11正比例函数的图象和性质同步习题含答案
正比例函数图像性质专项练习题

正比例函数图像性质专项练习题
正比例函数图像性质作业题
1、.若y=(m-1)xm2是关于 x的正比例函数,则m= 。
2、已知正比例函数的比例系数是-5,则它的解析式为:。
3、由于两点确定一条直线,所以画正比例的函数图象时,只需描点(0,0)和点(1,k),然后连线即可,故作y=-3x的图像时,可以取和两点来画。
4、函数y =-4x的图象过第象限,经过点(0,)与点(1, ), y 随x的增大而。
5、如果函数y =(m-2)x 的图象经过第一、三象限,那么m的取值范围是。
6、正比例函数y=kx(k≠0)
(1) 当k>0时,正比例函数的图像经过第象限,自变量x逐渐增大时,y 的值也随着逐渐。
(2)当k 时,正比例函数的图像经过第二、四象限,自变量x逐渐增大时,y 的值则随着逐渐。
7、函数 y=4x 经过象限,y 随 x 的减小而 .
8、如果函数 y= - kx 的图像经过一、三象限,那么y = kx 的图像经过第象限。
9、已知y=(m+1)x lml是正比例函数,它的图像经过第象限。
10、如果正比例函数y=(8-2a)x的图像经过第二、四象限,则a 的取值范围是。
11、若正比例函数图像又y=(3k-6)x的图像经过点A(x1,y1)和B(x2,y2),当x1y2,则k的取值范围是。
12、正比例函数y=(3m-1)x的图像经过点A(x1,x2)和B(y1,y2),且该图像经过第
二、四象限,则m的取值范围是;当x1>x2时,则y1与y2的大小关系是。
沪教版八年级 正比例函数图像与性质,带答案

正比例函数图像与性质教学内容1 .理解函数的概念,会求函数的解析式和函数值和函数定义域;2 .理解正比例函数的概念,会用待定系数法、数形结合法求正比例函数解析式;3 .熟练掌握正比例函数的图像和性质,会解相关题目.(以提问的形式回顾)1.请填写下表: 正比例函数的定义、图像和性质:定义形如y =kX (k 中0)的函数叫正比例函数 图像经过定点(0,0)和(1,k )的一条直线图形经过第一、三象限 k /0y 随X 的增大而增大 性质 L/C 图形经过第二、四象限k <0y 随X 的增大而减小 4 .填空:(1)函数y =2X —1自变量的取值范围是—一,3X —1……,一—口(2)函数y =-一-自变量的取值范围是—2X -1(3)函数y =、2X -1自变量的取值范围是、1111答案:(1)全体实数;(2)X W5;(3)X ^—;(4)X ^—且X ^—(4) v13X -1函数k ^1自变量的取值范围是•(采用教师引导,学生轮流回答的形式)已知函数f (x )=x 2—2x —1.求:(1)f (0);(2)f (-1);(3)f «2);(4)f (-a ).(1)-1;(2)2;(3)—2v2+1;(4)a 2+2a —1 例2:下列函数中,是正比例函数的是()A1 4「、,ClA .y =—x B.y =—C y =5x —3D .y =6x 2—2x —1 2 x试一试:(1)若y =5x 3m -2是正比例函数,则m =.(2)若函数y =(m —4)x 是关于x 的正比例函数,则m 的取值范围是(3)若函数y =(a +2)x a 2-3是正比例函数,则a 的值是.(4)若函数y =(a +2)x +a 2—4是正比例函数,则a 的值是.答案:1;m 丰4;2;2例3:已知正比例函数的比例系数是-5,则解析式为答案:y =—5x试一试:已知y 是x 的正比例函数,且当x =2时,y =12,求这个正比例函数的解析式.答案:y =6x例4:一个函数的图像是经过原点的直线,并且这条直线经过点(1,3),则这个函数的解析式为. 答案:y =3x试一试:(1)已知正比例函数图像上有一个点A 到x 轴的距离为4,这个点A 的横坐标是-2,则这个正比例函数的解析式为.(2)已知正比例函数图像上一点到x 轴距离与到y 轴距离之比为1:2,则此函数解析式是.(3)已知点A (4,-2)、B (a ,3)都在同一个正比例函数的图像上,则a 的值为.饼提升答案:A .a >b >c 答案:C 例6.若点A 纵坐标为4,且A 在直线y =kx 上,过点A 坐AD 垂直y 轴于点D .若■ADO 的面积为4,求点A 坐标和直线y =kx 的解析式.答案:一、…,一,……1……解:设点A 纵坐标为x ,则—x x x 4=4,解得所以点A 的坐标是(2,4)或(-2,4).将点A 的坐标代入y =kx ,得k =±2,所以直线的解析式为y =2x 或y =-2x . 