选项错误D 项,当1x =-时,22y =-≠,∴点(1,2)-不符合,故本选项错误.故选B.3.D【解析】解:令x a =,则2y a =-令1x a =+,则2(1)22y a a =-+=--,所以y 减少2.故选D.4.D【解析】解:∵长方体的高是1,长和宽分别是a 、b ,体积是V∴1V ab ab ==∴V 是ab 的正比例函数故选D.5.A【解析】解:正比例函数的图象过点M(−2,1),∴将点(−2,1)代入y=kx,得:1=−2k, ∴k=﹣12, ∴y=﹣12x, 故选A .6.C【解析】解:根据正比例函数的定义得:2﹣a ≠0,b ﹣1=0,∴a ≠2,b =1.故选C .7.D【解析】∵y =(m +3)x m 2﹣8是正比例函数,∴m 2﹣8=1且m +3≠0,解得m =3.故选:D .8.B【解析】由题意得:m 2-3=1,且m+1<0,解得:m=-2,故选:B .9.D【解析】形如(0)y kx k k =≠为常数, 的函数,叫做正比例函数,由此可知若函数y =(k ﹣1)x |k |+b +1是正比例函数,则满足:10{110k k b -≠=+=解得,k =﹣1,b =﹣1故选D.10.C【解析】解:根据图像可知,①与②经过一、三象限,③经过二、四象限,∴0a >,0b >,0c <,∵②越靠近y 轴,则b a >,∴大小关系为:b a c >>;故选择:C.11.()0,0【解析】解:∵正比例函数的一般形式为y=kx,∴当x=0时,y=0,∴正比例函数的图象一定经过原点.故答案为:(0,0).12.2y x =-【解析】设y=kx ,6=-3k ,解得k =-2.所以y =-2x .13.12- 【解析】设正比例函数解析式为y=kx,将点(-2,1)代入y=kx 中,得:1=-2k,解得:k=-12,∴正比例函数解析式为y=-12x . ∵点(1,b )在正比例函数y=-12x 的图象上, ∴b=-12, 故答案为-12. 14.-1【解析】解:由正比例函数的定义可得:m 2﹣1=0,且m ﹣1≠0, 解得:m =﹣1,故答案为:﹣1.15.y x =【解析】解:∵函数()1y ax a =+-是正比例函数∴10a -=解得:1a =∴这个函数的解析式是y x =.故答案为:y x =.16.1【解析】解:由2(1)(2)a y a x b =++-是正比例函数,得211020a a b ⎧=⎪+≠⎨⎪-=⎩,解得12a b =⎧⎨=⎩. ∴20202020()(1)1a b -=-=,故答案为:1.17.见解析【解析】解:列表:描点、画图:18.(1)一次函数,正比例函数;(2)不是x的一次函数,不是正比例函数;(3)是x的一次函数,不是正比例函数.【解析】解:(1)行驶路程y(千米)与行驶时间x(时)之间的关系为:y=60x,是x的一次函数,是正比例函数;(2)圆的面积y(平方厘米)与它的半径r(厘米)之间的关系为:y=πx2,不是x的一次函数,不是正比例函数;(3)x月后这棵树的高度为y(厘米)之间的关系为:y=50+2x,是x的一次函数,不是正比例函数.19.m=-1【解析】解:若关于x的函数y=(m+3)x|m+2|是正比例函数,需满足m+3≠0且|m+2|=1,解得m=-1故m的值为-1.k=-.20.2【解析】解:因为函数()231k y k x -=-是正比例函数,所以231k -=且10k -≠,所以2k =±,又因为y 随x 的增大而减小,所以2k =-.21.(1)2y x =或2y x =-;(2)当2y x =时,图象经过第一、三象限;当2y x =-时,图象经过第二、四象限;(3)当2y x =时,函数值y 是随着x 的增大而增大;当2y x =-时,函数值y 是随着x 的增大而减小.【解析】解:(1)正比例函数图象上一个点A 到x 轴的距离为4,点A 的横坐标为-2, ∴点A 的坐标为(2,4)-或(2,4)--.设这个正比例函数为(0)y kx k =≠,则42k =-或42k -=-,解得2k =-或2k =,故正比例函数为2y x =或2y x =-.(2)当2y x =时,图象经过第一、三象限;当2y x =-时,图象经过第二、四象限.(3)当2y x =时,函数值y 是随着x 的增大而增大;当2y x =-时,函数值y 是随着x 的增大而减小.22.(1)509y x =;(2)生产这些一次性筷子约需要2500万棵大树,照这样计算,我国的森林面积每年因此将减少大约200平方千米.【解析】解:(1)设y kx =,由题意,得10018k =,解得509k =. 所以用来加工一次性筷子的大树的数量y (万棵)与加工成筷子的数量x (亿双)的函数解析式为509y x =. (2)当450x =时,5045025009y =⨯=,25000.08200⨯=(平方米). 所以生产这些一次性筷子约需要2500万棵大树,照这样计算,我国的森林面积每年因此将减少大约200平方千米.。
沪教版八年级上册数学第十八章 正比例函数和反比例函数含答案(必考题)

沪教版八年级上册数学第十八章正比例函数和反比例函数含答案一、单选题(共15题,共计45分)1、如图,在直角坐标系中,有菱形,点的坐标是,双曲线经过点,且,则k的值为()A.40B.48C.64D.802、函数的自变量x的取值范围是()A.x<1B.x>1C.x≤1D.x≥13、下列函数中,反比例函数是()A.y=x﹣1B.y=C.y=D.y=4、如图,点G是BC的中点,点H在AF上,动点P以每秒2㎝的速度沿图1的边线运动,运动路径为:G→C→D→E→F→H,相应的△ABP的面积y(cm2)关于运动时间t(s)的函数图象如图2,若AB=6cm,则下列六个结论中正确的个数有()①图1中的BC长是8cm;②图2中的M点表示第4秒时y的值为24cm2;③图1中的CD长是4cm;④图1中的DE长是3cm;⑤图2中的Q点表示第8秒时y的值为33;⑥图2中的N点表示第12秒时y的值为18cm2.A.3个B.4个C.5个D.6个5、已知反比例函数()的图像上有两点A( ,),B( ,),且,则的值是()A.正数B.负数C.非正数D.不能确定6、如图1,在等边△ABC中,点E、D分别是AC,BC边的中点,点P为AB边上的一个动点,连接PE,PD,PC,DE.设AP=x,图1中某条线段的长为y,若表示y与x的函数关系的图像大致如图2所示,则这条线段可能是图1中的()A.线段PDB.线段PCC.线段PED.线段DE7、公元前3世纪,古希腊科学家阿基米德发现了杠杆平衡,后来人们把它归纳为“杠杆原理”,即:阻力阻力臂=动力动力臂.