静电纺丝技术及其应用
静电纺丝技术的原理及应用前景

静电纺丝技术的原理及应用前景随着时代的发展,科技的不断进步,纺织工业也不断得到新的提升,其中静电纺丝技术是近年来突破性的技术之一。
静电纺丝是一种新型的材料制备方法,这种方法可以制备出极细的纤维,具有应用前景广阔。
一、静电纺丝技术的原理静电纺丝是指通过高压电场将高分子材料纤维化的一种方法,其原理是利用电场的力量将聚合物液滴从尖端拉伸,喷到距离高压电极的距离处,同时在喷雾丝所在的电场下强制拉伸成纤维形状。
这种方法可以制备出直径从几纳米到几微米的纳米级纤维。
在静电纺丝技术中,原料物质首先通过溶液的形式送入静电纺丝装置中。
将溶液注入静电喷射电极中,当喷出的溶液滴遇到高压静电场时,液滴表面产生了电荷,由于同性相斥,液滴表面会产生一种电势差,从而导致溶液滴的形成变成了锥状,直至其顶端形成了一个纤维化的喷嘴。
当荷电的液滴通过电场的作用被拉伸时,产生了“喷点”对应的“收点”,在喷点到收点之间产生了电张力,从而拉伸液滴,形成如丝质般的超细纤维。
二、静电纺丝技术的应用前景1. 医疗卫生领域静电纺丝技术在医疗卫生领域的广泛应用。
由于其制备的纤维可模拟自然生物纤维的结构,因而制得产品具有很好的生物有效性,可以用作人工血管、人工血小板、人工心脏瓣膜、骨结构支架等等。
也可以制备用于防疫物资、医疗包装、医用敷贴等等。
2. 纺织领域静电纺丝技术在纺织领域是一种绿色技术。
传统的纺织产品采用有机溶剂、洗涤液等,会产生大量的有害气体和废液,造成严重的环境问题,而静电纺丝可以在无需溶剂的情况下将纤维化,不会污染环境,符合绿色可持续发展的理念。
由于其优秀的性能,静电纺丝技术的应用在穿戴、防守装备、运动装备等方面具有广阔的前景。
3. 能源领域静电纺丝技术可以制备高性能的锂离子电池、超级电容器等能源材料。
新型锂电池具有高比能量、长循环寿命、快速充放电等特点,已经成为电动汽车、移动设备等新型电源的首选。
静电纺丝技术可以制备纳米级、微米级的无序三维材料结构,极大提高了锂离子电池和超级电容器电极的电荷传递速率。
静电纺丝技术的原理及其在材料科学中的应用

静电纺丝技术的原理及其在材料科学中的应用随着科学技术的不断进步,人们对于材料科学的研究也越来越深入。
材料科学是研究材料制备和性质的学科,它涉及到各种不同的材料,包括金属、陶瓷、聚合物、纳米材料等等。
其中,聚合物材料因其在生活中广泛应用而备受关注。
聚合物材料可以应用于制作纤维、塑料、涂料等,因此也被广泛应用于纺织、汽车、医疗等方面。
而静电纺丝技术在聚合物材料制备领域中扮演着重要的角色。
本文将从静电纺丝技术的原理,以及其在材料科学中的应用方面进行阐述。
一、静电纺丝技术的原理静电纺丝技术是一种制备纤维的方法,它利用了静电力和表面张力的相互作用来产生纤维。
这种方法可以制备出细纤维,其直径一般在几微米到几十微米之间。
静电纺丝技术的原理主要可以分为三个部分:溶液喷射、电荷分布和纤维定向。
首先,静电纺丝技术的第一步是将聚合物材料溶解在有机溶剂中。
这种有机溶剂可以是丙酮、DMF、水等等。
当聚合物溶解在有机溶剂中后,形成的溶液会被输送到一个注射器中。
其次,当聚合物溶液被注入到注射器中后,溶液会通过注射器的喷头被喷射出去。
这种喷射过程会使溶液形成液滴,而液滴的大小主要取决于喷射器喷头的大小和溶液的性质。
然后,这些液滴会在喷射过程中被荷电。
这是因为在液滴喷出喷头的同时,喷头会将电荷转移到液滴表面。
这样,液滴表面就会带有荷电,并形成一个电荷云。
这个电荷云会影响液滴周围的空气,并在液滴周围形成一个静电场。
最后,当液滴喷出喷头后,它们会逐渐失去荷电,并且在空气湿度和温度的影响下开始凝固。
在凝固的过程中,液滴表面的荷电云会逐渐消失,而液滴的表面张力则会促使液滴向外展开。
