《正比例函数与一次函数》知识点归纳知识讲解
2022年八年级上数学:一次函数与正比例函数

一次函数与正比例函数【学习目标】1.理解正比例函数和一次函数的概念,,能利用这些函数分析和解决简单实际问题.2.通过讨论一次函数与一元一次方程的关系,用函数的观点加深对已经学习过的一元一次方程内容的再认识.【基础知识】一.一次函数的定义(1)一次函数的定义:一般地,形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数.(2)注意:①又一次函数的定义可知:函数为一次函数⇔其解析式为y=kx+b(k≠0,k、b是常数)的形式.②一次函数解析式的结构特征:k≠0;自变量的次数为1;常数项b可以为任意实数.③一般情况下自变量的取值范围是任意实数.④若k=0,则y=b(b为常数),此时它不是一次函数.二.正比例函数的定义(1)正比例函数的定义:一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数.注意:正比例函数的定义是从解析式的角度出发的,注意定义中对比例系数的要求:k是常数,k≠0,k是正数也可以是负数.(2)正比例函数图象的性质正比例函数y=kx(k是常数,k≠0),我们通常称之为直线y=kx.当k>0时,直线y=kx依次经过第三、一象限,从左向右上升,y随x的增大而增大;当k<0时,直线y =kx依次经过第二、四象限,从左向右下降,y随x的增大而减小.(3)“两点法”画正比例函数的图象:经过原点与点(1,k)的直线是y=kx(k是常数,k≠0)的图象.三.待定系数法求一次函数解析式待定系数法求一次函数解析式一般步骤是:(1)先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;(2)将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;(3)解方程或方程组,求出待定系数的值,进而写出函数解析式.注意:求正比例函数,只要一对x,y的值就可以,因为它只有一个待定系数;而求一次函数y=kx+b,则需要两组x,y的值.四.待定系数法求正比例函数解析式待定系数法求正比例函数的解析式.五.一次函数与一元一次方程一次函数与一元一次方程.六.根据实际问题列一次函数关系式根据实际问题确定一次函数关系式关键是读懂题意,建立一次函数的数学模型来解决问题.需要注意的是实例中的函数图象要根据自变量的取值范围来确定.①描点猜想问题需要动手操作,这类问题需要真正的去描点,观察图象后再判断是一次函数还是其他函数,再利用待定系数法求解相关的问题.②函数与几何知识的综合问题,有些是以函数知识为背景考查几何相关知识,关键是掌握数与形的转化;有些题目是以几何知识为背景,从几何图形中建立函数关系,关键是运用几何知识建立量与量的等式.【考点剖析】一.一次函数的定义(共3小题)1.(2022春•卧龙区期中)下列函数关系中,y是x的一次函数的是()A.y=x﹣x2B.y=C.y=kx+b D.y=﹣x2.(2022春•杨浦区校级期中)若函数y=(k+3)x﹣2+k是关于x的一次函数,那么k的取值范围是.3.当m取何值时,函数y=(m+5)x2m﹣1+7x﹣3(x≠0)是一个一次函数?二.正比例函数的定义(共2小题)4.(2021春•新化县期末)若函数y=(m﹣3)x+m2﹣9是正比例函数,求m的值.5.(2021春•饶平县校级期末)已知y=(k﹣3)x是关于x的正比例函数,(1)写出y与x之间的函数解析式:(2)求当x=﹣4时,y的值.三.待定系数法求一次函数解析式(共3小题)6.(2020秋•永嘉县校级期末)一次函数y=kx+b(k≠0)的图象经过点(﹣2,0)和(0,2),求k,b的值.7.(2021春•饶平县校级期末)已知y与x+1成正比例,且x=﹣2时y=2.(1)求y与x之间的函数关系式;(2)设点P(a,4)在(1)中的函数图象上,求点P的坐标.8.(2021春•江城区期末)已知一次函数y=kx+b,当x=2时,y=5;当x=﹣2时,y=﹣11,求k和b的值.四.待定系数法求正比例函数解析式(共3小题)9.(2021春•惠州期末)已知y与x成正比例,且x=2时,y=﹣6.求:y与x的函数解析式.10.(2008秋•淮安区期末)已知y与x成正比例,且当x=1时,y=2,求当x=3时,y的值.11.已知:y=y1+y2,y1与x成正比例,y2与x﹣2成正比例,当x=1时,y=0;当x=3时,y=4.(1)求y与x之间的关系式;(2)当x=﹣1时,求y的值.五.一次函数与一元一次方程(共2小题)12.利用函数图象解下列方程(1)0.5x﹣3=1(2)3x﹣2=x+4【思路导引】把0.5x﹣3=1变化为y=画出函数y=的图象,求得函数和x轴的交点.13.用函数图象求解下列方程.①2x﹣3=x﹣2;②x+3=2x+1.六.根据实际问题列一次函数关系式(共3小题)14.已知矩形ABCD的周长为20cm.若设AB=xcm,BC=ycm.请写出y与x的函数关系式并写出自变量x的取值范围.15.已知等腰三角形的周长是18cm,腰长y(cm)是底边长x(cm)的函数,试求函数的关系式,并写出自变量的取值范围.16.一辆汽车以50千米/小时的速度,从相距150千米的甲城市开往乙城市.