小伟欲用撬棍撬动一块石头,已知阻力和阻力臂分别是和,则动力F (单位: N)关于动力臂L(单位:)的函数解析式正确的是()A. B. C. D.8、小明学习了物理中的杠杆平衡原理发现:阻力阻力臂动力动力臂.现已知某一杠杆的阻力和阻力臂分别为2400N和1m,则动力(单位:N)关于动力臂(单位:m)的函数图象大致是()A. B.C. D.9、函数的自变量x的取值范围是()A.x≥2B.x≥3C.x≠3D.x≥2且x≠310、如图所示的函数图象反映的过程是:小徐从家去菜地浇水,又去玉米地除草,然后回家.其中x表示时间,y表示小徐离他家的距离.读图可知菜地离小徐家的距离为()A.1.1千米B.2千米C.15千米D.37千米11、如图,在平面直角坐标系中有一矩形ABCD黑色区域,其中A(6,2),B (6,1),C(2,1),D(2,2),有一动态扫描线为双曲线y=(x>0),当扫描线遇到黑色区域时,区域便由黑变白,则能够使黑色区域变白的k的取值范围是()A.4≤k≤6B.2≤k≤12C.6<k<12D.2<k<1212、如图,次哈尔滨至幸福镇的动车需要匀速通过一条隧道(隧道长大于火车长),火车在隧道内的长度与火车进入隧道的时间之间的关系用图象描述大致是()A. B. C. D.13、如图,直线l和双曲线y=(k>0)交于A、B两点,P是线段AB上的点(不与A、B重合),分别过点A、B、P作x轴的垂线,垂足分别为C、D、E,连接OA、OB、OP,设△AOC的面积为S1、△BOD的面积为S2、△POE的面积为S3,则有( )A. S1= S2<S3B. S1>S2>S3C. S1= S2>S3D.S1<S2<S314、如图,点A为反比例函数图象上一点,过A作AB⊥x轴于点B,连接OA,则△ABO的面积为()A.﹣4B.4C.﹣2D.215、如图中的图象(折线ABCDE)描述了一汽车在某一直道上的行驶过程中,汽车离出发地的距离s(千米)和行驶时间t(小时)之间的函数关系.根据图中提供的信息,给出下列说法:①汽车共行驶了120千米;②汽车在行驶途中停留了0.5小时;③汽车在整个行驶过程中的平均速度为千米/时;④汽车自出发后3小时至4.5小时之间行驶的速度在逐渐减少.其中正确的说法有()A.1个B.2个C.3个D.4个二、填空题(共10题,共计30分)16、如图,过原点的直线l与反比例函数y=﹣的图象交于M,N两点,若MO=5,则ON=________.根据图象猜想,线段MN的长度的最小值________.17、若双曲线的图象在第二、四象限内,则的取值范围是________.18、如图,反比例函数y= 的图象与一次函数y=x+2的图象交于A、B两点.当x________时,反比例函数的值小于一次函数的值.19、若y=(m+3)x m﹣5是反比例函数,则m满足的条件是________ .20、如图,一次函数y=-2x+b与反比例函数y= (x>0)的图象交于A,B两点,连结OA,过B作BD⊥x轴于点D,交OA于点C,若CD:CB=1:8,则b=________.21、如图三个反比例函数,,在x轴上方的图象,由此观察得到的大小关系为________22、若y=(m﹣1)x|m|是正比例函数,则m的值为________23、某中学要在校园内划出一块面积为100 m2的矩形土地做花圃,设这个矩形的相邻两边长分别为xm和ym,那么y关于x的函数解析式为________.24、已知函数,若,则 x=________ .25、在函数y= 中,自变量x的取值范围是________.三、解答题(共5题,共计25分)26、一个正比例函数的图象经过点A(﹣2,3),B(a,﹣3),求a的值.27、已知,函数y=(1﹣3k)x+2k﹣1,试回答:(1)k为何值时,图象过原点?(2)k为何值时,y随x增大而增大?28、已知函数 y=(5m﹣3)x2﹣n+(n+m),(1)当m,n为何值时是一次函数?(2)当m,n为何值时,为正比例函数?(3)当m,n为何值时,为反比例函数?29、分析并指出下列关系中的变量与常量:(1)球的表面积S cm2与球的半径R cm的关系式是S=4πR2;米/秒向上抛一个小球,小球的高度h米与小球运动的时(2)以固定的速度v间t秒之间的关系式是h=vt﹣4.9t2;(3)一物体自高处自由落下,这个物体运动的距离h m与它下落的时间t s的关系式是h=gt2(其中g取9.8m/s2);(4)已知橙子每kg的售价是1.8元,则购买数量Wkg与所付款x元之间的关系式是x=1.8W.30、已知某易拉罐厂设计一种易拉罐,在设计过程中发现符合要求的易拉罐的底面半径与铝用量有如下关系:底面半径x(cm)1.6 2.0 2.4 2.8 3.2 3.6 4.0用铝量y(cm3) 6.9 6.0 5.6 5.5 5.7 6.0 6.5(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当易拉罐底面半径为2.4cm时,易拉罐需要的用铝量是多少?(3)根据表格中的数据,你认为易拉罐的底面半径为多少时比较适宜?说说你的理由.(4)粗略说一说易拉罐底面半径对所需铝质量的影响.参考答案一、单选题(共15题,共计45分)1、B2、B3、C4、B5、D6、C7、C8、A9、D10、A11、B12、A13、A14、D15、B二、填空题(共10题,共计30分)17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、29、30、。
初中数学《一次函数、正比例函数》典型例题及答案解析

初中数学《一次函数、正比例函数》典型例题及答案解析1.如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的表达式是()A.y=x﹣3. B.y=2x+3. C.y=﹣x+3. D.y=2x﹣3.【答案】C【解析】【分析】根据正比例函数图象确定B点坐标再根据图象确定A点的坐标,设出一次函数解析式,代入一次函数解析式,即可求出.【详解】∵B点在正比例函数y=2x的图象上,横坐标为1,∴y=2×1=2,∴B(1,2),设一次函数解析式为:y=kx+b,∵一次函数的图象过点A(0,3),与正比例函数y=2x的图象相交于点B(1,2),∴可得出方程组,解得,则这个一次函数的解析式为y=−x+3,故选:C.【点睛】本题主要考查一次函数的解析式和一次函数的图象与性质,熟悉掌握是关键.2.下列式子中,表示y是x的正比例函数的是()A.y=. B.y=x+2. C.y=x2. D.y=2x.