这样,液滴的形状就会变成一个细长的纤维团簇,并且整个过程会被静电力所主导。
二、静电纺丝技术在材料科学中的应用静电纺丝技术广泛应用于各种领域,包括医学、纺织、滤清器等。
在医学方面,静电纺丝技术已经应用于制备医用面膜、绷带、人工血管等。
在纺织方面,静电纺丝技术可以制备纳米纤维薄片、织物等。
静电纺丝技术及其应用研究

静电纺丝技术及其应用研究一、引言静电纺丝技术是一种利用电荷激发聚合物液体变成细纤维的方法,由于其简单、高效、低成本等优势,在纺织、生物医学、能源领域等得到广泛应用和研究。
本文将从静电纺丝技术的原理、纺丝过程、纤维特性以及应用领域等方面进行深入探讨。
二、静电纺丝技术的原理与纤维形成机制静电纺丝技术利用电荷作用将聚合物液体通过纺丝喷嘴喷射到基底上,通过电荷相互作用来形成纤维。
在电场的作用下,聚合物溶液中的分子会受到电荷的影响而变形,聚合物链会被电荷排斥并随之形成纤维。
纤维的直径和形状可以通过控制喷嘴距离、电压、液体流速等参数进行调节。
三、静电纺丝技术的纺丝过程静电纺丝技术的纺丝过程主要包括聚合物溶液的制备、喷丝装置的设计以及纤维收集等步骤。
首先,将聚合物溶解在适当的溶剂中制备成溶液。
接着,通过高压泵将聚合物溶液推送至喷嘴,在喷嘴的作用下形成细纤维,并通过电荷作用使纤维凝固。
最后,通过电极或转盘等方式将纤维收集起来。
四、静电纺丝技术的纤维特性静电纺丝技术制备的纤维具有许多独特的特性。
首先,纤维直径可调节,从几纳米到几百微米都可以制备。
其次,纤维表面光滑,纤维之间结构紧密,具有较高的比表面积。
此外,静电纺丝技术还可以制备多孔性纤维,具有较好的机械性能和生物相容性。
五、静电纺丝技术在纺织领域的应用研究静电纺丝技术在纺织领域有着广泛的应用。
例如,利用静电纺丝技术可以制备出纳米纤维膜,用于制备高性能滤料、阻燃材料等。
此外,静电纺丝技术还可以制备出具有特殊功能的纤维,如抗菌纤维、防紫外线纤维等。
此外,在服装领域,静电纺丝技术还可以制备出具有高透气性和柔软度的纤维,提升穿着的舒适性。
六、静电纺丝技术在生物医学领域的应用研究静电纺丝技术在生物医学领域也有着广泛的应用。
例如,利用静电纺丝技术可以制备出纳米纤维支架,用于组织工程和药物释放等。
此外,静电纺丝技术还可以制备出具有控释功能的纤维载体,用于缓释药物。
此外,在伤口敷料和人工皮肤的制备中,静电纺丝技术也发挥了重要作用。
静电纺丝技术在生物医学材料中的应用

静电纺丝技术在生物医学材料中的应用在当今医疗技术日益发展的背景下,生物医学材料的制备与应用也得到了越来越多的关注。
静电纺丝技术是一种在纳米级别下制备纤维的有效方法,其具有制备方便、纤维成型性好以及纤维直径可控等优点。
因此,此技术已经被广泛应用于生物医学材料的制备领域。
一、静电纺丝技术简介静电纺丝( electrospinning )是一种将高分子聚合物或其他材料从液态到固态的过程。
这种方法通过电荷作用来形成超细的纤维。
首先,将聚合物或其他材料加入强电场的环境中,然后在空气流与材料纤维形成的过程中,材料逐渐凝固成纤维,从而形成高度纯化的纤维材料。
这种技术具有以下优点:1、成本低廉:相对于其他聚合物替代品,静电纺丝的操作成本相对较低,不需要很多特殊的仪器和设备。
2、成型性能好:静电纺丝有很好的形态定制和直径控制。
3、纤维直径可控:相对于光刻技术,纤维直径可以通过参数调节来控制。
二、静电纺丝技术在生物医学材料中的应用材料科学家们已经意识到静电纺丝与制备生物医学材料有着天然的联系。
从微观尺度到宏观尺度的一些特别材料结构已探索过。
纤维的化学性质可以被修改,以控制某些方面的匹配和生物相容性。