(1)求汽车与乙城市的距离y(千米)与行驶时间x(小时)的函数解析式,写出自变量的取值范围.(2)判断y是x的什么函数.【过关检测】一.选择题(共6小题)1.(2022春•杨浦区校级期中)下列函数中,一次函数一共有()个.(1)y=+1;(2)y=kx+b;(3)y=3x;(4)y=(x+1)2﹣x2;(5)y=x2﹣2x+1.A.1B.2C.3D.42.(2022春•南关区校级月考)已知一次函数y=kx+b,当0≤x≤2时,对应的函数值y的取值范围是﹣2≤y≤4,则k的值为()A.3B.﹣3C.3或﹣3D.k的值不确定3.(2021秋•芝罘区期末)下列问题中,变量y与x成一次函数关系的是()A.10m长铁丝折成长为y(m),宽为x(m)的长方形B.斜边长为5cm的直角三角形的直角边y(cm)和x(cm)C.圆的面积y(cm2)与它的半径x(cm)D.路程一定时,时间y(h)和速度x(km/h)的关系4.(2021秋•江阴市期末)下列函数中,属于正比例函数的是()A.y=x2+2B.y=﹣2x+1C.y=D.y=5.(2021秋•青羊区校级期末)下列各式①y=﹣8x;②y=﹣;③y=;④y=﹣8x2+2;⑤y=0.5x ﹣3,是一次函数有()A.1个B.2个C.3个D.4个6.(2021春•淄川区期中)已知y是x的一次函数,下表列出了部分对应值:x…﹣213…y…7﹣2﹣8…则y与x的函数表达式为()A.y=﹣2x+1B.y=2x﹣3C.y=3x﹣1D.y=﹣3x+1二.填空题(共7小题)7.(2021秋•杭州期末)正比例函数y=3x的比例系数是.8.(2021秋•丹阳市期末)一次函数y=kx﹣3的图象经过点(﹣1,3),则k=.9.(2021秋•毕节市期末)已知函数y=(m﹣2)x|3﹣m|+5是关于x的一次函数,则m=.10.(2021春•铁西区期末)若关于x的方程﹣2ax+b=0的解为x=2,则直线y=﹣2ax+b一定经过某点的坐标为.11.(2021春•浦北县期末)若函数y=kx+b(k≠0)是正比例函数,则b的值为.12.(2021春•贵港期末)如图,正比例函数y=﹣x的图象与一次函数y=kx+(k≠0)的图象相交于点P,则关于x的方程﹣x=kx+的解是.13.(2021春•鄢陵县期末)已知一次函数y=kx+b(k≠0)的图象与x轴交于(﹣5,0),则关于x的一元一次方程kx+b=0的解为.三.解答题(共7小题)14.(2021春•饶平县校级期末)已知函数y=(k2﹣4)x2+(k+1)x是正比例函数,且y随x的增大而减小,求这个正比例函数的解析式.15.(2021春•和平区校级月考)已知直线l与直线y=2x+1的交点的横坐标为2,与直线y=﹣x﹣8的交点的纵坐标为﹣7,求直线l的表达式.16.(2021春•朝阳区校级期中)已知z=m+y,m是常数,y是x的正比例函数.当x=2时,z=1;当x=3时,z=﹣1,求z与x的函数关系式.17.(2021春•营口月考)已知一次函数的图象过点(1,﹣1),(﹣1,2).(1)求这个函数的解析式;(2)求当x=2时的函数值.18.(2020秋•蚌埠月考)已知直线y=kx+b中,自变量x的取值范围是﹣1≤x≤7,相应函数值的范围是﹣12≤y≤8,求该函数的表达式.19.(2021春•凤山县期末)已知y与x之间成正比例关系,且当x=﹣1时,y=3.(1)求y与x之间的函数关系式;(2)当x=2时,求y的值.20.(2020秋•安庆期中)已知y=(m﹣2)x+|m|﹣2.(1)m满足什么条件时,y=(m﹣2)x+|m|﹣2是一次函数?(2)m满足什么条件时,y=(m﹣2)x+|m|﹣2是正比例函数?。
《正比例函数与一次函数》知识点归纳

《正比例函数与一次函数》知识点归纳《正比例函数》知识点表达式:y=kx (心0的常数)图像:正比例函数y=kx的图像是:一条经过(0,0)和(1,说明:正比例函数y=kx的图像也叫做“直线y=kX';性质特征:1、图像经过的象限:k>0时,直线过原点,在一、三象限;k<0时,直线过原点,在二、四象限;增减性及图像走向:k>0时,y随x增大而增大k<0时,y随x增大而减小,直线从左往右由高降低;,直线从左往右由低升高;1、y与x成正比例:y=kx (k工0);2、y 与x+ a 成正比例:y=k(x + a)(k 工0);3、y + a与x成正比例:y + a=kx (k工0);4、y + a 与x+ b 成正比例:y + a= k(x + b)(k 工0);《一次函数》知识点表达式:y=kx+b (心0, k, b为常数)注意:(1)k M0,自变量x的最高次项的系数为1 ;(2)当b=0时,y=kx,y叫x的正比例函数。
四、成正比例关系的几种表达形式:的直线;2、、图像:一次函数y=kx+b (k丰0, b丰0)的图像是:一条经过(」,0)和k (0, b)的直线。
