烯烃的结构ppt课件

合集下载

第六章 烯烃

第六章  烯烃

(1)选主链
选含有“ C=C ”的最长碳链为主链,并按主链碳数称 为“ 某烯 ”。C10以下用“天干”数,C11以上用“十 一碳烯、十二碳烯…”等来表示。例如:
CH3 C CH CH2 CH3
CH2CH3
母体叫“ 己烯 ”
(2)主链编号
优先双键(从最靠近双键的一端开始给主链编号)。用 双键碳中最小的编号表示双键的位置,并用阿拉伯数字写在 母体名前,中间加短线隔开。
2708 k j/m ol 2701 k j/m ol
结论:1-丁烯<(Z)2-丁烯<(E)-2-丁烯<异 丁烯,即含同数碳原子的 烯烃异构体中,与烯键碳 原子相连的烷基数目多的 稳定;顺反异构体中,反 式异构体稳定。
二、氢化热
+ H2
催化剂
H3CH2CHC CH2
H3C
CH3
H
H
H3C
H
H
CH3
(4) (2)
(H3C)2C CHCH3
(3)
(1)
(5) (3)
4、单分子消除反应
例如:叔丁基溴在乙醇溶液中除了生成取代产物外,还 生成消除产物:
( H 3 C ) 3 C B r
( H 3 C ) 3 C O C 2 H 5 + ( H 3 C ) 2 C C H 2
8 1 %
1 9 %
具体过程如下:
CH3CH2O H
CH3 H2 HCC
CH3
CH3CH2OH2 + (H3C)2C CH2
CH3CH2O H
CH3 C CH3 CH3
(H3C)3C OHCH2CH3 -H+ (H3C)3C OC2H5
H
H
CC
CH3

有机化学课件-6烯烃

有机化学课件-6烯烃

三、烯烃的命名(CCS系统命名法): (一)命名原则:
1. 主链选择:含碳碳双键(官能团)在内的最长碳链作为主链;
如:CH3CH2CH2CH2C=CH2 (√) CH2CH2CH(3 没有把碳碳双键都包含在内)
2-丙基-1-己烯 或2-丙基己烯(官能团处于1位时可省略去位次)
2. 主链编号:使碳碳双键处于尽量小的编号;
2×7 +2 - 8
,C7H8 ,Ω=
=4; 三个C=C和一个环
2
CH3CH2OH ,C2H6O ,Ω=
O
CH3C NH2,C2H5ON ,Ω=
2×2 +2 - 6
=0
2 2×2 +2 - 5 +1
=1
2
二、烯烃的同分异构: (一)构造异构:
如分子式为 C4H8 的烯烃的构造异构体有: CH3 CH3CH2CH=CH2 ,CH3CH=CHCH3 ,CH3C=CH2
CH3 CH
CH3
CH2CH3
C H
(E)-2,3-二甲基-3-己烯
和顺反命名法相比较,顺式的可能是Z构型的,也可能是E构型;
§2 烯烃的相对稳定性
一、燃烧热:
燃烧热kJ/mol
稳定性
例: CH3CH2CH=CH2
2718
H3C
CH3
CC
2711
HH
H3C
H
CC
2708
H
CH3

烯烃中碳碳双键上的烷基越多,稳定性越高;
6 CH3 如:CH3CH2CH=CHCH2CHCHCH3
1 2 3 4 5 CH37 8
6,7-二甲基-3-辛烯
3. 标明双键的位次;只写双键两个碳原子中位次较小的一个,放