根据正比例函数的定义条件:k为常数且,自变量次数为1,判断各选项,即可得出答案.【详解】A、,自变量次数不为1,故本选项错误;B、. y=x+2,是和的形式,故本选项错误;C、y=x2,自变量次数不为1,故本选项错误;D、y=2x ,符合正比例函数的含义,故本选项正确;所以D选项是正确的.【点睛】本题考查了正比例函数的定义.解题关键是掌握正比例函数的定义条件:正比例函数的定义条件是:k为常数且,自变量次数为1.3.定义(p,q)为一次函数y=px+q的特征数.若特征数是(2,k-2)的一次函数为正比例函数,则k的值是()A.0 B.-2 C.2 D.任何数【答案】C【解析】【分析】根据新定义写出一次函数的表达式;由正比例函数的定义确定k的值.【详解】解:根据题意,特征数是(2,k-2)的一次函数表达式为:y=2x+(k-2).因为此一次函数为正比例函数,所以k-2=0,解得:k=2.故选C.【点睛】本题主要考查一次函数、正比例函数的定义,有新意,但难度不大.4.一个正比例函数的图象经过(2,-1),则它的表达式为A.y=-2x B.y=2x C.D.设该正比例函数的解析式为,再把点代入求出的值即可.【详解】设该正比例函数的解析式为,正比例函数的图象经过点,,解得,这个正比例函数的表达式是.故选:.【点睛】考查的是待定系数法求正比例函数的解析式,熟知正比例函数图象上点的坐标一定适合此函数的解析式是解答此题的关键.5.在平面直角坐标系中,记直线与两坐标围成的面积为,则最接近( )A.B.C.D.【答案】C【解析】令x=0,y=,令y=0,x=,则直线(k为正整数)与x轴的交点坐标为(,0),与y轴的交点坐标为(0,),∴直线与两坐标轴所围成的图形的面积为S k=,当k为正整数时,S k=当k=1,S1=;当k=2,S2=,,=,=,=,故选C.6.已知等腰三角形周长为,则底边长关于腰长的函数图象是( )A.B.C.D.【答案】D【解析】根据题意得y+2x=20,y=-2x+20,∵y>0且2x>y,∴-2x+20>0且2x>-2x+20,∴5<x<10,∴底边长y关于腰长x的函数关系为y=-2x+20(5<x<10),∵k=-2<0,∴y随x的增大而减小,故选D.7.如果是的正比例函数,是的一次函数,那么是的( )A.正比例函数B.一次函数C.正比例函数或一次函数D.不构成函数关系【答案】B【解析】由题意得:y=kx,x=k1z+b,则y=kk1z+kb,当b≠0时,y是z的一次函数,②当b=0时,y是z的正比例函数,综上所述,y是z的一次函数,故选B.A.B.C.D.【答案】A【解析】因为一次函数y=-2x+4的图像与x轴交点坐标是(2,0)与y轴交点坐标是(0,4),故选A.9.若点在函数的图象上,则下列各点在此函数图象上的是( )A.B.C.D.【答案】A【解析】∵点A(2,4)在函数y=kx的图象上,∴4=2k,解得k=2,∴一次函数的解析式为y=2x,A选项,∵当x=1时,y=2,∴此点在函数图象上,故A选项正确,B选项,∵当x=-2时,y=-4≠-1,∴此点不在函数图象上,故B选项错误,C选项,∵当x=-1时,y=-2≠2,∴此点不在函数图象上,故C选项错误,D选项,∵当x=2时,y=4≠-4,∴此点不在函数图象上,故D选项错误,故选A.10.一辆汽车以平均速度千米/时的速度在公路上行驶,则它所走的路程(千米)与所用的时间(时)的关系表达式为( )A.B.C.D.【答案】D【解析】根据路程=速度×时间得:汽车所走的路程s(千米)与所用的时间t(时)的关系表达式为:s=60t,故选D.11.正比例函数y=3x的大致图像是( )A.B.C.D.【答案】B【解析】∵3>0,∴图像经过一、三象限.点睛:本题考查了正比例函数图象与系数的关系:对于y=kx,当k>0时,y=kx的图象经过一、三象限;当k<0时,y=kx的图象经过二、四象限.12.已知函数y=k1x和,若常数k1,k2异号,且k1>k2,则它们在同一坐标系内的图象大致是(如图所示)()A.B.C.D.【答案】C【解析】首先由已知条件常数k1,k2异号,且k1>k2,得出k1,k2与0的关系,然后根据正比例函数及反比例函数的图象性质作答.解:因为k1,k2异号,且k1>0,k2<0,所以函数y=k1x的图象经过第一、三象限,函数的图象在第二、四象限,故选C.13.如图,在平面直角坐标系中,将△OAB沿直线y=-x平移后,点O′的纵坐标为6,则点B平移的距离为()A.4.5 B.6 C.8 D.10【答案】D【解析】根据题意得出O′点的纵坐标进而得出其横坐标,再得出O点到O′的距离,最后得出点B与其对应点B′之间的距离.解:∵点O的坐标为(0,0),△OAB沿x轴向右平移后得到△O′A′B′,点O的对应点O′在直线y=-x上,且O′点纵坐标为:6,故6=-x,解得:x=−8,即O到O′的距离为10,则点B与其对应点B′之间的距离为10.故选:D点睛:本题考查了函数图象上的点及平移的性质.根据函数解析式求出点的坐标是解题的关键.14.经过以下一组点可以画出函数y=2x图象的是()A.(0,0)和(2,1) B.(0,0)和(1,2)C.(1,2)和(2,1) D.(-1,2)和(1,2)【答案】B【解析】分别把各点坐标代入函数y=2x进行检验即可.解答:A. ∵当x=2时,y=4≠1,∴点(2,1)不符合,故本选项错误;B. ∵当x=1时,y=2;当x=0时,y=0,∴两组数据均符合,故本选项正确;C. ∵当x=2时,y=4≠1,∴点(2,1)不符合,故本选项错误;D. ∵当x=−1时,y=−2≠2;∴点(-1,2)不符合,故本选项错误.故选B.15.某正比例函数的图象如图所示,则此正比例函数的表达式为()A.y=x B.y=x C.y=-2x D.y=2x【答案】A【解析】【分析】本题可设该正比例函数的解析式为y=kx,然后结合图象可知,该函数图象过点A(-2,1),由此可利用方程求出k的值,进而解决问题.【详解】正比例函数的图象过点M(−2,1),∴将点(−2,1)代入y=kx,得:1=−2k,∴k=﹣,∴y=﹣x,故选:A.【点睛】本题考查了待定系数法求正比例函数解析式,牢牢掌握该法求函数解析式是解答本题的关键.16.已知在正比例函数y=(a-1)x的图像中,y随x的增大而减小,则a的取值范围是()A.a<1 B.a>1 C.a≥1 D.a≤1【答案】A【解析】∵y随x的增大而减小,∴a-1<0,∴a<1.故选A.点睛:本题考查了正比例函数图象与系数的关系:对于y=kx,当k>0时,y=kxb的图象经过一、三象限;当k<0时,y=kx的图象经过二、四象限.17.