说明:(1)一次函数y=kx+b (k工0, b工0)的图像也叫做“直线y=kx+b” ;(2)直线y=kx+b与x轴的交点坐标是:(-丄,0);k直线y=kx+b与y轴的交点坐标是:(0,b).三、性质特征:1、图像经过的象限:(1)、k>0, b>0时,直线经过一、二、三象限;(2)、k>0, b< 0时,直线经过一、三、四象限;(3)、k < 0,b>0时,直线经过一、二、四象限;(4)、k < 0, b < 0时,直线经过二、三、四象限;b/02、增减性及图像走向:k>0时,y随x增大而增大,直线从左往右由高降低;k<0时,y随x增大而减小,直线从左往右由低升高;3、一次函数y=kx+b (k工0, b工0)中“ k和b的作用”:(1)k的作用:k决定函数的增减性和图像的走向k>0时,y随x增大而增大,直线从左往右由高降低;k<0时,y随x增大而减小,直线从左往右由低升高;(2)I k I的作用:l k I决定直线的倾斜程度I k I越大,直线越陡,直线越靠近y轴,与x轴的夹角越大;I k I 越小,直线越平缓,直线越远离 y 轴,与x 轴的夹角越小;(3) b 的作用:b 决定直线与y 轴的交点位置b>0时,直线与y 轴正半轴相交(或与y 轴的交点在x 轴的上方);b <0时,直线与y 轴负半轴相交(或与y 轴的交点在x 轴的下方);(4) k 和b 的共同作用:k 和b 共同决定直线所经过的象限四、 直线的平移规律:直线y=kx+b 可以由直线y=kx 平移得到当b>0时,将直线y=kx :向上平移b 个单位得到直线y=kx+b ;当b < 0时,将直线y=kx :向下平移I b I 个单位得到直线y=kx+b ;五、 两条直线平行和垂直: 直线 m y=ax+b;直线n: y=cx+d(1)当a=c , b M d 时,直线m//直线n,反之也成立;例如:直线y=2x+3与直线y=2x-5都与直线y=2x 平行。
《一次函数与正比例函数》一次函数PPT教学课件

知3-讲
(来自教材)
知3-讲
解:知(识1)由点路程=速度×时间,得y = 60x,y是x的一次函
数,也是x 的正比例函数;
(2)由圆的面积公式,得y= πx2, y不是x的正比例函
数,也不是x的一次函数;
(3)这个水池每时增加5 m3水,x h增加5xm3水,因
而y=15 + 5x, y是x的一次函数,但不是x的正比
例函数.
(来自教材)
例知4识已点知函数y=(m-1)x+1-3m.
知3-讲
(1)当m为何值时,y是x的一次函数?
(2)当m为何值时,y是x的正比例函数?
解:(1) 根据一次函数的定义可得:m-1≠0,所以
m≠1,即当m≠1时,1y是x的一次函数1 . (2) 根据正比例函数的定义3可得:m-1≠30且
A.y=20-2x(0<x<10)
B.y=10-x(0<x<10)
C.y=20-2x(5<x<10)
D.y=10-x(5<x<10)
(来自《典中点》)
一次函数和正比例函数: 一般地,形如y=kx+b(k,b为常数,k≠0)的函数叫
做一次函数,其中x是自变量,y是x的函数.特别地,当 b=0时,y=kx(k为常数,k≠0),y叫做x的正比例函数. 说明: (1)正比例函数是特殊的一次函数,一次函数包括正比例函数; (2)判断一个函数是否是一次函数,必须将其化成最简形式.
(2) y系=式6吗??x 3 x.
50 25
(3)z = 60 - 3 x 25
知1-讲
一次函数: 若两个变量x,y间的对应关系可以表示成
八年级数学下册《一次函数》知识点归纳

八年级数学下册《一次函数》知识点归纳知识点1 一次函数和正比例函数的概念若两个变量x,y间的关系式可以表示成y=kx+b(k,b 为常数,kne;0)的形式,则称y是x的一次函数(x为自变量),特别地,当b=0时,称y是x的正比例函数.知识点2 函数的图象由于两点确定一条直线,一般选取两个特殊点:直线与y轴的交点,直线与x轴的交点。
.不必一定选取这两个特殊点.画正比例函数y=kx的图象时,只要描出点(0,0),(1,k)即可.知识点3一次函数y=kx+b(k,b为常数,kne;0)的性质(1)k的正负决定直线的倾斜方向;①kgt;0时,y的值随x值的增大而增大;②k﹤O时,y的值随x值的增大而减小.(2)|k|大小决定直线的倾斜程度,即|k|越大①当bgt;0时,直线与y轴交于正半轴上;②当blt;0时,直线与y轴交于负半轴上;③当b=0时,直线经过原点,是正比例函数.(4)由于k,b的符号不同,直线所经过的象限也不同;①如图所示,当kgt;0,bgt;0时,直线经过第一、二、三象限(直线不经过第四象限);②如图所示,当kgt;0,b③如图所示,当k﹤O,bgt;0时,直线经过第一、二、四象限(直线不经过第三象限);④如图所示,当k﹤O,b﹤O时,直线经过第二、三、四象限(直线不经过第一象限).(5)由于|k|决定直线与x轴相交的锐角的大小,k相同,说明这两个锐角的大小相等,且它们是同位角,因此,它们是平行的.另外,从平移的角度也可以分析,例如:直线y=x+1可以看作是正比例函数y=x向上平移一个单位得到的.知识点4 正比例函数y=kx(kne;0)的性质(1)正比例函数y=kx的图象必经过原点;(2)当kgt;0时,图象经过第一、三象限,y随x的增大而增大;(3)当klt;0时,图象经过第二、四象限,y随x的增大而减小.知识点5 点P(x0,y0)与直线y=kx+b的图象的关系(1)如果点P(x0,y0)在直线y=kx+b的图象上,那么x0,y0的值必满足解析式y=kx+b;(2)如果x0,y0是满足函数解析式的一对对应值,那么以x0,y0为坐标的点P(1,2)必在函数的图象上.例如:点P(1,2)满足直线y=x+1,即x=1时,y=2,则点P(1,2)在直线y=x+l的图象上;点Pprime;(2,1)不满足解析式y=x+1,因为当x=2时,y=3,所以点Pprime;(2,1)不在直线y=x+l的图象上.