答案:y =2x 或y =2x ;y =x 或y =-x ;-3例5:(1)正比例函数y =(m -1)x ,y 随x 的增大而增大,则m 的取值范围是(2)若正比例函数y =(m -1)x m 2—3的图像经过第二、四象限,则m 的值是答案:m>1;-2试一试:1 .已知函数y =(k 2—4)x 2+(k +1)x 是正比例函数,且y 随x 的增大而减小,则k =答案:-22 .已知正比例函数y =(2m —1)x 的图像上有两点R ,y j B (x ,y ),当x <x 时,有y >y ,那么m 的 取值范围是(B .m>2D . 答案:C3.如图,三个正比例函数的图像分别对应的解析式是①y =ax :② y =bx ;@y =cx ,贝U a 、b 、c 的大 小关系是()x =±21 .下列函数中,是正比例函数的有() ①y =3x +1;©y=4x ;@s —1=t +5;@m +2=2—x .A .①②B .②③C ②④D .③④2 .如果y =(m +3)x n -1是正比例函数,那么m ,n = 3,若y =(n —2)X n L 1是正比例函数,则n =4 .一根蜡烛长20厘米,点燃后平均每小时燃烧5厘米,燃烧后剩下的蜡烛高度y 厘米与燃烧时间x 小时之间的函数关系用图像可表示为()5 .已知正比例函数的图像经过点P (2,3).(1)求此函数解析式;(2)若在x 轴上有点。
中考数学《正比例函数图像和性质》专项练习题及答案

中考数学《正比例函数图像和性质》专项练习题及答案一、单选题1.若正比例函数的图象经过点(﹣1,2),则这个图象必经过点( )A .(1,2)B .(﹣1,﹣2)C .(2,﹣1)D .(1,﹣2)2.若正比例函数y=(1-2m )x 的图象经过点A (x 1,y 1)和点B (x 2,y 2),当x 1<x 2时,y 1>y 2,则m的取值范围是( ) A .m >0B .m <0C .m <12D .m >123.已知正比例函数 y =mx(m <0) 图象上有两点 P(x 1,y 1) , Q(x 2,y 2) 且 x 1<x 2 ,则 y 1与 y 2 的大小关系是( ) A .y 1>y 2B .y 1<y 2C .y 1=y 2D .不能确定4.正比例函数y =3x 的图象必经过点( )A .(﹣1,﹣3)B .(﹣1,3)C .(1,﹣3)D .(3,1)5.已知正比例函数y=(m-1)x ,若y 随x 增大而增大,则点(m ,1-m )所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限6.正比例函数y=kx (k ≠0)的函数值y 随着x 增大而减小,则一次函数y=x+k 的图象大致是( )A .B .C .D .7.若函数y=kx 的图象经过点(1,-2),那么该图象一定经过点( )A .(2,-1)B .( −12,1)C .(-2,1)D .(1, 12)8.若正比例函数y =(m ﹣2)x 的图象经过点A(x 1,y 1)和点B(x 2,y 2),当x 1<x 2时,y 1>y 2,则m 的取值范围是( ) A .m >0B .m <0C .m >2D .m <29.正比例函数y=2x与反比例函数y=2x的图象或性质的共有特征之一是()A.函数值y随x的增大而增大B.图象在第一、三象限都有分布C.图象与坐标轴有交点D.图象经过点(2,1)10.若一个正比例函数y=mx的图像经过P(4,-8),Q(m,n)两点,则n的值为()A.1B.8C.-2D.411.对于正比例函数y=kx,当自变量x的值增加3时,对应的函数值y减少6,则k的值为()A.2B.﹣2C.﹣3D.﹣0.512.如图,在平面直角坐标系中,点A的坐标为(0,6),沿x轴向右平移后得到A',A点的对应点A'在直线y=35x上,则点B与其对应点B'之间的距离为()A.4B.6C.8D.10二、填空题13.函数y= 1m−2 x中,如果y随x的增大而减小,那么m的取值范围是.(1)线段B1B2的长度为;(2)点A2022的坐标为;(3)线段B2021B2022的长度为.15.写出一个实数k的值,使得正比例函数y=kx的图象在二、四象限.16.正比例函数y=(m﹣2)x m的图象的经过第象限,y随着x的增大而.17.若正比例函数y=(m﹣2)x的图象经过一、三象限,则m的取值范围是.18.函数y=kx与y=6−x的图像如图所示,则k=.三、综合题19.已知正比例函数y=kx.(1)若函数图象经过第二、四象限,则k的范围是什么?(2)点(1,﹣2)在它的图象上,求它的表达式.20.