正比例函数y=x的大致图像是()A.A B.B C.C D.D【答案】C【解析】∵1>0,∴正比例函数y=x的大致图像经过一、三象限.故选C.点睛:本题考查了正比例函数图象与系数的关系:对于y=kx,当k>0时,y=kxb的图象经过一、三象限;当k<0时,y=kx的图象经过二、四象限.18.已知函数y=(k-1)为正比例函数,则()A.k≠±1 B.k=±1 C.k=-1 D.k=1【答案】C【解析】由题意得k2=1且k-1≠0,∴k=-1.故选C.19.6月份以来,猪肉价格一路上涨.为平抑猪肉价格,某省积极组织货源,计划由A、B、C三市分别组织10辆、10辆和8辆运输车向D、E两市运送猪肉,现决定派往D、E两地的运输车分别是18辆、10辆,已知一辆运输车从A市到D、E两市的运费分别是200元和800元,从B市到D、E两市的运费分别是300元和700元,从C市到D、E两市的运费分别是400元和500元.若设从A、B两市都派x辆车到D市,则当这28辆运输车全部派出时,总运费W(元)的最小值和最大值分别是()A.8000,13200 B.9000,10000 C.10000,13200 D.13200,15400【答案】C【解析】由题意可知A、B、C三市派往D市的运输车的辆数分别是x、x、(18-2x)辆,派往E市的运输车的辆数为10-x,10-x,2x-10,则总运费W=200x+300x+400(18-2x)+800(10-x)+700(10-x)+500(2x-10)=-800x+17200.依题意有0≤x≤10,0≤18-2x≤8,解得:5≤x≤9,当x=9时,W 最小 =10000元.故选C.点睛:选择方案问题的方法(1)从不同的角度感知问题中的数量关系,对实际问题中的数量关系既可以用函数的图像表示,也可以用方程和不等式表示,构建不同的模型,用不同的方法解决问题.(2)在解决问题中,能适时调整思路,解决问题后,能对解决问题步骤、程序和方法进行总结提炼.20.若m<-1,有下列函数:①(x>0);②y=-mx+1;③y=mx;④y=(m+1)x.其中y随x的增大而增大的是( )A.①②B.②③C.①③D.③④【答案】A【解析】对于反比例函数,当k<0,在每个象限内,y随x的增大而增大,故①正确;根据一次函数的性质,y随x的增大而增大,得出k>0,故④正确.故选A.21.已知正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则函数y=kx-k的图象大致是()A.A B.B C.C D.D【答案】D【解析】y=kx-k=k(x-1),恒过(1,0);根据正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则k<0,易得D.故选D.22.如果通过平移直线得到的图象,那么直线必须().A.向上平移5个单位B.向下平移5个单位C.向上平移个单位D.向下平移个单位【解析】根据“上加下减常数项”,=+.看做由直线向上平移个单位得到.故选C.23.已知一次函数与的图象都经过A(,0),且与y轴分别交于B、C两点,则△ABC的面积为().A.4 B.5 C.6 D.7【答案】C【解析】根据题意得:a=4,b=-2,所以B(0,4),C(0,-2),则△ABC的面积为故选C.24.在糖水中继续放入糖x(g)、水y(g),并使糖完全溶解,如果甜度保持不变,那么y与x的函数关系一定是()A.正比例函数B.反比例函数C.图象不经过原点的一次函数D.二次函数【答案】A【解析】设原来溶液中有糖ag,水bg,则=,即y=x,为正比例函数.故选A.点睛:本题关键根据甜度不变列比例式求解.25.一次函数y=-x的图象平分()A.第一、三象限B.第一、二象限C.第二、三象限D.第二、四象限【答案】D【解析】y=-x的图像平分第二、四象限.故选D.点睛:y=x的图像平分第一、三象限.26.已知正比例函数y=kx(k≠0),当x=–1时,y=–2,则它的图象大致是()A.B.C.D.【答案】C【解析】将x=-1,y=-2代入y= kx(k≠0)中得,k=2>0,∴函数图像经过原点,且经过第一、三象限.故选C.27.已知正比例函数y=(m+1)x,y随x的增大而减小,则m的取值范围是()A.m<-1 B.m>-1 C.m≥-1 D.m≤-1【答案】A【解析】∵y随着x的增大而减小,∴m+1<0,即m<-1.故选A.28.已知正比例函数y=kx(k≠0),点(2,–3)在函数上,则y随x的增大而()A.增大B.减小C.不变D.不能确定【答案】B【解析】将(2,-3)代入函数解析式得:2k=-3,解得k=-<0,∴y随着x的增大而减小.故选B.29.在正比例函数y=–3mx中,函数y的值随x值的增大而增大,则P(m,5)在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解析】∵y随着x的增大而增大,∴-3m>0,解得m<0.∴P(m,5)在第二象限.故选B.点睛:正比例函数y=kx(k≠0),若y随着x的增大而增大,那么k>0;若y随着x的增大而减小,那么k<0.30.若正比例函数y=kx的图象在第一、三象限,则k的取值可以是()A.1 B.0或1C.±1 D.–1【答案】A【解析】∵函数图像经过一、三象限,∴k>0.故选A.31.关于函数y=2x,下列结论中正确的是()A.函数图象都经过点(2,1)B.函数图象都经过第二、四象限C.y随x的增大而增大D.不论x取何值,总有y>0【答案】C【解析】A:当x=2时,y=4≠1,∴函数图像不经过(2,1),故错误;B:k=2>0,∴函数图像经过一、三象限,故错误;C:k>0,y随着x的增大而增大,故正确;D:当x<0时,y<0,故错误.故选C.点睛:掌握正比例函数图像的性质.32.若一个正比例函数的图象经过点(2,-3),则这个图象一定也经过点()A.(-3,2)B.(,-1)C.(,-1)D.(-,1)【答案】C【解析】∵正比例函数y=kx经过点(2,−3),∴−3=2k,解得k=−;∴正比例函数的解析式是y=−x;A. ∵当x=−3时,y≠2,∴点(−3,2)不在该函数图象上;故本选项错误;B. ∵当x=时,y≠−1,∴点(,−1)不在该函数图象上;故本选项错误;C. ∵当x=时,y=−1,∴点(,−1)在该函数图象上;故本选项正确;D. ∵当x=时,y≠1,∴点(1,−2)不在该函数图象上;故本选项错误。
19.2.1 《正比例函数》测试题练习题常考题试卷及答案