知识点6 确定正比例函数及一次函数表达式的条件(1)由于正比例函数y=kx(kne;0)中只有一个待定系数k,故只需一个条件(如一对x,y的值或一个点)就可求得k的值.(2)由于一次函数y=kx+b(kne;0)中有两个待定系数k,b,需要两个独立的条件确定两个关于k,b的方程,求得k,b的值,这两个条件通常是两个点或两对x,y的值.知识点7 待定系数法先设待求函数关系式(其中含有未知常数系数),再根据条件列出方程(或方程组),求出未知系数,从而得到所求结果的方法,叫做待定系数法.其中未知系数也叫待定系数.例如:函数y=kx+b中,k,b就是待定系数.知识点8 用待定系数法确定一次函数表达式一般步骤(1)设函数表达式为y=kx+b;(2)将已知点的坐标代入函数表达式,解方程(组);(3)求出k与b的值,得到函数表达式.思想方法小结 (1)函数方法.(2)数形结合法.知识规律小结 (1)常数k,b对直线y=kx+b(kne;0)位置的影响.①当bgt;0时,直线与y轴的正半轴相交;当b=0时,直线经过原点;当b﹤0时,直线与y轴的负半轴相交.②当k,b异号时,直线与x轴正半轴相交;当b=0时,直线经过原点;当k,b同号时,直线与x轴负半轴相交.③当kgt;O,bgt;O时,图象经过第一、二、三象限;当kgt;0,b=0时,图象经过第一、三象限;为大家推荐的一次函数知识点归纳,大家仔细阅读了吗?更多知识点总结尽在。
一次函数知识点归纳总结

一次函数知识点归纳总结
一次函数,也作线性函数,在x、y坐标轴上表示为一条直线,一次函数把一个复杂的问题简单化。
1.定义与定义式:一次函数是正比例函数y=kx+b的特例,此时b=0。
定义式为
y=kx+b,其中k、b为常数,k不等于0。
2.一次函数的性质:一般地,形如y=kx+b(k,b是常数,k不等于0)的函数,叫做一
次函数。
3.一次函数的图像:一次函数y=kx+b的图像是是一条直线。
4.一次函数的性质: k,b与函数图像所在象限:
y=kx时(既b=0时),当k>0时,直线必通过一、三象限,y随x的增大而增大;
当k<0时,直线必通过二、四象限,y随x的增大而减小。
y=kx+b时(既b≠0时),当k>0,b>0时,直线必通过一、二、三象限;当k>0,b<0时,直线通过一、三、四象限;当k<0,b>0时,直线必通过一、二、四象限;当k<0,b<0时,直线必通过二、三、四象限。
5.一次函数的解析式:有三种形式:
(1)一般式:y=kx+b(k,b是常数,k不等于0);
(2)斜截式:y=kx+n(k,n是常数);
(3)点斜式:y=k(x-m)(k,m是常数)。
初中数学- 一次函数知识点汇总-2021年实用必备

21章 一次函数知识点汇总一、一次函数与正比例函数的定义与关系1. 一次函数概念: 形如y=kx+b (k 、b 都是常数,且k ≠0)的函数,叫一次函数。
当b=0时,y=kx (k 是常数,且k ≠0)是正比例函数。
强调: 在一次函数中,等号右边是关于自变量的一次整式形式,自变量的系数是不为0的常数,自变量的指数等于1。
2. 正比例函数与一次函数关系: 所有的正比例函数都是b=0的一次函数,因此,一次函数包含正比例函数,正比例函数只是一次函数中的一部分。
二、一次函数图像与性质1.一次函数的图像是一条直线。
正比例函数是过原点的直线。
画一次函数的图像是两点确定法,一般选取与坐标轴的两个交点的坐标。
2.求一次函数 y =kx +b(k ≠0)与两坐标轴交点坐标的求法:令x=0,则y=b;令y=0,解方程kx+b=0的解,所以一次函数与y 轴交点坐标为(0,b ),与x 轴交点的坐标为)0,(k b-3.该直线与两坐标轴围成的三角形面积计算公4. 一次函数y =kx +b(k ≠0)的图像和性质: ①模型中的k 决定图像的走势。
当k>0时,图像必过一、三象限,从左往右看直线是上升的,函数值y 随自变量x 的增大而增大; 当k<0时,图像必过二、四象限,是下降的,函数值y 随自变量x 的增大而减小。
②模型中的b 决定图像与y 轴交点的位置, 当b>0时,图像与y 轴交于正半轴,也可以说交点位于x 轴上方;当b<0时,图像与y 轴交于负半轴,也可以说交点位于x 轴下方。
当b=0时,图像过原点。
5. 对于一次函数y =kx +b(k ≠0), (1)判断k 值符号的方法:①增减性法:当y 随x 的增大而增大时,k >0;反之当y 随x 的增大而减小时,k <0.②直线升、降法:当直线从左到右上升时,k >0;反之当直线从左到右上升时,k <0.③经过象限法:当直线过第一、三象限时,k >0;当直线经过第二、四象限时,k <0. (2)判断b 值符号的方法:与y 轴交点法,即若直线y =kx +b 与y 轴交于正半轴,则b >0;与y 轴交于负半轴,则b <0;与y 轴交于原点,则b =0. 6.一次函数图像和性质当k >0时,直线y=kx +b 由左到右逐渐上升,y 随x 的增大而增大① b>0时,直线经过一、二、三象限;② b<0时,直线经过一、三、四象限;③ b=0时,直线经过一、三象限当k <0时,直线y=kx +b 由左到右逐渐下降,y 随x 的增大而减小① b>0时,直线经过一、二、四象限;② b<0时,直线经过二、三、四象限;③ b=0时,直线经过二、四象限7.直线y =k 1x +b 1与y =k 2x +b 2关系 (1)当k 1=k 2,b 1≠b 2时,两直线平行;(2)当k 1=k 2,b 1=b 2时,两直线重合;(3)当k 1≠k 2,b 1=b 2时,两直线交点在y 轴上(4)当121-=•k k ,b 1≠b 2时,两直线垂直 (5)当k 1≠k 2,b 1≠b 2时,两直线相交与一点。