已知正比例函数y=kx经过点A(−1,4) .(1)求正比例函数的表达式;(2)将(1)中正比例函数向下平移5个单位长度后得到的函数表达式是.21.已知正比例函数y=kx图象经过点(3,﹣6),求:(1)求这个函数解析式.(2)画出这个函数图象.(3)判断点A(4,﹣2)、点B(﹣1.5,3)是否在这个函数图象上(4)图象上的两点C(x1,y1)、D(x2,y2),如果x1>x2,比较y1、y2的大小.22.如图,它表示甲乙两人从同一个地点出发后的情况.到十点时,甲大约走了13千米.根据图象回答:(1)甲是几点钟出发?(2)乙是几点钟出发,到十点时,他大约走了多少千米? (3)到十点为止,哪个人的速度快? (4)两人最终在几点钟相遇?23.已知函数y=(m+3)x m2+2m−2.(1)当m 为何值时,它是正比例函数? (2)当m 为何值时,它是反比例函数? (3)当m 为何值时,它是二次函数?24.一水果经销商购进了A ,B 两种水果各10箱,分配给他的甲、乙两个零售店(分别简称甲店、乙店)销售,预计每箱水果的盈利情况如下表:A 种水果/箱B 种水果/箱甲店11元 17元 乙店9元13元5箱,B 种水果两店各5箱,请你计算出经销商能盈利多少元?(2)在甲、乙两店各配货10箱(按整箱配送),且保证乙店盈利不小于100元的条件下,请你设计出使水果经销商盈利最大的配货方案,并求出最大盈利为多少?参考答案1.【答案】D2.【答案】D3.【答案】A4.【答案】A5.【答案】D6.【答案】A7.【答案】B8.【答案】D9.【答案】B10.【答案】D11.【答案】B12.【答案】D13.【答案】m<214.【答案】(1)√3(2)A2021A2022=22020 (3)22020√315.【答案】-216.【答案】二、四;减小17.【答案】m>218.【答案】219.【答案】(1)解:∵函数图象经过第二、四象限∴k<0.(2)解:当x=1,y=﹣2时,则k=﹣2 即:y=﹣2x.20.【答案】(1)解:将点A(−1,4)代入y=kx,得4=−k,即k=−4.故函数解析式为:y=−4x(2)y=−4x−521.【答案】(1)解:将点(3,﹣6)代入y=kx得,﹣6=3k解得,k=﹣2函数解析式为y=﹣2x;(2)解:如图:函数过(0,0),(1,﹣2).(3)解:将点A(4,﹣2)、点B(﹣1.5,3)分别代入解析式得,﹣2≠﹣2×4;3=﹣2×(﹣1.5);故点A不在函数图象上,点B在函数图象上.(4)解:由于k=﹣2<0,故y随x的增大而减小,可得y1<y2.22.【答案】(1)解:甲8点出发(2)解:乙9点出发;到10时他大约走了13千米(3)解:到10时为止,乙的速度快(4)解:两人最终在12时相遇23.【答案】(1)解:当函数y=(m+3)x m2+2m−2是正比例函数∴m2+2m﹣2=1且m+3≠0解得:m1=﹣3(舍去),m2=1则m=1时,它是正比例函数;(2)解:当函数y=(m+3)x m2+2m−2是反比例函数∴m2+2m﹣2=﹣1且m+3≠0解得:m1=﹣1+√2,m2=﹣1﹣√2则m=﹣1±√2时,它是反比例函数;(3)解:当函数y=(m+3)x m 2+2m−2是二次函数 ∴m 2+2m ﹣2=2 且m+3≠0解得:m 1=﹣1+√5,m 2=﹣1﹣√5 则m=﹣1±√5时,它是二次函数.24.【答案】(1)解:经销商能盈利=5×11+5×17+5×9+5×13=5×50=250(2)解:设甲店配A 种水果x 箱,则甲店配B 种水果(10﹣x )箱 乙店配A 种水果(10﹣x )箱,乙店配B 种水果10﹣(10﹣x )=x 箱. ∵9×(10﹣x )+13x ≥100∴x ≥2 12经销商盈利为w=11x+17•(10﹣x )+9•(10﹣x )+13x=﹣2x+260. ∵﹣2<0∴w 随x 增大而减小 ∴当x=3时,w 值最大.甲店配A 种水果3箱,B 种水果7箱.乙店配A 种水果7箱,B 种水果3箱.最大盈利:﹣2×3+260=254(元).。
初中人教版数学八年级下册:19.2.1 第2课时 正比例函数的图象和性质 习题课件(含答案)

把 x=0 代入得 y=-x=0,所以点 B 在图象上.
把 x=3代入得 y=-x=-3,所以点 C 在图象上.
2
2
知识点二 正比例函数的性质 1) B.函数图象经过第二、四象限 C.y 随 x 的增大而增大 D.不论 x 取何值,总有 y>0
-6),B(m,-4)两点,则 m 的值为( A )
A.2
B.8
C.-2
D.-8
5.(1)画出函数 y=-x 的图象; 解:(1)图象如图所示.