19.2.1 正比例函数一、单选题(共20题;共40分)1.已知正比例函数y=kx(k≠0)的图象经过点(2,−3),则k的值为()A. 32B. −23C. −32D. 232.若y与x成正比,y与z的倒数成反比,则z是x的()A. 正比例函数B. 反比例函数C. 二次函数D. z随x增大而增大3.下列各关系中,符合正比例关系的是()A. 正方形的周长P和它的一边长aB. 距离s一定时,速度v和时间tC. 圆的面积S和圆的半径rD. 正方体的体积V和棱长a4.如图,三个正比例函数的图象对应的解析式为①y=ax,②y=bx,③y=cx,则a、b、c的大小关系是()A. a>b>cB. c>b>aC. b>a>cD. b>c>a5.下列函数中,表示y是x的正比例函数的是()A. y=2x2B. y=2x C. y=2(x-3) D. y=12x6.正比例函数 y=(k-2)x 中,y 随 x 的增大而减小,则 k 的取值范围是( )A. k≥2B. k≤2C. k>2D. k<27.已知正比例函数y=(k+4)x,且y随x的增大而减小,则k的取值范围()A. k>4B. k<4C. k>−4D. k<−48.一个正比例函数的图象经过点(−2,4),它的表达式为()A. y=−2xB. y=2xC. y=−12x D. y=12x9.在下列四组点中,可以在同一个正比例函数图象上的一组点是( )A. (2,5),(−4,10)B. (−2,5),(4,10)C. (−2,−5),(4,−10)D. (2,5),(−4,−10)10.下列函数中是正比例函数的是()A. y=8x B. y=82 C. y=2(x﹣1) D. y=−(√2+1)x311.已知正比例函数y=kx(k≠0)的图象经过点(1,﹣2),则这个正比例函数的解析式为()A. y=2xB. y=﹣2xC. y=12x D. y=−12x12.下列正比例函数中,y随x的值增大而增大的是()A. y=﹣2014xB. y=(√3﹣1)xC. y=(﹣π﹣3)xD. y=(1﹣π2)x13.已知函数y=(m+1)x m2−3是正比例函数,且图像在第二、四象限内,则m的值是()A. 2B. -2C. ±2D. −1214.关于函数y=2x ,下列结论中正确的是()A. 函数图象都经过点(2,1)B. 函数图象都经过第二、四象限C. y随x的增大而增大D. 不论x取何值,总有y>015.当x>0时,y与x的函数解析式为y=2x,当x≤0时,y与x的函数解析式为y=﹣2x,则在同一直角坐标系中的图象大致为()A. B. C. D.16.正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=kx-k 的图象大致是().A. B. C. D.17.若点A(x1, y1)和点B(x2, y2)在正比例函数y=-3x的图象上,当x 1<x2时,y1与y2的大小关系为()A. y1>y2B. y1<y2C. y1=y2D. y1与y2的大小不一定18.若正比例函数的图像经过点(-1,2),则这个图像必经过点()A. (1,2)B. (-1,-2)C. (2,-1)D. (1,-2)19.如图,某正比例函数的图象过点M(﹣2,1),则此正比例函数表达式为()A. y=﹣xB. y= xC. y=﹣2xD. y=2x20.下列说法中不成立的是()A. 在y=3x﹣1中y+1与x成正比例B. 在y=﹣x2中y与x成正比例C. 在y=2(x+1)中y与x+1成正比例D. 在y=x+3中y与x成正比例二、填空题(共18题;共18分)21.已知正比例函数y=(k+1)x,且y值随x值增大而增大,则k的取值范围是________.22.正比例函数y=kx(k≠0)的图象经过点A(﹣1,5),则k=________.23.已知a是整数,一次函数y=10x+a的图象与两坐标轴所围成的三角形的面积数为质数,则这个质数等于________.24.已知正比例函数图象经过点(1,3),则该函数的解析式是________.25.将正比例函数y=2x的图象向上平移3个单位,所得的直线不经过第________象限.26.已知正比例函数y=(4m+6)x,当m________ 时,函数图象经过第二、四象限.27.若正比例函数y=kx的图象经过点(2,4),则该函数的解析式是________.28.若直线y=kx(k≠0)经过点(-2,6),则y随x的增大而 ________29.如图,正比例函数y=kx,y=mx,y=nx在同一平面直角坐标系中的图象如图所示.则比例系数k,m,n的大小关系是________.30.正比例函数y=﹣5x中,y随着x的增大而________.31.关于x的正比例函数y=(m+2)x,若y随x的增大而增大,则m的取值范围是________.32.已知函数y=(k+1)x|k|﹣3是反比例函数,且正比例函数y=kx的图象经过第一、三象限,则k的值为________ .33.在平面直角坐标系xOy中,直线y=x与双曲线y=m交于A,B两点.若x点A,B的纵坐标分别为y1,y2,则y1+y2的值为________.34.在正比例函数y=(m-8)x中,如果y的值随自变量x的增大而减小。
正比例函数同步练习及答案

正比例函数知识库1.形如y=kx (k 是常数,k ≠0)的函数叫做正比例函数,其中k 叫比例系数. 正比例函数都是常数与自变量的乘积的形式.2.正比例函数y=kx (k 是常数,k ≠0)的图象是一条经过原点的直线,我们通常称之为直线y=kx .当k>0时,直线y=kx 依次经过第三、一象限,从左向右上升,y 随x•的增大而增大; 当k<0时,直线y=kx 依次经过第二、四象限,从左向右下降,y 随x•的增大而减小.3.根据两点确定一条直线,可以确定两个点(两点法)画正比例函数的图象.魔法师例1:已知y=(k+1)x+k-1是正比例函数,求k 的值.分析:由正比例函数的定义可知k+1≠0且k-1=0即可解:根据题意得:k+1≠0且k-1=0,解得:k=1 ∴k=1例2:根据下列条件求函数的解析式①y 与x 2成正比例,且x=-2时y=12.②函数y=(k 2-4)x 2+(k+1)x 是正比例函数,且y 随x 的增大而减小. 分析:①根据正比例函数的定义,可设y=kx 2,然后由x=-2、y=12求得k 的值.• ②函数y=(k 2-4)x 2+(k+1)x 是正比例函数;则k 2-4=0,y 随x 的增大而减小,则k+1<0.