大学有机化学 烯烃和炔烃PPT优质课件

大学有机化学 烯烃和炔烃PPT优质课件

C + Br
C
极性 Br
C
Bδr+
δBr

C B+r + Br-
C
C
π- 络合物
.
σ- 络合物 (溴鎓离子)
第二步: 背面
Br
Br- +
C B+r

C
C
C
Br
.
第三章 烯烃和炔烃 第一节 烯烃 (三、烯烃的性质)
2. 加卤化氢 (HX)
X
C C + HX
CC
H
烯烃与卤化氢同样发生分步的、亲电性加成反应
.
3个sp2杂化轨道取平面正
三角形分布,与未杂化的
p 轨道垂直。sp2 杂化轨
道之间的夹角为 120o.
第三章 烯烃和炔烃 第一节 烯烃 (一、烯烃的结构)
头碰头重叠形成C—Cσ 键
键: 284 kJ/mole
.
肩并肩重叠形
成键,重叠
程度较小, 键 较不牢固,不 能自由旋转。
键键能 357kJ/mole
第三章 烯烃和炔烃
第一节 烯 烃
一 烯烃的结构 二 命名和异构 三 烯烃的性质 四 共轭烯烃
第二节 炔 烃
一 炔烃的结构 二 异构和命名 三 炔烃的性质
.
第三章 烯烃和炔烃
第三章 烯烃和炔烃
(Alkenes and Alkynes)
分子中含C=C双键的叫烯烃; 而含C≡C叁键的叫炔烃。烯烃 和炔烃都是不饱和烃 (Unsaturated hydrocarbons)。
.
诱导效应: 多原子分子中,由于原子和基团电负性的不同,引起 键的极性并通过通过静电诱导作用依次影响分子中不 直接相连的键,使之发生极化,从而引起整个分子中 电子云分布发生改变的作用。用符号 I 表示。

《烯烃炔烃》课件

《烯烃炔烃》课件

详细描述
炔烃可以被酸性高锰酸钾 溶液、重铬酸钾溶液等氧 化剂氧化,生成酮、羧酸 或二氧化碳等物质。
举例
乙炔在酸性高锰酸钾溶液 中氧化得到二氧化碳和锰 离子。
炔烃的聚合反应
总结词
炔烃可以发生聚合反应, 生成高分子化合物。
详细描述
在催化剂的作用下,炔烃 可以发生聚合反应,生成 高分子链,如合成橡胶、 合成纤维等。
总结词
烯烃的氧化反应是指烯烃在一定条件下被氧化生成更复杂的有机物。
详细描述
烯烃的氧化反应可以通过多种方式进行,如空气氧化、臭氧氧化、过氧化氢氧 化等。在氧化过程中,烯烃的碳碳双键被氧化成羧基或酮基等含氧官能团,生 成相应的醛、酮、酸等化合物。
烯烃的聚合反应
总结词
烯烃的聚合反应是指多个烯烃分子相互结合形成高分 子化合物的过程。
《烯烃炔烃》ppt课件
目 录
• 烯烃炔烃的简介 • 烯烃的性质 • 炔烃的性质 • 烯烃与炔烃的鉴别 • 烯烃炔烃的应用 • 烯烃炔烃的未来发展
01
烯烃炔烃的简介
烯烃的定义与结构
烯烃的定义
烯烃是一种不饱和烃,其分子中 含有碳碳双键。
烯烃的结构
烯烃的分子结构由一个碳碳双键 和两个碳氢单键组成。
炔烃的定义与结构
炔烃的应用前景展望
炔烃作为一种重要的有机化合物,在合成高 分子材料、药物、农药等领域具有广泛的应 用前景。未来,炔烃有望在生物医用材料、 环保型农药等领域发挥重要作用,为解决人 类社会面临的资源、能源和环境问题提供新 的解决方案。
THANKS
感谢观看
烯烃炔烃在许多化学反应中用作反应剂和催 化剂,如烷基化反应、聚合反应等。
在生物医学领域中作为药 物和生物活性分子

[理学]3 烯烃

[理学]3 烯烃

Cl -
17%
83%
Cl -
碳正离子重排
CH3 H3C C CH CH3 CH3
过氧化(物)效应 在过氧化物存在下,HBr与不对称烯烃加成的 取向反马氏规则,称为过氧化(物)效应。
CH3
无过氧化物
H 3C
C Br
CH2 H
CH3 H3 C C CH2 + HBr
符合Markovnikov 规则
有过氧化物

诱导效应(inductive effect):
由分子中电负性不同的原子或基团的作用而引起分子 中电子云沿着化学键(键or键)向某一方向移动的 效应。用I表示:-I: 吸电子诱导效应,+I: 推电子诱导 效应

诱导效应的大小与取代基的电负性大小有关,并随着取代 基的距离增加而减弱:一般相隔3个 键 ,作用几乎为 0
Br
CH2
+
H
Br
H3C
C H
CH2 Br
+
Br
链终止:略
过氧化(物)效应只限于HBr; HCl键较强,难生成氯自由基;
HI键虽弱,但碘自由基活性低,键传递困难
过氧化物容易产生自由基,可作为引发剂采用自由基反 应过程制备高分子化合物,常用过氧化二苯甲酰。
与水加成(酸催化) 硫酸、磷酸等催化,烯烃与水直接加成生成醇。
CH3CHCH2Cl OH
马氏加成
4.硼氢化氧化反应
硼氢化反应,生成烷基硼
H3C CH CH2
+ -
- + H BH2
H H3C CH2 CH2 BH + H3C CH CH2
B
+ H3C CH CH2HΒιβλιοθήκη B 硼化物的氧化碱性水解:

烯烃的结构与性质及命名++课件++2024-2025学年高二化学人教版(2019)选择性必修3

烯烃的结构与性质及命名++课件++2024-2025学年高二化学人教版(2019)选择性必修3
第二章《烃》
第二节 烯 烃、炔 烃
第一课时 烯 烃的结构、性质及命名
学习目标: 1.结合代表物,认识烯烃的组成和结构特点。 2.了解烯烃物理性质的变化规律,掌握烯烃的化学性质及应用。 3.了解烯烃的结构特征和顺反异构
自然界里存在许多烯烃,如番茄中的番茄红 素、鲨鱼油中的角鲨烯都是烯烃。
乙烯是常见的烯烃
因烯烃中C%(85.7%)较大,燃烧时火焰明亮且伴有黑烟C。H4
C2H4
烯烃能使酸性高锰酸钾溶液 褪色 。
可利用酸性KMnO4溶液鉴别乙烯与甲烷等饱和气态烷烃 但不可用于除去CH4中的C2H4
拓展1:烯烃被酸性高锰酸钾溶液氧化的产物规律
烯烃中双键被
CH2=
RCH=
氧化的部分 (双键C上2个H) (双键C上1个H)
-6.3 30 63.3 93.6
相对密度 0.566 0.5193 0.5951 0.6405 0.6731 0.6970
2、烯烃的性质
(1)烯烃的物理性质 :随着分子中碳原子数的递增,呈现规律性的变化。 颜色:__无__色____ 所有的烃都难溶与水且密度比水小! 溶解性:均难溶于水,易溶于有机溶剂
两个双键连在同一个碳上
共轭二烯烃 C=C-C=C-C 稳 定
两个双键被一个单键隔开
孤立二烯烃 C=C-C-C=C 性质同单烯烃
两个双键被两个或 两个以上单键隔开
c) 1,3-丁二烯与溴发生加成反应
请类比乙烯/丙烯加成反应书写下列物质的加成反应方程式
➢ CH2=CH-CH=CH2与足量溴水的加成反应
物理性质
密度:随C数目的增加而增大;但相对密度都小于1 熔沸点:一般随碳数增加而升高;同碳数时,支链越
多熔沸点越低 (主要由分子间作用力决定!)

有机化学课件(李景宁主编)第3章-单烯烃

有机化学课件(李景宁主编)第3章-单烯烃

总目录
第二节 烯烃的同分异构和命名
一、烯烃的同分异构现象
1. 构造异构(constitutional isomerism)
构造异构——分子式相同,原子或基团在分子 中连接次序不同。
碳干异构:
位置异构:(官能团变位)
CH3 CH2 CH CH2
CH3 CH2 CH CH2
CH3 C CH2 CH3
CH3 CH CH CH3
a > b;c > d
a > b,c > d
优先基团同侧-(Z) 优先基团异侧-(E)
总目录
Cl >H,Br >CH3 (E)-
I >CH3,Br >H (Z)-
(E)
(Z)
总目录
(E)-2,2,4-三甲基-3-己烯 (E)-2,2,4-trimethyl-3-hexene
(E)-3,4-二甲基-2-戊烯 顺-3,4-二甲基-2-戊烯 (E)-3,4-dimethyl-2-pentene
因为内能:烯烃 > 烷烃,所以氢化反应放热
总目录
烯烃
氢化热 kJ.mol-1
137.2 125.1 126.8 119.7
115.1
总目录
烯烃
氢化热 kJ.mol-1
126.8
119.2
112.5
111.3
总目录
(1)稳定性:反式 > 顺式 (2)C=C连接的烷基越多越稳定 • 稳定性:
• R2C=CR2 > R2C=CHR > RCH=CHR ≈ R2C=CH2 > RCH=CH2 > CH2=CH2
总目录
注意:
• 顺、反与Z、E是两种不同的表示烯烃几 何构型的方法,在大多数情况下,不存 在对应关系。即顺式不一定是Z构型,而 反式不一定是E构型。例如:

烯 烃ppt课件

烯  烃ppt课件

碳碳单键和双键电子云分布的比较
C-C s键
电子云不易与外界接近
C-C 键
电子云暴露在外.易接近亲电试剂
a:s键电子云集中在两核之间,不易与外界试剂接近 b:双键是由四个电子组成,相对单键来说,电子云密 度更大;且构成键的电子云暴露在乙烯分子所在的平 面的上方和下方,易受亲电试剂(s+)攻击,所以双键有 亲核性 (s-).
r- B r + B C H H 2 C 2
第一步
C C
CH2Br CH2Br _
+ + B r- B r
C Br: + Br C
Br
::
C
C
Br + Br-
::
溴鎓离子
第二步
C
Br- C
Br
C C Br
反式加成
加成反应首先是亲电子试剂(缺电子的溴正离子)的 进攻引起的,称为亲电加成反应。如果双键的电子云 密度越大,反应越容易进行,反之亦然。
5.顺反异构体命名
a.双键两个碳原子上连接的两相同的基团在同 侧为顺式,在异侧为反式。名称前附以顺或反, 用短线连接。
CH3 H C C CH2CH3 H H C C CH3
b.双键两个碳原子所连接的4个基团不相同时, 采用Z、E命名法。Z:“同一侧”,E:“相 a d 反”。 a c 基团优先次序: C C C C b a>b, c>d c b d
第一节 烯烃的结构
不饱和:即有机物分子中与碳原子数相等的开 链烷烃相比较,氢原子的数目少于开链烷烃的 氢原子数。
实验表明乙烯的结构为: ① 所有原子在同一平面,每个碳原子只和三个原子相连, 键角120°。 ② 键能:C = C 610 kJ/mol(C—C 345.6 kJ/mol),双键的 键能≠两个单键键能之和:345.6 * 2 = 691.2 kJ/mol ③ 键长: C = C 0.133nm(C—C 0.153nm),不是单键的1/2。 H
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 碳干异构 • 位置异构----双键位置不同引起的 • 顺反异构----由于双键两侧的基团在空间
的位置不同引起的
15
2, 丁烯 的同分异构体
• (1)丁烯 的碳干和位置异构: • CH2=CH--CH2--CH3 CH3 CH=CHCH3

1-丁烯

(1)
2-丁烯 (2)
• (1),(2)是双键位置异构。
• π轨道:每个碳原子还剩下一个2py轨道, 它们的对称轴垂直于这五个σ键所在的平 面,且互相平行,电子的自旋方向相反, 沿着轴平行地重叠,便组成新的轨道, 称为π轨道。
7
(3)乙烯 分子中的σ键和π键
H C
H
H C
H
乙烯分子中的σ键和π键
8
* MO
C-C
C=C
* MO 键能/kJmol-1 346
610
E
键长/nm
0.154 0.134
MO
MO
键键能:264kJ/mol
顺、反异构体转化活化能:
>264kJ/mol
9
4,分子轨道法的解释
碳碳π键的形成: 当两个碳原子各以一个p轨道线性组合成 两个分子轨道时,一个是π成键轨道,另一 个是π*反键轨道。在基态时,两个轨道 上的两个电子处在成键轨道上,形成了π 键,反键轨道多一个节面,能量较高, 在基态时反键轨道是空着的。
5
sp2
B
B
CC
A
A
C-C
C=C
键键键:能26/k4JkmJ/oml-1ol 346
610
E
键长/nm
0.154
0.134
Sp2 轨道与 p 轨道的关系
6
(2)乙烯分子的成键
• 两个碳原子各以一个sp2轨道重叠形成一 个C--Cσ键,各又以两个sp2轨道和四个氢 原子的1s轨道重叠,形成四个σ键。这样 形成的五个σ键在同一平面上。
• (1) 烯 烃的系统命名法:与烷 烃相似, 其要点是:
• 最长碳链为主链(母体烯 烃) • 以最小的编号给双键 • 双键的位次,只写出双键两个碳原子中位
次较小的一个,放在烯烃名称的前面. • 其他同烷烃的命名原则.
21
(2) 烯 基
• 烯 基:当烯烃从形式上去掉一个氢原子后 剩下的一价基团叫做烯 基。
10
5, π键和σ键的对比
π键 • 没有对称轴 • 不能自由旋转 • 侧面重叠,重叠程度
较小,容易破裂. • 分散成上下两方,流
动性较大,易反应. • 键长较短,0.134nm • 键能264.4kJ/mol
11
•σ键 •有对称轴 •成键原子间能自由旋转 •重叠程度较大,键能高, 比较稳定.
电子云集中,不易反应 键长较长0.154nm •键能345.6kJ/mol
课件10
第三章 单 烯 烃
烯烃的结构 烯烃的同分异构和命 名 烯烃的物理性质 化学性质 烯
烃的制备 反应历程 马氏规则
1
单烯烃的概念和功能团
• 单烯烃是指分子中含有一个碳 碳双键 (C==C)的不饱和开链烃,简称烯烃。烯 表示分子中含量氢较少的意思。
• 单烯烃的通式是CnH 2n。 • 碳碳双键叫做烯键,是烯烃的官能团。
• CH3CH=CH-
• CH3CH=CHCH2-
• CH2=CHCH2-
• CH2=C-