(2)判断点 A(-32,32),B(0,0),C(32,-32)是否在函 数 y=-x 的图象上.
(2)把 x=-32代入得 y=-x=32,所以点 A 在图象上.
7.(易错题)(2020·南昌期中)对于正比例函数 y= -2x,当自变量 x 的值增加 1 时,函数 y 的值增加
(A) A.-2 B.2 C.-13 D.13
8.(2020·上海中考)已知正比例函数 y=kx(k 是常数, k≠0)的图象经过第二、四象限,那么 y 的值随着 x 的值增大而 减小 (填“增大”或“减小”).
14.若点 A(m,n)在直线 y=kx(k≠0)上,当-1≤m≤1 时,-1≤n≤1,则这条直线的函数解析式为 y=x
或y=-x .
15.已知正比例函数 y=(2m+4)x.求: (1)m 为何值时,函数图象经过第一、三象限; 解:(1)∵函数图象经过第一、三象限, ∴2m+4>0,解得 m>-2.
17.如图,已知正比例函数 y=kx 的图象经过点 A, 点 A 在第四象限,过 A 作 AH⊥x 轴,垂足为 H,点 A 的横坐标为 4, 且△AOH 的面积为 6. (1)求正比例函数的解析式;
(1)∵点 A 的横坐标为 4,且△AOH 的面积为 6, ∴12×4×AH=6,解得 AH=3. ∴A(4,-3). 把 A(4,-3)代入 y=kx, 得 4k=-3,解得 k=-34. ∴正比例函数的解析式为 y=-34x.
正比例函数讲义含答案

正比例函数一、教学目标1.理解函数的定义以及函数的定义域、值域. 2.掌握正比例函数的概念、图像和性质.二、重点难点重点:正比例函数的概念、图像和性质的应用.难点:利用正比例函数的相关知识解决实际问题,学会数形结合.三、考点分析:这部分的知识应用性较强,一般以填空、判断、选择、读图题、解答题的形式考查四、提分技巧1、学会读图,加强数形结合思想2、考虑问题要全面,还要善于从问题情境中抽象出数学知识(一)函数的意义【例1】1、如果函数:()x x x f 22-=,试求:(1)()1-a f ; (2)()12+a f 【解析】(1)()1-a f ()1212---=a a(2)()12+a f ()122122+-+=a a2、如果函数:()112-=-x x f ,试求:(1)()2f ; (2)()x f【解析】(1)()2f ()813132=-=-=f(2)()1-x f ()()()()[]()()121211112-+-=+--=+-=x x x x x x()x x x f 22+=∴【拓展1】如果函数:()x x f x f =⎪⎭⎫⎝⎛+12,,试求)(x f 的解析式 【解析】()x x f x f =⎪⎭⎫⎝⎛+12x x f x f 11121=⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫⎝⎛⇒()xx f x f 112=⎪⎭⎫ ⎝⎛+② 联立①②,解得()332x x x f -=【拓展2】如果,()b ax x f +=,其中a 和b 是两个常数。
(1)()()34-=x x f f ,试求()x f 的表达式; (2)()()()78+=x x f f f ,求()x f 的表达式。
【解析】(1)()b ax x f +=∴()()()()342-=++=++=+=x b ab x a b b ax a b x af x f f⎩⎨⎧=-=⎩⎨⎧-==∴3212b a b a 或 ()()3212+-=-=∴x x f x x f 或(2) ()()()()()782322+=+++=+++=++=x b ab b a x a b b ab x a a b ab x a f x f f f⎪⎩⎪⎨⎧=++=∴7823b ab b a a ⎩⎨⎧==⇒12b a ()12+=∴x x f(二)正比例函数解析式【例2】已知y 与x -1成正比例,且当x =3时,y =4,求:(1)函数解析式;(2)x =1-时,y 的值【解析】设()1-=x k y ,代入x =3,y =4,解得2=k (1)所以函数解析式为22-=x y (2)当x =1-时,y =-4【拓展1】y 与3x 成正比例,当x =8时,y =-12,则y 与x 的函数解析式为___________. 【解析】设kx y 3=,代入x =8,y =-12,解得21-=k 所以函数解析式为x y 23-=【拓展2】已知2y -3与3x +1成正比例,且x=2时,y=5,求:(1)求y 与x 之间的函数关系式(2)若点(a ,2)在这个函数的图象上,求a . 【解析】设()133-2+=x k y ,代入x=2时,y=5,解得1=k(1)所以函数解析式为223+=x y (2)当2=y 时,0=a三)正比例函数的图像及性质【例3】已知直线y =kx 过点(-2,1),A 是直线y =kx 图象上的点,若过A 向x 轴作垂线, 垂足为B ,且ABO S ∆=9,求点A 的坐标。