1、组织工程组织工程是一种在人体内重建生理组织的新兴技术,以帮助完全或部分恢复器官和人体部分功能。
静电纺丝技术可以用于制造纳米纤维支架用于组织重建。
由于纤维直径可以精确地控制,因此可以制造出具有足够机械强度和生物兼容性的组织工程支架。
2、药物输送静电纺丝可以制备药物输送体系,这样可以使药物在一定程度上被控制释放。
药物输送系统通常是由传统抗生素补充浓度谷内的微粒组成。
通过其中非常细的纤维可以达到控制药物输送的效果。
这种药物输送体系具有高效和低碳排放的特点,这些特点足以成为未来医疗行业的重要研究方向。
3、细胞培养基静电纺丝技术可以制备纳米级的纤维,在纤维表面可以加入细胞吸附剂,从而使纤维表面产生空气孔洞,增加生物操作的空气流和培养效果。
静电纺丝技术在纺织领域中的应用

静电纺丝技术在纺织领域中的应用一、引言纺织领域一直是人类社会发展中的重要产业之一。
随着科技的进步和创新,新的纺织技术不断涌现,为纺织行业带来了许多新的机遇和挑战。
本文将重点介绍静电纺丝技术在纺织领域中的应用,探讨其优势和发展前景。
二、静电纺丝技术概述静电纺丝技术是一种新兴的纺织加工技术,利用静电力将纤维材料牵引出来并使其形成纤维状,然后沉积在收集器上,最终形成纤维薄膜或纤维纱线。
静电纺丝技术具有纺织工艺简单、制备速度快、纤维直径细、纤维间距可调等优点,得到了越来越多纺织研究机构和企业的关注。
三、静电纺丝技术在纺织领域中的应用1. 纳米纤维材料生产静电纺丝技术能够制备出直径在纳米尺度的纤维材料,这些纤维具有高比表面积和独特的结构,因此在过滤材料、医疗材料、能源存储等领域中有着广泛的应用潜力。
例如,在空气过滤领域,纳米纤维材料可以有效去除细菌、病毒和颗粒物,提高空气质量。
2. 仿生纺织品制备静电纺丝技术可以制备出具有仿生结构和性能的纺织品。
比如,模仿蜘蛛丝的纤维材料可以具有很高的强度和韧性,而类似莲花叶片的纤维结构可以具有自清洁能力。
这些仿生纺织品在服装、医疗和环境保护等领域中有着广泛的应用前景。
3. 功能纤维制备利用静电纺丝技术可以将功能性物质纳入纤维中,使纤维具有吸湿、抗菌、防紫外线等功能。
这些功能纤维广泛应用于运动服装、家纺产品和医疗材料等领域。
例如,添加了纳米银颗粒的纤维具有很好的抗菌性能,可以制作成医用口罩和抗菌袜等产品。
4. 纳米纤维薄膜制备利用静电纺丝技术可以制备出大面积、均匀的纳米纤维薄膜,应用于过滤、分离和传感器等领域。
纳米纤维薄膜具有高比表面积、孔隙结构可调和优异的吸附性能。
这些特性使得纳米纤维薄膜被广泛应用于颗粒物过滤、化学品分离和生物传感器等方面。
四、静电纺丝技术的发展前景静电纺丝技术具有简单、高效和可控性高的特点,使得其在纺织领域中的应用前景广阔。
随着纤维材料的不断创新和技术的不断进步,静电纺丝技术在纺织领域中有望实现更多的突破和应用。
静电纺丝技术及其应用

静电纺丝技术及其应用一、静电纺丝技术的原理与发展静电纺丝技术是一种自然界广泛存在的电纺技术,是利用电场作用将高分子液体或熔融高分子材料拉细,形成纤维的方法。
它与传统纺织方法不同,不需要梳理、捻合等步骤,能够制备纤维直径极小、比表面积极大的材料,并实现单纤维生产。
最早使用静电纺丝技术的是工业领域,在聚合物纺织品、人造革、电子产品等领域得到广泛应用。
但随着纳米科技的发展,静电纺丝技术也逐渐被应用于纳米材料的制备领域,如纳米纤维、纳米颗粒、纳米管、纳米膜等。
现在,静电纺丝技术已成为制备纳米材料的一种重要方法之一。
二、静电纺丝技术的优点与传统纺丝技术相比,静电纺丝技术的优点主要有以下几个方面:1、制备出的材料具有高比表面积和高通量;2、生产的纤维具有较小的直径和高的拉伸强度;3、制备出的纤维可以进行多级处理,并且可以降解;4、生产的成本相对较低,同时可以进行大规模生产。