解:①设y=k x 2 (k ≠0)∵x=-2时y=12 ∴(-2)2k=12 ∴k=3 ∴y=3x 2②由题意得:k 2-4=0 ∴k=2或k=-2∵y 随x 的增大而减小, ∴k+1<0 ∴k=-2 ∴y 与x 的函数关系式是:y=-x演兵场☆我能选1.下列关系中的两个量成正比例的是( )A .从甲地到乙地,所用的时间和速度;B .正方形的面积与边长C .买同样的作业本所要的钱数和作业本的数量;D .人的体重与身高2.下列函数中,y 是x 的正比例函数的是( )A .y=4x+1B .y=2x 2C ..3.下列说法中不成立的是( )A .在y=3x-1中y+1与x 成正比例;B .在y=-2x 中y 与x 成正比例 C .在y=2(x+1)中y 与x+1成正比例; D .在y=x+3中y 与x 成正比例4.若函数y=(2m+6)x2+(1-m)x是正比例函数,则m的值是()A.m=-3 B.m=1 C.m=3 D.m>-35.已知(x1,y1)和(x2,y2)是直线y=-3x上的两点,且x1>x2,则y1与y2•的大小关系是()A.y1>y2B.y1<y2C.y1=y2 D.以上都有可能☆我能填6.形如___________的函数是正比例函数.7.若x、y是变量,且函数y=(k+1)x k2是正比例函数,则k=_________.8.正比例函数y=kx(k为常数,k<0)的图象依次经过第________象限,函数值随自变量的增大而_________.9.已知y与x成正比例,且x=2时y=-6,则y=9时x=________.☆我能答10.写出下列各题中x与y的关系式,并判断y是否是x的正比例函数?(1)电报收费标准是每个字0.1元,电报费y(元)与字数x(个)之间的函数关系;(2)地面气温是28℃,如果每升高1km,气温下降5℃,则气温x(•℃)•与高度y (km)的关系;(3)圆面积y(cm2)与半径x(cm)的关系.探究园11.在函数y=-3x的图象上取一点P,过P点作PA⊥x轴,已知P点的横坐标为-•2,求△POA的面积(O为坐标原点).答案:1.C 2.C 3.D 4.A 5.B 6.y=kx(k是常数,k≠0)7.+1 8.三、一;增大 9.-310.①y=0.1x,y是x的正比例函数;②y=28-5x,y不是x的正比例函数;③y= x2,y不是x的正比例函数.11.6.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
兴兴文化培训中心正比例函数习题姓名:家长签字: 得分:一.选择题(每小题3分,共30分。
)1.下列函数表达式中,y是x的正比例函数的是()A.y=﹣2x2B.y=C.y=D.y=x﹣22.若y=x+2﹣b是正比例函数,则b的值是()A.0B.﹣2 C.2D.﹣0.53.若函数是关于x的正比例函数,则常数m的值等于()A.±2B.﹣2 C.D.4.下列说法正确的是()A.圆面积公式S=πr2中,S与r成正比例关系B.三角形面积公式S=ah中,当S是常量时,a与h成反比例关系C.y=中,y与x成反比例关系D.y=中,y与x成正比例关系5.下列各选项中的y与x的关系为正比例函数的是()A.正方形周长y(厘米)和它的边长x(厘米)的关系B.圆的面积y(平方厘米)与半径x(厘米)的关系C.如果直角三角形中一个锐角的度数为x,那么另一个锐角的度数y与x间的关系D.一棵树的高度为60厘米,每个月长高3厘米,x月后这棵的树高度为y厘米6.若函数y=(m﹣3)x|m|﹣2是正比例函数,则m值为()A.3B.﹣3 C.±3D.不能确定7.已知正比例函数y=(k﹣2)x+k+2的k的取值正确的是()A.k=2 B.k≠2C.k=﹣2 D.k≠﹣28.已知正比例函数y=kx(k≠0)的图象如图所示,则在下列选项中k值可能是()A.1B.2C.3D.49.如图所示,在同一直角坐标系中,一次函数y=k1x、y=k2x、y=k3x、y=k4x的图象分别为l1、l2、l3、l4,则下列关系中正确的是()A.k1<k2<k3<k4B.k2<k1<k4<k3C.k1<k2<k4<k3D.k2<k1<k3<k410.在直角坐标系中,既是正比例函数y=kx,又是y的值随x的增大而减小的图象是()A.B.C.D.二.填空题(每小题3分,共27分。
)11.若函数y﹦(m+1)x+m2﹣1是正比例函数,则m的值为_________ .12.已知y=(k﹣1)x+k2﹣1是正比例函数,则k= _________ .13.写出一个正比例函数,使其图象经过第二、四象限:_________ .14.请写出直线y=6x上的一个点的坐标:_________ .15.已知正比例函数y=kx(k≠0),且y随x的增大而增大,请写出符合上述条件的k的一个值:_________ .16.已知正比例函数y=(m﹣1)的图象在第二、第四象限,则m的值为_________ .17.若p1(x1,y1) p2(x2,y2)是正比例函数y=﹣6x的图象上的两点,且x1<x2,则y1,y2的大小关系是:y1_________ y2.点A(-5,y1)和点B(-6,y2)都在直线y= -9x的图像上则y1__________第9题y218.正比例函数y=(m﹣2)x m的图象的经过第_________ 象限,y随着x的增大而_________ .19.函数y=﹣7x的图象在第_________ 象限内,经过点(1,_________ ),y随x的增大而_________ .三.解答题(43分)20.已知:如图,正比例函数的图象经过点P和点Q(﹣m,m+3),求m的值.(5分)21.已知y+2与x﹣1成正比例,且x=3时y=4.(10分)(1)求y与x之间的函数关系式;(2)当y=1时,求x的值.22.已知y=y1+y2,y1与x2成正比例,y2与x﹣2成正比例,当x=1时,y=5;当x=﹣1时,y=11,求y与x之间的函数表达式,并求当x=2时y的值.(10分)23. 为缓解用电紧张矛盾,某电力公司特制定了新的用电收费标准,每月用电量()x kW h与应付饱费y(元)的关系如图所示。
(1)根据图像,请求出当050x≤≤时,y与x的函数关系式。
(2)请回答:a、当每月用电量不超过50kW·h时,收费标准是多少?b、当每月用电量超过50kW·h时,收费标准是多少? (10分)24.已知点P(x,y)在正比例函数y=3x图像上。
A(-2,0)和B(4,0),S△PAB=12. 求P的坐标。