中考数学-一次函数正比例函数的图像及性质(含答案)专题练习

中考数学-一次函数正比例函数的图像及性质(含答案)专题练习一、单选题1.已知正比例函数y=kx(k≠0),点(2,-3)在函数上,则y随x的增大而()A. 增大B. 减小C. 不变D. 不能确定2.已知函数y=x+k+1是正比例函数,则k的值为()A.1B.﹣1C.0D.±13.正比例函数y=(2k+1)x,若y随x增大而减小,则k的取值范围是()A. k>﹣B. k<﹣C. k=D. k=04.若正比例函数y=kx的图象经过点A(k,9),且经过第一、三象限,则k的值是()A. ﹣9B. ﹣3C. 3D. ﹣3或35.若正比例函数y=(1-2m)x的图象经过点A(x1,y1)和点B(x2,y2),当x1< x2时,y1>y2,则m的取值范围是()A. m<0B. m>0C.D.6.在下列四组点中,可以在同一个正比例函数图象上的一组点是()A. (2,﹣3),(﹣4,6)B. (﹣2,3),(4,6)C. (﹣2,﹣3),(4,﹣6)D. (2,3),(﹣4,6)7.正比例函数y=kx(k≠0)的图像在第二、四象限,则一次函数y=x+k的图像大致是()A. B. C. D.8.下列点不在正比例函数y=﹣2x的图象上的是()A. (5,﹣10)B. (0,0)C. (2,﹣1)D. (1,﹣2)9.正比例函数y=(2k+1)x,若y随x增大而减小,则k的取值范围是()A. k>﹣B. k<﹣C. k=D. k=010.关于函数y=﹣x,下列结论正确的是()A. 函数图象必过点(﹣2,﹣1)B. 函数图象经过第1、3象限C. y随x的增大而减小D. y随x的增大而增大11.下列式子中,表示y是x的正比例函数的是()A.y=x﹣1B.y=2xC.y=2x2D.y2=2x12.下列变量之间关系中,一个变量是另一个变量的正比例函数的是()A. 正方形的面积S随着边长x的变化而变化B. 正方形的周长C随着边长x的变化而变化C. 水箱有水10L,以0.5L/min的流量往外放水,水箱中的剩水量V(L)随着放水时间t(min)的变化而变化D. 面积为20的三角形的一边a随着这边上的高h的变化而变化13.P1(x1,y1),P2(x2,y2)是正比例函数图象上的两点,下列判断中,正确的是A. y1>y2B. y1<y2C. 当x1<x2时,y1<y2D. 当x1<x2时,y1>y214.下列四个点中,在正比例函数的图象上的点是()A. (2,5)B. (5,2)C. (2,—5)D. (5,—2)15.若正比例函数的图象经过点(2,﹣3),则这个图象必经过点()A. (﹣3,﹣2)B. (2,3)C. (3,﹣2)D. (﹣2,3)16.下列关系中,是正比例关系的是()A. 当路程s一定时,速度v与时间tB. 圆的面积S与圆的半径RC. 正方体的体积V与棱长aD. 正方形的周长C与它的一边长a17.下列问题中,两个变量成正比例关系的是()A. 等腰三角形的面积一定,它的底边和底边上的高B. 等边三角形的面积与它的边长C. 长方形的长确定,它的周长与宽D. 长方形的长确定,它的面积与宽18.下列各点中,在正比例函数y=-2x图象上的是()A. (-2,-1)B. (1,2)C. (2,-1)D. (1,-2)19.一次函数y=4x,y=﹣7x,y=的共同特点是()A. 图象位于同样的象限B. y随x增大而减小C. y随x增大而增大D. 图象都过原点二、填空题20.已知正比例函数y=kx(k是常数,k≠0),y随x的增大而减小,写出一个符合条件的k的值为________.21.写出一个正比例函数,使其图象经过第二、四象限:________.22.若函数y=(2m+6)x+(1﹣m)是正比例函数,则m的值是________.23.写一个图象经过第二、四象限的正比例函数:________24.将正比例函数y=2x的图象向上平移3个单位,所得的直线不经过第________象限.答案解析部分一、单选题1.已知正比例函数y=kx(k≠0),点(2,-3)在函数上,则y随x的增大而()A. 增大B. 减小C. 不变D. 不能确定【答案】B【考点】正比例函数的图象和性质【解析】【解答】∵点(2,-3)在正比例函数y=kx(k≠0)上,∴函数图象经过二四象限,∴y随着x的增大而减小,故选B【分析】首先根据函数的图象经过的点的坐标确定函数的图象经过的象限,然后确定其增减性即可2.已知函数y=x+k+1是正比例函数,则k的值为()A.1B.