一次函数与正比例函数(知识梳理与考点分类讲解)-八年级数学上册基础知识专项突破讲与练(北师大版)

专题4.4一次函数与正比例函数(知识梳理与考点分类讲解)【知识点1】一次函数与正比例函数的定义1.定义若两个变量x,y的对应关系可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数.特别地,当b=0时,称y是x的正比例函数.2.一次函数与正比例函数的关系(1)正比例函数y=kx(k≠0)是一次函数y=kx+b(k,b为常数,k≠0)中b=0的特例,即正比例函数都是一次函数,但一次函数不一定是正比例函数,(2)若已知y与x成正比例,则可设函数关系式为y=kx(k≠0);若已知y是x的一次函数,则可设函数关系式为y=kx+b(k,b为常数,k≠0)【知识点2】一次函数的关系式列一次函数的步骤(1)认真分析,理解题意;(2)同列方程解应用题的思路,找出等量关系;(3)写出一次函数的关系式;(4)注意自变量x的取值范围,对于实际问题,还要考自变量的取值要使实际问题有意义.特别提醒(1)确定一次函数关系式的方法:(2)按相等关系写出含有两个变量的等式;(3)将等式变形为用含有自变量的式子表示一次函数关系式的形式.【考点一】一次函数与正比例函数的定义【例1】(2023春·全国·八年级专题练习)下列函数中,哪些是一次函数?哪些是正比例函数?系数k和常数项b的值各是多少?2πC r =,22003y x =+,200t v =,2(3)y x =-,(50)s x x =-.【分析】根据一次函数与正比例函数逐个分析判断即可求解.一般地,两个变量x 、y 之间的关系式可以表示成形如y kx =的函数(k 为常数,x 的次数为1,且0k ≠),那么y kx =就叫做正比例函数.一次函数的定义:一次函数y kx b =+中k b 、为常数,0k ≠,自变量次数为1.解:2πC r =,是正比例函数,2πk =;22003y x =+是一次函数,23k =,200b =;200t v=不是一次函数,也不是正比例函数;2(3)y x =-26x =-+,是一次函数,2k =-,6b =;(50)s x x =-250x x =-+,不是正比例函数也不是一次函数.【点拨】本题考查了正比例函数与一次函数的定义,掌握正比例函数与一次函数的定义是解题的关键.【举一反三】【变式1】(2022秋·安徽芜湖·八年级统考阶段练习)若y 关于x 的函数(4)y a x b =-+是正比例函数,则a ,b 应满足的条件是()A .4a ≠且0b ≠B .4a ≠-且0b =C .4a =且0b =D .4a ≠且0b =【答案】D【分析】正比例函数的解析式为y kx =,其中0k ≠,据此求解.解: (4)y a x b =-+是正比例函数,∴40a -≠且0b =,∴4a ≠且0b =.故选D .【点拨】本题考查根据正比例函数的定义求参数,解题的关键是掌握正比例函数中一次项系数不能为0,无常数项.【变式2】(2019秋·广东梅州·八年级广东梅县东山中学校考期中)下列关系式:①6x y =;②321y x =+;③25y x =-+;④221y x =+;⑤5y x =-.其中y 是x 的一次函数的有个.【答案】3【分析】形如y kx b =+(0k ≠,k 、b 是常数)的函数,叫做一次函数,进而判断得出答案.解:函数①6xy =,③25y x =-+,⑤5y x =-是一次函数,共有3个,②321y x =+,④221y x =+,不是一次函数,故答案为:3.【点拨】本题主要考查了一次函数的定义,正确把握一次函数的定义是解题关键.【考点二】一次函数与正比例函数的参数【例2】(2022秋·安徽安庆·八年级校考阶段练习)已知函数1012y m x m =-+-().(1)m 为何值时,这个函数是一次函数;(2)m 为何值时,这个函数是正比例函数.【答案】(1)10m ≠;(2)12m =【分析】(1)根据一次函数的定义求解;(2)根据正比例函数的定义求解.解:(1)根据一次函数的定义可得:100m -≠,∴当10m ≠时,这个函数是一次函数;(2)根据正比例函数的定义,可得:100m -≠且120m -=,∴12m =时,这个函数是正比例函数.【点拨】本题考查了一次函数和正比例函数的定义,形如()0y kx b k =+≠的函数叫做一次函数,特别的,当0b =时,()0y kx k =≠叫做正比例函数,熟知概念是关键.【举一反三】【变式1】(2023秋·安徽蚌埠·八年级统考阶段练习)已知一次函数y kx b =+的图象经过()11,A x y ,()22,B x y 两点,且当213x x =+时,211y y =-,则k 的值为()A .3-B .3C .13-D .13【答案】C【分析】分别把点()11,A x y ,()22,B x y 代入一次函数y kx b =+,根据213x x =+,211y y =-时,即可得出结论.