(8分)2014年5月q2004q的初中数学组卷参考答案与试题解析一.选择题(共10小题)1.下列函数表达式中,y是x的正比例函数的是()A.y=﹣2x2B.y=C.y=D.y=x﹣2考点:正比例函数的定义.分析:根据正比例函数y=kx的定义条件:k为常数且k≠0,自变量次数为1,判断各选项,即可得出答案.解答:解:A、是二次函数,故本选项错误;B、符合正比例函数的含义,故本选项正确;C、是反比例函数,故本选项错误;D、是一次函数,故本选项错误.故选B.点评:本题主要考查了正比例函数的定义,难度不大,注意基础概念的掌握.2.若y=x+2﹣b是正比例函数,则b的值是()A.0B.﹣2 C.2D.﹣0.5考点:正比例函数的定义.分析:根据正比例函数的定义可得关于b的方程,解出即可.解答:解:由正比例函数的定义可得:2﹣b=0,解得:b=2.故选C.点评:考查了正比例函数的定义,解题关键是掌握正比例函数的定义条件:正比例函数y=kx的定义条件是:k为常数且k≠0,自变量次数为1.3.若函数是关于x的正比例函数,则常数m的值等于()A.±2B.﹣2 C.D.考点:正比例函数的定义.分析:根据正比例函数的定义列式计算即可得解.解答:解:根据题意得,m2﹣3=1且2﹣m≠0,解得m=±2且m≠2,所以m=﹣2.故选B.点评:本题考查了正比例函数的定义,解题关键是掌握正比例函数的定义条件:正比例函数y=kx的定义条件是:k为常数且k≠0,自变量次数为1.4.下列说法正确的是()A.圆面积公式S=πr2中,S与r成正比例关系B.三角形面积公式S=ah中,当S是常量时,a与h成反比例关系C.y=中,y与x成反比例关系D.y=中,y与x成正比例关系考点:反比例函数的定义;正比例函数的定义.分析:根据反比例函数的定义和反比例关系以及正比例关系判逐项断即可.解答:解:A、圆面积公式S=πr2中,S与r2成正比例关系,而不是r成正比例关系,故该选项错误;B、三角形面积公式S=ah中,当S是常量时,a=,即a与h成反比例关系,故该选项正确;C、y=中,y与x没有反比例关系,故该选项错误;D、y=中,y与x﹣1成正比例关系,而不是y和x成正比例关系,故该选项错误;故选B.点评:本题考查了反比例关系和正比例故选,解题的关键是正确掌握各种关系的定义.5.下列各选项中的y与x的关系为正比例函数的是()A.正方形周长y(厘米)和它的边长x(厘米)的关系B.圆的面积y(平方厘米)与半径x(厘米)的关系C.如果直角三角形中一个锐角的度数为x,那么另一个锐角的度数y与x间的关系D.一棵树的高度为60厘米,每个月长高3厘米,x月后这棵的树高度为y厘米考点:正比例函数的定义.分析:判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解答:解:A、依题意得到y=4x,则=4,所以正方形周长y(厘米)和它的边长x(厘米)的关系成正比例函.故本选项正确;B、依题意得到y=πx2,则y与x是二次函数关系.故本选项错误;C、依题意得到y=90﹣x,则y与x是一次函数关系.故本选项错误;D、依题意,得到y=3x+60,则y与x是一次函数关系.故本选项错误;故选A.点评:本题考查了正比例函数及反比例函数的定义,注意区分:正比例函数的一般形式是y=kx (k≠0),反比例函数的一般形式是(k≠0).6.若函数y=(m﹣3)x|m|﹣2是正比例函数,则m值为()A.3B.﹣3 C.±3D.不能确定考点:正比例函数的定义.分析:根据正比例函数定义可得|m|﹣2=1,且m﹣3≠0,再解即可.解答:解:由题意得:|m|﹣2=1,且m﹣3≠0,解得:m=﹣3,故选:B.点评:此题主要考查了正比例函数定义,关键是掌握正比例函数的定义条件:正比例函数y=kx的定义条件是:k为常数且k≠0,自变量次数为1.7.已知正比例函数y=(k﹣2)x+k+2的k的取值正确的是()A.k=2 B.k≠2C.k=﹣2 D.k≠﹣2考点:正比例函数的定义.分析:根据正比例函数的定义:一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数可得k+2=0,且k﹣2≠0,再解即可.解答:解:∵y=(k﹣2)x+k+2是正比例函数,∴k+2=0,且k﹣2≠0,解得k=﹣2,故选:C.点评:此题主要考查了正比例函数定义,关键是掌握正比例函数的定义条件:正比例函数y=kx的定义条件是:k为常数且k≠0,自变量次数为1.8.(2010•黔南州)已知正比例函数y=kx(k≠0)的图象如图所示,则在下列选项中k值可能是()A.1B.2C.3D.4考点:正比例函数的图象.专题:数形结合.分析:根据图象,列出不等式求出k的取值范围,再结合选项解答.解答:解:根据图象,得2k<6,3k>5,解得k<3,k>,所以<k<3.只有2符合.故选B.点评:根据图象列出不等式求k的取值范围是解题的关键.9.(2005•滨州)如图所示,在同一直角坐标系中,一次函数y=k1x、y=k2x、y=k3x、y=k4x的图象分别为l1、l2、l3、l4,则下列关系中正确的是()A.k1<k2<k3<k4B.k2<k1<k4<k3C.k1<k2<k4<k3D.k2<k1<k3<k4考点:正比例函数的图象.分析:首先根据直线经过的象限判断k的符号,再进一步根据直线的平缓趋势判断k的绝对值的大小,最后判断四个数的大小.解答:解:首先根据直线经过的象限,知:k2<0,k1<0,k4>0,k3>0,再根据直线越陡,|k|越大,知:|k2|>|k1|,|k4|<|k3|.则k2<k1<k4<k3故选B.点评:此题主要考查了正比例函数图象的性质,首先根据直线经过的象限判断k的符号,再进一步根据直线的平缓趋势判断k的绝对值的大小,最后判断四个数的大小.10.在直角坐标系中,既是正比例函数y=kx,又是y的值随x的增大而减小的图象是()A.B.C.D.考点:正比例函数的图象.分析:根据正比例函数图象的性质进行解答.解答:解:A、D、根据正比例函数的图象必过原点,排除A,D;B、也不对;C、又要y随x的增大而减小,则k<0,从左向右看,图象是下降的趋势.故选C.点评:本题考查了正比例函数图象,了解正比例函数图象的性质:它是经过原点的一条直线.当k>0时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y随x 的增大而减小.二.填空题(共9小题)11.若函数y﹦(m+1)x+m2﹣1是正比例函数,则m的值为 1 .考点:正比例函数的定义.专题:计算题.分析:一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数,根据正比例函数的定义即可求解.解答:解:∵y﹦(m+1)x+m2﹣1是正比例函数,∴m+1≠0,m2﹣1=0,∴m=1.故答案为:1.