﹣1C.0D.±1【答案】B【考点】正比例函数的图象和性质【解析】【解答】解:由题意,得k+1=0,解得k=﹣1,故选:B.【分析】根据正比例函数的定义,可得答案.3.正比例函数y=(2k+1)x,若y随x增大而减小,则k的取值范围是()A. k>﹣B. k<﹣C. k=D. k=0 【答案】B【考点】正比例函数的图象和性质【解析】【解答】解:∵正比例函数y=(2k+1)x中,y的值随自变量x的值增大而减小,∴2k+1<0,解得,k<﹣;故选B.【分析】根据正比例函数图象与系数的关系列出关于k的不等式2k+1<0,然后解不等式即可.4.若正比例函数y=kx的图象经过点A(k,9),且经过第一、三象限,则k的值是()A. ﹣9B. ﹣3C. 3D. ﹣3或3 【答案】C【考点】正比例函数的图象和性质【解析】【解答】解:∵正比例函数y=kx(k≠0)的图象经过第一、三象限∴k>0,把(k,9)代入y=kx得k2=9,解得k1=﹣3,k2=3,∴k=3,故选C.【分析】根据正比例函数的性质得k>0,再把(k,9)代入y=kx得到关于k的一元二次方程,解此方程确定满足条件的k的值.5.若正比例函数y=(1-2m)x的图象经过点A(x1,y1)和点B(x2,y2),当x1< x2时,y1>y2,则m的取值范围是()A. m<0B. m>0C.D.【答案】D【考点】正比例函数的图象和性质【解析】【分析】由题目所给信息“当x1<x2时,y1>y2”可以知道,y随x的增大而减小,则由一次函数性质可以知道应有:1-2m<0,进而可得出m的取值范围.【解答】由题目分析可知:在正比例函数y=(1-2m)x中,y随x的增大而减小由一次函数性质可知应有:1-2m<0,即-2m<-1,解得:m>.【点评】此题主要考查了一次函数的图象性质,只有掌握它的性质才能灵活运用.6.在下列四组点中,可以在同一个正比例函数图象上的一组点是()A. (2,﹣3),(﹣4,6)B. (﹣2,3),(4,6)C. (﹣2,﹣3),(4,﹣6)D. (2,3),(﹣4,6)【答案】A【考点】正比例函数的图象和性质【解析】【分析】根据正比例函数关系式y=kx,可得k=,再依次分析各选项即可判断。
正比例函数同步练习及答案

正比例函数知识库1.形如y=kx (k 是常数,k ≠0)的函数叫做正比例函数,其中k 叫比例系数. 正比例函数都是常数与自变量的乘积的形式.2.正比例函数y=kx (k 是常数,k ≠0)的图象是一条经过原点的直线,我们通常称之为直线y=kx .当k>0时,直线y=kx 依次经过第三、一象限,从左向右上升,y 随x•的增大而增大; 当k<0时,直线y=kx 依次经过第二、四象限,从左向右下降,y 随x•的增大而减小.3.根据两点确定一条直线,可以确定两个点(两点法)画正比例函数的图象.魔法师例1:已知y=(k+1)x+k-1是正比例函数,求k 的值.分析:由正比例函数的定义可知k+1≠0且k-1=0即可解:根据题意得:k+1≠0且k-1=0,解得:k=1 ∴k=1例2:根据下列条件求函数的解析式①y 与x 2成正比例,且x=-2时y=12.②函数y=(k 2-4)x 2+(k+1)x 是正比例函数,且y 随x 的增大而减小. 分析:①根据正比例函数的定义,可设y=kx 2,然后由x=-2、y=12求得k 的值.• ②函数y=(k 2-4)x 2+(k+1)x 是正比例函数;则k 2-4=0,y 随x 的增大而减小,则k+1<0.解:①设y=k x 2 (k ≠0)∵x=-2时y=12 ∴(-2)2k=12 ∴k=3 ∴y=3x 2②由题意得:k 2-4=0 ∴k=2或k=-2∵y 随x 的增大而减小, ∴k+1<0 ∴k=-2 ∴y 与x 的函数关系式是:y=-x演兵场☆我能选1.下列关系中的两个量成正比例的是( )A .从甲地到乙地,所用的时间和速度;B .正方形的面积与边长C .买同样的作业本所要的钱数和作业本的数量;D .人的体重与身高2.下列函数中,y 是x 的正比例函数的是( )A .y=4x+1B .y=2x 2C ..3.下列说法中不成立的是( )A .在y=3x-1中y+1与x 成正比例;B .在y=-2x 中y 与x 成正比例 C .在y=2(x+1)中y 与x+1成正比例; D .在y=x+3中y 与x 成正比例4.若函数y=(2m+6)x2+(1-m)x是正比例函数,则m的值是()A.m=-3 B.m=1 C.m=3 D.m>-35.已知(x1,y1)和(x2,y2)是直线y=-3x上的两点,且x1>x2,则y1与y2•的大小关系是()A.y1>y2B.y1<y2C.y1=y2 D.以上都有可能☆我能填6.形如___________的函数是正比例函数.7.