三、静电纺丝技术在各个领域的应用1、纺织领域静电纺丝技术可以制备出具有高性能、高强度的纤维,这些纤维可以应用于高科技纺织品、航空航天材料、医用纺织品等领域。
2、药物载体静电纺丝技术可以制备出具有高比表面积和大孔径的微纳米纤维,这些纤维可以作为一种药物载体,有利于药物的缓释和控制释放。
3、环保领域静电纺丝技术可以应用于制备过滤材料,可以去除空气中的PM2.5等有害物质,同时可以制备海绵材料,具有吸油、吸水、吸附等功能。
4、能源领域静电纺丝技术可以制备出具有多孔结构的纳米材料,这些材料可以用于能源储存和转换,如制备锂离子电池、柔性太阳能电池等。
四、静电纺丝技术未来的发展随着纳米科技的不断发展,静电纺丝技术也在不断地完善和发展。
未来,它有望进一步提高产量、降低成本、改善稳定性,进而在更多领域得到广泛应用。
此外,近年来,一些新型静电纺丝技术不断涌现,如强场静电纺丝技术、高速静电纺丝技术等,这些新技术的出现将促进静电纺丝技术的进一步发展和应用。
静电纺丝技术应用现状及发展趋势

静电纺丝技术应用现状及发展趋势概述静电纺丝技术是一种通过静电作用将高分子溶液或熔体纺丝成纤维的方法。
该技术具有高效、低能耗、易于操作等优势,因此在纺织、医疗、材料科学等领域得到广泛应用。
本文将以静电纺丝技术应用现状为基础,探讨其发展趋势。
一、静电纺丝技术应用现状1. 纺织领域静电纺丝技术在纺织领域得到了广泛应用。
通过调节溶液配方、纺丝参数等,可以制备出具有不同性能的纺织品,如细纤维滤材、高吸附性纤维、电磁屏蔽材料等。
此外,静电纺丝技术还可用于纤维增强复合材料的制备,提高材料的强度和导电性。
2. 医疗领域静电纺丝技术在医疗领域具有广阔的应用前景。
通过静电纺丝技术制备的纤维具有高比表面积和多孔结构,可以用于制备医用纺织品、修复组织工程支架、药物缓释系统等。
例如,静电纺丝技术制备的纤维材料可以用于制作创面敷料,具有良好的吸附性和渗透性,能够促进伤口的愈合。
3. 材料科学领域静电纺丝技术在材料科学领域发挥了重要作用。
通过调节纺丝参数和材料组分,可以制备出具有特殊结构和功能的纤维材料。
例如,静电纺丝技术可以制备出具有高比表面积和孔隙结构的纳米纤维薄膜,用于催化、传感和能源存储等领域。
此外,静电纺丝技术还可以用于制备纤维增强陶瓷材料、纤维增强金属复合材料等。
二、静电纺丝技术的发展趋势1. 工艺改进静电纺丝技术在溶液配方、纺丝参数等方面存在一些挑战,如纤维直径分布不均匀、低产率等问题。
因此,未来的发展趋势之一是改进静电纺丝工艺,提高纺丝的稳定性和一致性。
这可以通过优化溶液配方、改进纺丝设备和控制系统等措施实现。
2. 多功能材料开发随着对功能材料需求的增加,静电纺丝技术在制备多功能材料方面具有广阔的应用前景。
未来的发展趋势之一是开发具有多种功能的纤维材料,如光学性能、电子性能、力学性能等。
这可以通过改变纺丝参数、材料组分和纤维结构等方式实现。
3. 与其他制备技术结合静电纺丝技术在制备纤维材料方面具有独特的优势,但也存在一些限制。
静电纺丝技术制备纳米纤维材料的研究与应用

静电纺丝技术制备纳米纤维材料的研究与应用引言:纳米科技的快速发展带来了许多前所未有的新材料和应用。
纳米纤维材料作为一种重要的纳米材料,在各个领域展示出了广阔的应用前景。
静电纺丝技术作为一种常用的制备纳米纤维材料的方法,凭借其简单、高效、可控性强的特点,受到了广泛的关注与研究。
本文旨在介绍静电纺丝技术制备纳米纤维材料的原理与过程,并探讨其在不同领域的应用潜力。
1. 静电纺丝技术概述静电纺丝技术是一种通过高电场作用下将聚合物溶液或熔体形成纤维的技术。
其基本原理为将容器中的聚合物溶液或熔体通过尖端形成纳米尺度的液柱,然后加高电压使液柱发生弯曲,并在空气中快速固化成纤维。