点评:本题考查了正比例函数的定义,属于基础题,关键是掌握:一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数.12.已知y=(k﹣1)x+k2﹣1是正比例函数,则k= ﹣1 .考点:正比例函数的定义.专题:计算题.分析:让x的系数不为0,常数项为0列式求值即可.解答:解:∵y=(k﹣1)x+k2﹣1是正比例函数,∴k﹣1≠0,k2﹣1=0,解得k≠1,k=±1,∴k=﹣1,故答案为﹣1.点评:考查正比例函数的定义:一次项系数不为0,常数项等于0.13.(2011•钦州)写出一个正比例函数,使其图象经过第二、四象限:y=﹣x(答案不唯一).考点:正比例函数的性质.专题:开放型.分析:先设出此正比例函数的解析式,再根据正比例函数的图象经过二、四象限确定出k的符号,再写出符合条件的正比例函数即可.解答:解:设此正比例函数的解析式为y=kx(k≠0),∵此正比例函数的图象经过二、四象限,∴k<0,∴符合条件的正比例函数解析式可以为:y=﹣x(答案不唯一).故答案为:y=﹣x(答案不唯一).点评:本题考查的是正比例函数的性质,即正比例函数y=kx(k≠0)中,当k<0时函数的图象经过二、四象限.14.(2007•钦州)请写出直线y=6x上的一个点的坐标:(0,0).考点:正比例函数的性质.专题:开放型.分析:只需先任意给定一个x值,代入即可求得y的值.解答:解:(0,0)(答案不唯一).点评:此类题只需根据x的值计算y的值即可.15.(2009•晋江市质检)已知正比例函数y=kx(k≠0),且y随x的增大而增大,请写出符合上述条件的k的一个值:y=2x(答案不唯一).考点:正比例函数的性质.专题:开放型.分析:根据正比例函数的性质可知.解答:解:y随x的增大而增大,k>0即可.故填y=2x.(答案不唯一)点评:本题考查正比例函数的性质:当k>0时,y随x的增大而增大.16.已知正比例函数y=(m﹣1)的图象在第二、第四象限,则m的值为﹣2 .考点:正比例函数的定义;正比例函数的性质.分析:首先根据正比例函数的定义可得5﹣m2=1,m﹣1≠0,解可得m的值,再根据图象在第二、第四象限可得m﹣1<0,进而进一步确定m的值即可.解答:解:∵函数y=(m﹣1)是正比例函数,∴5﹣m2=1,m﹣1≠0,解得:m=±2,∵图象在第二、第四象限,∴m﹣1<0,解得m<1,∴m=﹣2.故答案为:﹣2.点评:此题主要考查了一次函数定义与性质,关键是掌握正比例函数的定义条件:正比例函数y=kx 的定义条件是:k为常数且k≠0,自变量次数为1.17.若p1(x1,y1) p2(x2,y2)是正比例函数y=﹣6x的图象上的两点,且x1<x2,则y1,y2的大小关系是:y1>y2.考点:正比例函数的性质.分析:根据增减性即可判断.解答:解:由题意得:y=﹣6x随x的增大而减小当x1<x2,则y1>y2的故填:>.点评:正比例函数图象的性质:它是经过原点的一条直线.当k>0时,图象经过一、三象限,y随x 的增大而增大;当k<0时,图象经过二、四象限,y随x的增大而减小.18.正比例函数y=(m﹣2)x m的图象的经过第二、四象限,y随着x的增大而减小.考点:正比例函数的性质;正比例函数的定义.专题:计算题.分析:y=(m﹣2)x m是正比例函数,根据定义可求出m的值,继而也能判断增减性.解答:解:∵y=(m﹣2)x m是正比例函数,∴m=1,m﹣2=﹣1,即y=(m﹣2)x m的解析式为y=﹣x,∵﹣1<0,∴图象在二、四象限,y随着x的增大而减小.故填:二、四;减小.点评:正比例函数y=kx,①k>0,图象在一、三象限,是增函数;②k<0,图象在二、四象限,是减函数.19.函数y=﹣7x的图象在第二、四象限内,经过点(1,﹣7 ),y随x的增大而减小.考点:正比例函数的性质.分析:y=﹣7x为正比例函数,过原点,再通过k值的正负判断过哪一象限;当x=1时,y=﹣7;又k=﹣7<0,可判断函数的增减性.解答:解:y=﹣7x为正比例函数,过原点,k<0.∴图象过二、四象限.当x=1时,y=﹣7,故函数y=﹣7x的图象经过点(1,﹣7);又k=﹣7<0,∴y随x的增大而减小.故答案为:二、四;﹣7;减小.点评:本题考查正比例函数的性质.注意根据x的系数的正负判断函数的增减性.三.解答题(共3小题)20.已知:如图,正比例函数的图象经过点P和点Q(﹣m,m+3),求m的值.考点:待定系数法求正比例函数解析式.分析:首先利用待定系数法求得正比例函数的解析式为y=﹣2x.然后将点Q的坐标代入该函数的解析式,列出关于m的方程,通过解方程来求m的值.解答:解:设正比例函数的解析式为y=kx(k≠0).∵它图象经过点P(﹣1,2),∴2=﹣k,即k=﹣2.∴正比例函数的解析式为y=﹣2x.又∵它图象经过点Q(﹣m,m+3),∴m+3=2m.∴m=3.点评:此类题目考查了灵活运用待定系数法建立函数解析式,然后将点Q的坐标代入解析式,利用方程解决问题.21.已知y+2与x﹣1成正比例,且x=3时y=4.(1)求y与x之间的函数关系式;(2)当y=1时,求x的值.考点:待定系数法求正比例函数解析式.专题:计算题;待定系数法.分析:(1)已知y+2与x﹣1成正比例,即可以设y+2=k(x﹣1),把x=3,y=4代入即可求得k的值,从而求得函数解析式;(2)在解析式中令y=1即可求得x的值.解答:解:(1)设y+2=k(x﹣1),把x=3,y=4代入得:4+2=k(3﹣1)解得:k=3,则函数的解析式是:y+2=3(x﹣1)即y=3x﹣5;(2)当y=1时,3x﹣5=1.解得x=2.点评:此类题目需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题.22.已知y=y1+y2,y1与x2成正比例,y2与x﹣2成正比例,当x=1时,y=5;当x=﹣1时,y=11,求y与x之间的函数表达式,并求当x=2时y的值.考点:待定系数法求正比例函数解析式.分析:设y1=kx2,y2=a(x﹣2),得出y=kx2+a(x﹣2),把x=1,y=5和x=﹣1,y=11代入得出方程组,求出方程组的解即可,把x=2代入函数解析式,即可得出答案.解答:解:设y1=kx2,y2=a(x﹣2),则y=kx2+a(x﹣2),把x=1,y=5和x=﹣1,y=11代入得:,k=﹣3,a=2,∴y与x之间的函数表达式是y=﹣3x2+2(x﹣2).把x=2代入得:y=﹣3×22+2×(2﹣2)=﹣12.点评:本题考查了用待定系数法求出正比例函数的解析式的应用,主要考查学生的计算能力.。