若x、y是变量,且函数y=(k+1)x k2是正比例函数,则k=_________.8.正比例函数y=kx(k为常数,k<0)的图象依次经过第________象限,函数值随自变量的增大而_________.9.已知y与x成正比例,且x=2时y=-6,则y=9时x=________.☆我能答10.写出下列各题中x与y的关系式,并判断y是否是x的正比例函数?(1)电报收费标准是每个字0.1元,电报费y(元)与字数x(个)之间的函数关系;(2)地面气温是28℃,如果每升高1km,气温下降5℃,则气温x(•℃)•与高度y (km)的关系;(3)圆面积y(cm2)与半径x(cm)的关系.探究园11.在函数y=-3x的图象上取一点P,过P点作PA⊥x轴,已知P点的横坐标为-•2,求△POA的面积(O为坐标原点).答案:1.C 2.C 3.D 4.A 5.B 6.y=kx(k是常数,k≠0)7.+1 8.三、一;增大 9.-310.①y=0.1x,y是x的正比例函数;②y=28-5x,y不是x的正比例函数;③y= x2,y不是x的正比例函数.11.6.。
正比例函数的图象和性质练习

正比例函数的图象和性质练习正比例函数练题1) 画函数图像的步骤是:确定定义域和值域,选择适当的比例尺,计算出各个函数值,标出各个点,用平滑曲线将这些点连接起来,得到函数的图像。
2) 正比例函数的函数关系式为:y=kx。
3) 正比例函数的图像是一条直线,当k>0时,图像经过第一象限,从左到右上升,y随x的增大而增大;当k<0时,图像经过第三象限,从右下到左上下降,y随x的增大而减小。
补充讲解:在同一坐标系中画出y=x、y=0.5x和y=3x的函数图像,可以发现它们都是直线,且y=0.5x的斜率最小,y=3x的斜率最大。
归纳:正比例函数的图像是一条直线,斜率越大,图像越陡峭。
例题1如图1,正比例函数y=kx,y=mx,y=nx在同一平面直角坐标系中的图像如图所示。
则系数k,m,n的大小关系是k<m<n。
例题2如图2,在同一直角坐标系中,一次函数y=k1x、y=k2x、y=k3x、y=k4x的图像分别为l1、l2、l3、l4,则下列关系中正确的是k1<k2<k3<k4.练:知识点一:正比例函数的概念1.下列函数表达式中,y是x的正比例函数的是y=2x。
2.若y=x+2-b是正比例函数,则b的值是-2.3.若函数是关于x的正比例函数,则常数m的值等于±2.4.下列说法正确的是圆面积公式S=πr²中,S与r²成正比例关系。
5.下列各选项中的y与x的关系为正比例函数的是正方形周长y(厘米)和它的边长x(厘米)的关系。
请说明理由。
22.若在正比例函数y= -6x的图象上,p1(x1.y1)和p2(x2.y2)是两个点且x1y2.点A(-5.y1)和点B(-6.y2)都在直线y= -9x的图象上,则y1<y2.23.已知正比例函数的图象经过点P和点Q(-m。
m+3),求m的值。
24.已知y+2与x-1成正比例,且x=3时y=4.1) y+2=k(x-1),代入x=3和y=4求得k=2/3,因此y=2/3(x-1)-2.2) 当y=1时,代入y=2/3(x-1)-2求得x=13/2.25.根据图像可知,当0≤x≤50时,y=0.5x。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12.2 一次函数的图象
1 正比例函数的图象和性质
要点感知1画函数图象的步骤:(1)__________;(2)__________:建立直角坐标系,以__________为横坐标,__________为纵坐标,确定点的坐标;(3)__________.
预习练习1-1下面所给点的坐标满足y=-2x的是( )
A.(2,-1)
B.(-1,2)
C.(1,2)
D.(2,1)
要点感知2 正比例函数y=kx(k为常数,k≠0)的图象是一条__________,因此画正比例函数图象时,只要描出图象上的__________,然后过两点作一条直线即可,这条直线叫作“直线__________”. 预习练习2-1 如图,某正比例函数的图象过点M(-2,1),则此正比例函数表达式为( )
A.y=-1
2
x B.y=
1
2
x C.y=-2x D.y=2x
要点感知3 正比例函数图象的性质:直线y=kx(k≠0)是一条经过________的直线.当k>0时,直线y=kx经过第_______象限,从左到右,y随x的增大而________;当k<0时,直线y=kx经过第_____象限,从左到右,y随x的增大而________.
知识点1 画正比例函数的图象
1.正比例函数y=3x的大致图像是( )
2.已知正比例函数y=x,请在平面直角坐标系中画出这个函数的图象.