解: 一次函数y kx b =+的图象经过()11,A x y ,()22,B x y 两点,∴1122y kx b y kx b =+=+,,∴1212y y kx kx -=-,213x x =+ ,211y y =-,∴121213x x y y -=-=-,,31k ∴-=,即13k =-.故选:C .【点拨】本题考查了一次函数图象上点的坐标特征,掌握一次函数图象上点的坐标满足其解析式是解题关键.【变式2】(2023春·黑龙江大庆·七年级校考期中)已知()2835my m x m -=++-是关于x 的一次函数,则m =.【答案】3【分析】根据一次函数的定义得到281m -=且30m +≠,据此求出m 的值即可.解:()2835my m x m -=++- 是关于x 的一次函数,281m ∴-=且30m +≠,解得:3m =,故答案为:3.【点拨】本题考查了一次函数的定义,一般地,形如()0y kx b k =+≠的函数,叫做一次函数,会利用x 的指数构造方程,会利用k 限定字母的值是解题关键.【考点三】求一次函数的自变理或函数值【例3】(2023秋·全国·八年级专题练习)已知函数()()2324m y m x m -=++-,(1)当m 是何值时函数是一次函数.(2)当函数是一次函数时,写出此函数解析式.并计算当1x =时的函数值.(3)点(),2A n 在此一次函数图象上,则n 的值为多少.【答案】(1)2m =;(2)42y x =-,当1x =时,2y =;(3)1n =【分析】(1)根据一次函数的定义进行求解即可;(2)根据(1)所求代入m 得值求出对应的函数关系式,再把1x =代入对应的函数关系式求出此时y 的值即可;(3)代入2y =,求出此时x 的值即可得到答案.(1)解:∵函数()()2324my m x m -=++-是一次函数,∴22031m m +≠⎧⎨-=⎩,∴2m =,∴当2m =时,函数()()2324my m x m -=++-是一次函数;(2)解:由(1)得()()232442my m x m x -=++-=-,∴当1x =时,4122y =⨯-=;(3)解:在42y x =-中,当422y x =-=时,1x =,∴()1,2A ,∴1n =.【点拨】本题主要考查了一次函数的定义,求一次函数的函数值和自变量的值,一般地,形如y kx b =+(其中k 、b 都是常数,且0k ≠)的函数叫做一次函数.【举一反三】【变式1】(2023春·天津滨海新·八年级校考期末)不论实数k 取何值,一次函数3y kx =-的图象必经过的点是()A .()0,3-B .()0,3C .3,02⎛⎫⎪⎝⎭D .3,02⎛⎫- ⎪⎝⎭【答案】A【分析】令0x =,求出y 值即可得解.解: 一次函数3y kx =-,当0x =时,=3y -,∴不论k 取何值,函数图象必过点(0,3)-.故选:A .【点拨】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.【变式2】(2022秋·安徽芜湖·八年级统考阶段练习)在平面直角坐标系中,直线34y x =+过点(,)P a b ,则32023a b -+的值为.【答案】2019【分析】把(,)P a b 代入34y x =+即可得到34a b +=,代入32023a b -+即可求解.解: 直线34y x =+过点(,)P a b ,34b a ∴=+,34a b ∴-=-,32023420232019a b ∴-+=-+=,故答案为:2019.【点拨】本题考查了一次函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系y kx b =+是解题的关键.【考点四】列函数解析式及求函数值【例4】(2022秋·辽宁锦州·八年级统考期中)某公交公司的16路公交车每月的支出费用为4000元,每月的乘车人数x (人)与这趟公交车每月的利润(利润=收入费用-支出费用)y (元)的变化关系如表所示(每位乘客乘一次公交的票价是固定不变的)x (人)50010001500200025003000⋯y (元)3000-2000-1000-010002000⋯请回答下列问题:(1)自变量为,因变量为;(2)y 与x 之间的关系式是;(3)当每月乘车人数为4000人时,每月利润为多少元?【答案】(1)每月的乘车人数,公交车每月的利润;(2)24000y x =-;(3)当每月乘车人数为4000人时,每月利润为4000元【分析】(1)根据表格中的数量变化可得答案;(2)根据乘坐人数与每月的利润的变化关系可求出每位乘客坐一次车需要的钱数,进而得出函数关系式;(3)把x =4000代入函数关系式求出y 的值即可.(1)解:由题意可知:自变量是:每月的乘车人数,因变量是:公交车每月的利润.故答案为:每月的乘车人数,公交车每月的利润.(2)解: 从表格中数据变化可知,每月乘车人数每增加500人,其每月的利润就增加1000元,∴每位乘客坐一次车需要10005002÷=(元),即函数关系式为:2(500)300024000y x x =--=-.(3)解:当4000x =时,2400040004000y =⨯-=(元).答:当每月乘车人数为4000人时,每月利润为4000元.