通过控制溶液的流速、电压、尖端直径和距离可以调节纤维的直径和形态,实现纳米尺度下的制备。
2. 静电纺丝技术制备纳米纤维材料的优势2.1 高效而可控的纤维制备静电纺丝技术可以制备纤维直径从几纳米到几微米的范围内的纳米纤维材料。
通过调节工艺参数,能够实现对纤维直径和形态的精确控制。
这种高效而可控的纤维制备特性使得静电纺丝技术在材料科学、纺织、医疗等领域得到广泛的应用。
2.2 纳米纤维材料的独特性能由静电纺丝技术制备的纳米纤维材料具有很多独特的性能。
首先,纤维直径纳米尺度下的纳米纤维材料具有较大的比表面积,使得其在能量存储、传感器、催化剂等领域具有更好的性能。
其次,纳米纤维材料具有高强度和高可拉伸性,可用于制备高性能纺织材料、过滤器、生物医学支架等。
此外,纳米纤维材料还具有优异的透气性和防护性能,可应用于口罩、防弹材料等领域。
3. 静电纺丝技术在不同领域的应用3.1 纺织领域静电纺丝技术制备的纳米纤维材料在纺织领域具有广阔的应用前景。
其具有的高比表面积和高强度使其成为制备高性能纺织材料的理想选择。
例如,将静电纺丝纳米纤维与常规纺织纤维结合,可以制备出具有更好透气性、抗菌性和防尘性能的纺织品。
此外,纳米纤维材料还可以被用于制备高效过滤材料和防弹材料。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
静电纺丝技术的发展历史
1934年 Formhals
1966年 Simons
1971年 Baumgarten
1981年
Larrondo 和Manley
1995年 R eneker
首次在专利 中提出该技 术。他设计 了一套聚合 物溶液在强 电场下的喷 射进行纺丝 的加工装置。
基本设备
静电纺丝的基本设备包括:高压电源、推进装置、电纺溶液 和收集装置组成。通过调整溶液浓度、溶液粘度、电场场度 和接收距离等工艺参数,可制备直径范围在50nm-5um的聚合 物及功能陶瓷纤维。通过采用不同的收集装置,可以得到在 一定尺寸范围内取向平行的纤维阵列。
喷丝头
喷丝头的作用就是在纺丝过程中产生纺丝小液滴,提供射流激 发位点。一般分为无针头和针头两种不同的喷丝体系,其中针头体 系根据针头数量和形式的不同,还可以进一步分为单头、同轴、并 列、多头等不同的形式。
3)并列式针头
并列式针头体系是 一种结构简单却易于 实现功能化纳米纤维 制备的喷丝头体系。 它将不同的聚合物溶 液通过紧密靠在一起 的并列式针头同时进 行射流激发,在电纺 过程中平行射流融合, 得到多根纤维互相连 接的束状单根纤维, 因此特别适合制备双 组份聚合物纤维。
并列式针头
4)多针头
在并列式针头装置的基础 上,进一步增大针头间的 距离就发展为多可针头体 系,针头数量从2个到十 几个不等,也称为平行电 纺。
Taylor(泰勒)锥:溶液处于储液管中,在溶液与管壁的 粘附力、本身的粘度和表面张力的作用下形成悬挂在管口 的液滴,在电场力的作用下液滴表面布满了电荷,电荷之间 的库仑斥力与液滴表面张力相反,随着电场力的增加,液 滴逐渐被拉长,当所施加的电场力的数值与液滴的表面张 力相等时,液滴就形成了顶角为49.3°的圆锥,被命名为 “泰勒锥”。
空心CFO纤维
CFO芯 PZT 壳纤维
PZT芯CFO 壳纤维
静电纺丝的应用——电池和电极材料
以锂离子电池为例,静电纺能很好的改变其性能。 将PAN的静电纺丝和惰性气体下的热处理巧妙的结合起来,制备出高纯的碳 纳米纤维网络结构,由于其优良的物理和化学性质,这种碳纳米纤维能够很好的 改善锂离子电池(LiB)的电容率。
对静电纺丝 进行研究, 探讨了静电 纺丝过程的 不稳定性, 静电纺丝迅 速发展
静电纺丝的原理