知识点2 正比例函数的图象与性质
3.已知函数y=kx的函数值随x的增大而增大,则函数的图象经过( )
A.第一、二象限
B.第一、三象限
C.第二、三象限
D.第二、四象限
4.对于函数y=-k2x(k是常数,k≠0)的图象,下列说法不正确的是( )
A.其函数图象是一条直线
B.其函数图象过点(1
k
,-k)
C.其函数图象经过一、三象限
D.y随着x增大而减小
5.正比例函数y=-x的图象平分( )
A.第一、三象限
B.第一、二象限
C.第二、三象限
D.第二、四象限
6.函数y=-5x的图象在第__________象限,y随x的增大而__________.
知识点3 实际问题中的正比例函数
7.一根蜡烛长20 cm,点燃后每小时燃烧5 cm,则蜡烛燃烧的长度y(cm)与燃烧时间x(h)的函数关系用图象表示为下图中的( )
8.小明用16元零花钱购买水果,已知水果单价是每千克4元,设买水果x千克用去的钱为y元,(1)求买水果用去的钱y(元)随买水果的数量x(千克)而变化的函数表达式;
(2)画出这个函数的图象.
9.已知正比例函数y=kx(k≠0),当x=1时,y=-2,则它的图象大致是( )
10.已知正比例函数y=(3k-1)x,若y随x的增大而增大,则k的取值围是( )
A.k<0
B.k>0
C.k<1
3
D.k>
1
3
11.若点A(-2,m)在正比例函数y=-1
2
x的图象上,则m的值是( )
A.1
4
B.-
1
4
C.1
D.-1
12.已知正比例函数y=kx(k<0)的图象上两点A(x1,y1)、B(x2,y2),且x1<x2,则下列不等式中恒成立的是( )
A.y1+y2>0
B.y1+y2<0
C.y1-y2>0
D.y1-y2<0
13.甲、乙两人在一次百米赛跑中,路程s(米)与赛跑时间t(秒)的关系如图所示,则下列说确的是( )
A.甲、乙两人的速度相同
B.甲先到达终点
C.乙用的时间短
D.乙比甲跑的路程多
14.写出一个图像经过一、三象限的正比例函数y=kx(k≠0)的解析式(关系式):_______________.
15.当m=__________时,函数y=mx3m+4是正比例函数,此函数y随x的增大而__________.
16.如图,正比例函数y=kx,y=mx,y=nx在同一平面直角坐标系中的图象如图所示.则系数k,m,n的大小关系是__________.
17.已知正比例函数y=(k-2)x.
(1)若函数图象经过第二、四象限,则k的围是什么?
(2)若函数图象经过第一、三象限,则k的围是什么?
18.已知正比例函数图象经过点(-1,2).
(1)求此正比例函数的表达式;
(2)画出这个函数图象;
(3)点(2,-5)是否在此函数图象上?
(4)若这个图象还经过点A(a,8),求点A的坐标.
19.已知正比例函数y=kx经过点A,点A在第四象限,过点A作AH⊥x轴,垂足为点H,点A 的横坐标为3,且△AOH的面积为3.
(1)求正比例函数的表达式;
(2)在x轴上能否找到一点P,使△AOP的面积为5?若存在,求点P的坐标;若不存在,请说明理由.
参考答案
要点感知1(1)列表(2)描点自变量值相应的函数值(3)连线预习练习1-1 B
要点感知2 直线两点y=kx
预习练习2-1 A
要点感知3 原点一、三上升增大二、四下降减少
1.B
2.图略.
3.B
4.C
5.D
6.二、四减小
7.A
8.(1)根据题意可得y=4x(0≤x≤4).
(2)当x=0时,y=0;
当x=4时,y=16.
在平面直角坐标系中画出两点O(0,0),A(4,16),
过这两点作线段OA,线段OA即函数y=4x(0≤x≤4)的图象,如图.
9.A 10.D 11.C 12.C 13.B 14.y=3x(答案不唯一) 15.-1减小16.k>m>n 17.(1)k-2<0,∴k<2;
(2)k-2>0,∴k>2.
18.(1)设函数的表达式为:y=kx,则-k=2,即k=-2.故正比例函数的表达式为:y=-2x. (2)图象图略.
(3)将点(2,-5)代入,左边=-5,右边=-4,左边≠右边,故点(2,-5)不在此函数图象上.
(4)把(a,8)代入y=-2x,得8=-2a.解得a=-4.故点A的坐标是(-4,8).
19.(1)∵点A的横坐标为3,且△AOH的面积为3,
∴点A的纵坐标为-2,点A的坐标为(3,-2).
∵正比例函数y=kx经过点A,
∴3k=-2.解得k=-2 3 .
∴正比例函数的表达式是y=-2
3 x.
(2)∵△AOP的面积为5,点A的坐标为(3,-2),∴OP=5.
∴点P的坐标为(5,0)或(-5,0).。