【点拨】本题考查常量与变量,函数关系式,理解表格中两个变量的变化关系是正确解答的关键.【举一反三】【变式1】(2023春·八年级课时练习)汽车由北京驶往相距120千米的天津,它的平均速度是30千米/时,则汽车距天津的路程S (千米)与行驶时间t (时)的函数关系及自变量的取值范围是()A .()1203004S t t =-≤≤B .()3004S t t =≤≤C .()120300S t t =->D .()304S t t ==【答案】A【分析】根据汽车距天津的距离=总路程−已行驶路程列函数关系式,再根据总路程判断出t 的取值范围即可.解:∵汽车行驶的路程为:30t ,∴汽车距天津的路程S (千米)与行驶时间t (时)的函数关系为:12030S t =-,∵120304÷=,∴自变量t 的取值范围是04t ≤≤,故选:A .【点拨】本题考查了列一次函数关系式,解决本题的关键是理解剩余路程的等量关系.【变式2】(2021·全国·九年级专题练习)一根长为24cm 的蜡烛被点燃后,每分钟缩短1.2cm ,则其剩余长度y (cm )与燃烧时间x (min )的函数关系式为,自变量的取值范围是.【答案】y =24-1.2x0≤x ≤20【分析】根据题意,剩下的蜡烛长度=总长度-已经燃烧的长度,已经燃烧的长度=每分钟缩短长度×燃烧时间,即可写出解析式;列出关系式,根据蜡烛最长的燃烧时间可得自变量的取值范围;解:由题意可得:函数关系式为:y=24-1.2x ,∵x 0≥,y 0≥∴24-1.2x 0≥∴x 20≤.∴自变量x 的取值范围是0≤x≤20.故答案为:y=24-1.2x ,0≤x≤20.【点拨】本题目考查一次函数的实际应用,正确理解题意,找到实际问题中的等量关系是解题的关键.。
初中数学知识点公式总结

知识点公式总结函数部分一、 一次函数:y=kx+b(k ≠0) ;正比例函数:y=kx (k ≠0)。
当k>0时,y 随x 的增大而增大; 当k<0时,y 随x 的增大而减小。
当b>0在x 轴正半轴;当b<0在x 轴负半轴。
二、 反比例函数:(1)一般形式为)0(1≠==-k kx y x k y 或;(2)如右图,k S AOB 21=∆,矩形面积=|k|。
(3)注:反比例函数的性质中,当0>k 时,y 随着x 的增大而减小,必须强调是在同一象限内或注明x 的取值范围(如00<>x x 或)。
(4)如图3,正比例函数y=k 1x (k 1>0)与反比例函数y=xk(k >0)的图像交于A 、B 两点,过A 点作AC ⊥x 轴,垂足是C ,三角形ABC 的面积设为S ,则S=|k|,与正比例函数的比例系数k 1无关 (5)如图4,正比例函数y=k 1x (k 1>0)与反比例函数y=xk(k >0)的图像交于A 、B 两点,过A 点作AC ⊥x 轴,过B 点作BC ⊥y 轴,两线的交点是C ,三角形ABC 的面积设为S ,则S=2|k|,与正比例函数的比例系数k 1无关。
三、 二次函数:(1) 一般形式:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=,对称轴是直线a b x 2-=,顶点坐标为)44,2(2ab ac a b --。
特殊形式:①2ax y =;②k ax y +=2;③()2h x a y -=;④()k h x a y +-=2,顶点为(h ,k ),对称轴为直线h x =。
(2) a 的用途:①确定开口方向(最值):若0>a ,则开口向上,当abx 2-=时最小值y =a b ac 442-,若0<a ,则开口向下,当abx 2-=时最大值y =a b ac 442-;②确定开口大小:当a 越大开口越小,当a 越小开口越大;③若a 相等,则形状相同,可平移得到。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《正比例函数与一次函数》知识点归纳
《正比例函数》知识点
一、表达式:y=kx (k≠0的常数)
二、图像:正比例函数y=kx的图像是:一条经过(0,0)和(1,k)的直线;
说明:正比例函数y=kx的图像也叫做“直线y=kx”;
三、性质特征:
1、图像经过的象限:
k>0时,直线过原点,在一、三象限;
k<0时,直线过原点,在二、四象限;
2、增减性及图像走向:
k>0时,y随x增大而增大,直线从左往右由高降低;
k<0时,y随x增大而减小,直线从左往右由低升高;
四、成正比例关系的几种表达形式:
1、y与x成正比例:y=kx (k≠0);
2、y与x+a成正比例:y=k(x+a) (k≠0);
3、y+a与x成正比例:y+a=kx (k≠0);
4、y+a与x+b成正比例:y+a= k(x+b) (k≠0);
《一次函数》知识点
一、表达式:y=kx+b(k≠0, k, b为常数)
注意:(1)k≠0,自变量x的最高次项的系数为1;
(2)当b=0时,y=kx,y叫x的正比例函数。
二、图像:
一次函数y=kx+b (k≠0, b≠0)的图像是:一条经过(-,0)和(0,b)的直线。
说明:(1)一次函数y=kx+b (k≠0, b≠0)的图像也叫做“直线y=kx+b”;
(2)直线y=kx+b与x轴的交点坐标是:(-,0);
直线y=kx+b与y轴的交点坐标是:(0,b).