将装有聚合物浓溶液或熔体的注射器的导电金属针尖与高电 压发生器的正极相连,采用接地的金属平板作为接收装置。在针尖 上加高压静电,悬浮的带电液滴在电场力的作用下被拉伸形成一种 泰勒(Taylor)锥。当电场力达到可以克服聚合物液滴的表面张力时, 聚合物液滴表面开始形成喷射细流,细流在喷射过程中溶剂蒸发或 固化,以无纺布的形式沉积在收集板上。
静电纺丝的应用——高效过滤材料
纳米纤维复合制品具有高孔隙率、高表面能和高比表面积的性能,可大大提 高过滤效率,且由于纳米纤维的直径小、纤维膜轻薄,降低过滤阻力。作为空气 过滤材料,可在制药、实验室、医院、食品、化学及化妆品工业中使用。
将聚偏氟乙烯(PVDF)静电纺丝纳米纤维薄膜应用在固液分离领域,证明 了其去除颗粒的适用性。经过表征发现,PVDF静电纺丝纤维薄膜与传统的微滤 膜具有相似的性质。这种膜被用于分离1μm、5μm、10μm的聚苯乙烯颗粒。实 验结果表明此纤维膜能除去溶液中90%的微米颗粒。
多针头纺丝体系
静电纺丝的特点
控制纤维直径 1.溶液浓度 (离子和聚合物) 2.电场强度 3.接受距离
静电纺丝的特点
控制纤维取向
1. 收集器的形状 2. 收集器的运动 3. 外加磁场
在平行圆环上加上与 静电纺丝相同的电荷, 限制了经典纺丝的 “鞭动”,使得静电 纺丝呈现有序性。
静电纺丝的特点
控制纤维结构
专利中叙述 了用静电纺 丝技术制备 超细超轻无 纺布的装置, 且发现粘度 高时,纤维 连续,粘度 低时,纤维 短且细。
设计了一套装 置,可以制备 直径在0.051.1微米的丙烯 酸纤维。考察 了纤维直径与 溶液黏度、射 流长度及环境 气体组分之间 的关系。
将聚乙烯和 聚丙烯熔体 纺成连续的 纤维,研究 发现,直径 取决于电场, 操作温度和 熔融体粘度, 与喷丝嘴直 径无明显关 系。
静电纺丝的应用——化学及生物传感器
由静电纺丝得到的纳米级纤维制备化学传感器因为具有超高的比表面积、 快速的反应时间、良好的灵敏度和选择性等优点备受关注。纳米化学传感器在环 境污染物检测、工业反应检测、食品安全监督、药物成分分析等方面有广泛的应 用。
用静电纺丝法制备PANI纳米纤维,并将纤维沉积在Au电极上,制备成NH3 传感器。纳米纤维传感器可以在几分钟内完成NH3的检测过程。
1、无针头体系。核心思想就是在自由聚合物溶液表面形成大量射流激发位点。
2、针头体系
1)单针头 单针头最常见,根据需要可选择不同型号的针头。
2)同轴针头
同轴电纺的一个优点在于可以突破单头体系的限制,将一 些难以直接电纺的聚合物通过同轴电纺装置制备纳米纤维。 另一个优势是通过将核层选择性移除,还可以制备中空纳 米纤维结构。
用同轴静电纺丝法制备出复合纳米纤维,然后将纺出的纤维浸在正辛烷中,
以除去纤维中的油,之后将其在Ar/H2氛围中1000℃煅烧5h,最终得到包含有Sn 和碳的中空碳纳米纤维,这种复合物在0.5C循环200次后展现出高达737mAh/g 的可逆电容。作为电池材料具有很好的稳定性和可重复性。此外,这种含有Sn 和碳的中空碳纳米纤维结构中有很高的Sn含量(接近70wt%),提供了很好的 孔隙率,也避免了Sn纳米颗粒的破碎。
利用高压静电纺丝作为生物敏感元件,优点在于纺丝材料良好的生物相容性,
可以通过各种方式将纺丝纤维与生物大分子进行组装,并且达到特异性被测物的 目的。由于高的比表面积,足够的生物大分子可以吸附在纺丝表面,并且与被测 物达到充分接触、反应,最终实现高灵敏度检测的目的。
静电纺丝的应用——生物及医药
纳米纤维可用于人造血管、药物输送和组织工程等材料中。纳 米纤维材料作为载药体系可以避免药物突释效应,还可以有效地防止 药物在人体内的降解或者失活;能够从结构和功能两个方面模仿天然 基质是一个理想的组织工程支架。