CH3
1-丙烯基 2-丁烯基 2-丙烯基(烯丙基) 1-甲基乙烯基
(异丙烯基)
22
(3)Z/E命名法
• ⅠIUPAC命名法,Z指同一侧的意思,E 指相反的意思。用“顺序规则”来决定Z, E的构型。
• Ⅱ “顺序规则”主要内容: • 一是将双键碳原子所连接的原子或基团
一侧的则为(E)构型,命名时在名称前面
附以(E)字,均用一短线连接。
a
c
a
d
C==C
a>b
C==C
a>b
b
d c>d
b
c c>d
(Z)
(E)
24
2-丁烯的顺反异构体
• H3C
CH3

C==C
•H
H
H3C
H
C==C
H
CH3
• (Z)-2-丁烯
16
CH 3 CH2 CH3
异丁烯
(1),(2)和(3)是碳干异构体
(3)
(2) 2-丁烯又有两个顺反异构体:
H3C
CH3
C=C
H
H
顺-2-丁烯 (4)
H3C
H
C=C
H
CH3
反-2-丁烯
(5)
17
3,顺反异构现象
• 由于组成双键的两个碳原子不能相对自 由旋转,使得这两个碳原子上所连接的 原子或基团在空间的配置不同,以致形 成的几何构型不同,这一现象称为顺反 异构现象。
• 丙烯分子的分子结构:

H
CH3

C====C
sp2
B CC
B

H
H
A
A
4
2,杂化轨道 理论解释
• (1)杂化:乙烯碳原子成键时,碳原子 以一个s轨道和两个p轨道进行杂化,组 成三个等同的sp2轨道,sp2轨道 对称轴在 同一平面上,彼此成120º角,这种杂化方 式叫sp2杂化。
• 每个碳原子余下一个未参加杂化的2p轨 道,仍保持原来的形状,其对称轴垂直 于在三个sp2轨道的对称轴所在的平面。
按原子序数大小排列,把大的排在前面, 小的排在后面,同位素按原子量大小次 序排列。
23
几种原子的顺序为:
I,Br,Cl,S,P,O,N,C,D,H
当与C1所连接的两个原子或基团中原子序数 大的与C2所连接原子序数大的原子或基团处 在平面同一侧的为(Z)构型,命名时在
名称的前面附以(Z)字。反之,若不在同
18
4,产生顺反异构的条件
• 必须在构成双键的任何一个碳原子上所 连接的两个原子或基团要不相同。也就 是说,当双键的任何一个碳原子所连接 的两个原子或基团相同时就没有顺反异 构现象。
19
下列化合物没有顺反异构体:
a
aa
d
C=C
C=C
a
bb
d
∵ a=a
∵ d=d
∴无顺反异构
∴无顺反异构
20
二,烯烃的命名
12
6,碳碳双键的组成
• 烯烃的双键: • 由一个σ键和一个π键组成的.π键的直剖面
垂直于σ键所在的平面. • 烯 烃的构造式,用两条短线来表示双键.一
条短线代表σ键,另一条是代表π键.
13
第二节 烯烃的同分异构和命名
烯烃的同分异构现象 烯烃的命名
14
一,烯烃的同分异构现象
• 1,由于烯 烃含有双键,因此烯 烃的同 分异构有:
2
第一节 烯烃的结构
• 乙烯 是最简单的烯烃,气体,分子式为C2H4, 构造式为H2C==CH2。
• 以乙烯为例来了解烯烃双键的结构:

H
H
121.7º
• •
117º
C====C
H 0.133nm
0.108nm
H
sp2
B CC
A
B A
3
1,碳碳双键
• 碳碳双键是由一个σ键和一个π键构成的, 而不是由两个单键所构成的。并被现代 物理方法充分证明。
相关文档
最新文档