三、性质特征:
1、图像经过的象限:
(1)、k>0,b>0时,直线经过一、二、三象限;
(2)、k>0,b﹤0时,直线经过一、三、四象限;
(3)、k﹤0,b>0时,直线经过一、二、四象限;
(4)、k﹤0, b﹤0时,直线经过二、三、四象限;
2、增减性及图像走向:
k>0时,y随x增大而增大,直线从左往右由高降低;
k<0时,y随x增大而减小,直线从左往右由低升高;
3、一次函数y=kx+b (k≠0, b≠0)中“k和b的作用”:
(1) k的作用:k决定函数的增减性和图像的走向
k>0时,y随x增大而增大,直线从左往右由高降低;
k<0时,y随x增大而减小,直线从左往右由低升高;
(2)∣k∣的作用:∣k∣决定直线的倾斜程度
∣k∣越大,直线越陡,直线越靠近y轴,与x轴的夹角越大;
∣k∣越小,直线越平缓,直线越远离y轴,与x轴的夹角越小;
(3) b的作用:b决定直线与y轴的交点位置
b>0时,直线与y轴正半轴相交(或与y轴的交点在x轴的上方);
b﹤0时,直线与y轴负半轴相交(或与y轴的交点在x轴的下方);
(4)k和b的共同作用:k和b共同决定直线所经过的象限
四、直线的平移规律:直线y=kx+b可以由直线y=kx平移得到
当b>0时,将直线y=kx:向上平移b个单位得到直线y=kx+b;
当b﹤0时,将直线y=kx:向下平移∣b∣个单位得到直线y=kx+b;
五、两条直线平行和垂直:直线m:y=ax+b; 直线n: y=cx+d
(1)当a=c,b≠d时,直线m∥直线n,反之也成立;
例如:直线y=2x+3与直线y=2x-5都与直线y=2x平行。
(2)当ac=-1时,直线m⊥直线n。
反之也成立;
例如:直线y=x+2与直线y=-2x+3互相垂直
六、直线y=kx+b与坐标轴围成的三角形的面积公式: S=
七、求一次函数解析式的方法:求函数解析式的方法主要有三种
(1)由已知函数推导或推证;
(2)由实际问题列出二元方程,再转化为函数解析式,此类题一般在没有写出函数解析式前无法(或不易)判断两个变量之间具有什么样的函数关系;
(3)用待定系数法求函数解析式:
“待定系数法”的基本思想就是方程思想,就是把具有某种确定形式的数学问题,通过引入一些待定的系数,转化为方程(组)来解决,题目的已知恒等式中含有几个等待确定的系数,一般就需列出几个含有待定系数的方程,本单元构造方程一般有下列几种情况:
①利用一次函数的定义构造方程组。
②利用一次函数y=kx+b中常数项b恰为函数图象与y轴交点的纵坐标,即由b来定点;直线y=kx+b平行于y=kx,即由k来定方向。
③利用函数图象上的点的横、纵坐标满足此函数解析式构造方程。
④利用题目已知条件直接构造方程。
八、例题举例:
例1.已知y=,其中=(k≠0的常数),与成正比例,求证:y与x也成正比例。
证明:∵与成正比例,
设=a(a≠0的常数),
∵y=, =(k≠0的常数),
∴y=·a=akx,
其中ak≠0的常数,
∴y与x也成正比例。
例2.直线y=kx+b与直线y=5-4x平行,且与直线y=-3(x-6)相交,交点在y轴上,求此直线解析式。
分析:直线y=kx+b的位置由系数k、b来决定:由k来定方向,由b来定与y轴的交点,若两直线平行,则解析式的一次项系数k相等。
例 y=2x,y=2x+3的图象平行。
解:∵y=kx+b与y=5-4x平行,
∴k=-4,
∵y=kx+b与y=-3(x-6)=-3x+18相交于y轴,
∴b=18,
∴y=-4x+18。
说明:一次函数y=kx+b图象的位置由系数k、b来决定:由k来定方向,由b来定点,即函数图象平行于直线y=kx,经过(0, b)点,反之亦成立,即由函数图象方向定k,由与y轴交点定b。