概率和统计1(基础篇答案版)

合集下载

概率统计第一章答案

概率统计第一章答案

概率论与数理统计作业班级 姓名 学号 任课教师第一章 概率论的基本概念教学要求:一、了解样本空间的概念,理解随机事件的概念,掌握事件的关系及运算.二、理解概率、条件概率的概念,掌握概率的基本性质,会计算古典概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式及贝叶斯公式.三、理解事件的独立性的概念,掌握用事件独立性进行概率计算,理解独立重复试验的概念,掌握计算有关事件概率的方法.重点:事件的表示与事件的独立性;概率的性质与计算.难点:复杂事件的表示与分解;试验概型的选定与正确运用公式计算概率;条件概率的理解与应用;独立性的应用.练习一 随机试验、样本空间、随机事件1.写出下列随机事件的样本空间(1)同时掷两颗骰子,记录两颗骰子点数之和;(2)生产产品直到有5件正品为止,记录生产产品的总件数;(3)在单位圆内任意取一点,记录它的坐标.解:(1){=Ω2;3;4;5;6;7;8;9;10;11;12}; (2){=Ω5;6;7;…};(3)(){}1,22≤+=Ωy x y x 2.设C B A ,,三事件,用C B A ,,的运算关系表示下列事件:(1)A 发生,B 与C 不发生,记为 C B A ;(2)C B A ,,至少有一个发生,记为C B A ;(3) C B A ,,中只有一个发生,记为C B A C B A C B A ;(4)C B A ,,中不多于两个发生,记为ABC .3.一盒中有3个黑球,2个白球,现从中依次取球,每次取一个,设i A ={第i 次取到黑球},,2,1=i 叙述下列事件的内涵:(1)21A A ={}次都取得黑球次、第第21.(2)21A A ={}次取得黑球次或地第21.(3)21A A ={}次都取得白球次、第第21 .(4)21A A ={}次取得白球次或地第21. (5)21A A -={}次取得白球次取得黑球,且第第21.4.若要击落飞机,必须同时击毁2个发动机或击毁驾驶舱,记1A ={击毁第1个发动机};2A ={击毁第2个发动机};3A ={击毁驾驶舱};试用1A 、2A 、3A 事件表示=B {飞机被击落}的事件.解:321A A A B =练习二 频率与概率、等可能概型(古典概率)1.若41)()()(===C P B P A P ,0)()(==BC P AB P , 163)(=AC P , 求事件A 、B 、C 都不发生的概率.解:由于 ,AB ABC ⊂ 则 ()(),00=≤≤AB P ABC P 得(),0=ABC P 于是()()()()()()()()ABC P BC P AC P AB P C P B P A P C B A P +---++=169163414141=-++= 所以()().16716911=-=-=C B A P C B A P 2.设,)(,)(,)(r B A P q B P p A P === 求B A P ().解:因为 ()()(),AB A P B A P B A P -=-=且,A AB ⊂则()()().AB P A P B A P -= 又 ()()()(),r q p B A P B P A P AB P -+=-+=所以()()()().q r r q p p AB P A P B A P -=-+-=-=3.已知在8只晶体管中有2只次品,在其中任取三次,取后不放回,求下列事件的概率:(1)三只都是正品;(2)两只是正品,一只是次品.解:(1)设=A {任取三次三只都是正品},则基本事件总数5638==C n ,A 包含基本事件数2036==C m ,于是 ()1455620==A P . (2)设=B {任取三次两只是正品,一只是次品},则基本事件总数5638==C n ,B 包含基本事件数,301226==C C m 于是().28155630==B P 4.在房间里有10个人,分别佩戴从1号到10号的纪念章,任选3人记录其纪念章的号码,(1)求最小号码为6的概率;(2)求最大号码为6的概率.解:(1)设=A {最小号码为6},则基本事件总数,120310==C n A 包含基本事件数,624==C m 于是().2011206==A P (2)设=B {最大号码为6},则基本事件总数,120310==C n B 包含基本事件数,1025==C m 于是().12112010==B P 5.一盒中有2个黑球1个白球,现从中依次取球,每次取一个,设i A ={第i 次取到白球},3,2,1=i . 求)(i A P , 3,2,1=i .解: ()311=A P ; ()=2A P 312312=⨯⨯, ()311231123=⨯⨯⨯⨯=A P . 6.掷两颗均匀的骰子,问点数之和等于7与等于8的概率哪个大?解:样本空间基本事件总数,3666=⨯=n 设=1A {点数之和等于7},=2A {点数之和等于8},则=1A {()()()()()()3,4;4,3;2,5;5,2;1,6;6,1},1A 包含基本事件数等于6 ;=2A {()()()()()3,5;5,3;4,4;2,6;6,2},2A 包含基本事件数等于5 ;于是 ()613661==A P ; ()3652=A P .所以()()21A P A P > . 7.一批产品共100件,对其抽样检查,整批产品不合格的条件是:在被检查的4件产品中至少有1件是废品.如果在该批产品有5﹪是废品,问该批产品被拒收的概率.解:设=A {被检查的4件产品至少有1件废品},则()812.05100495==C C A P ;所以 ()()188.01=-=A P A P .8.将3个球随机放入4个杯子中,求杯子中球数的最大值为2的概率.解:基本事件总数34444=⨯⨯=n ,设=A {杯子中球数最大值为2},则A 包含的基本事件数36131423==C C C m (3个球任取两个,然后4个杯子任取1个放入,再对1个球在3个杯子中任取一个放入),于是()3436=A P . 练习三 条件概率1.甲、乙两班共有70名同学,其中女同学40名.设甲班有30名同学,而女生15名.求在碰到甲班同学时,正好碰到1名女同学的概率.解:设=A {碰到甲班同学},=B {碰到乙班同学},则();7030=A P (),7015=AB P 于是 ()()()5.0301570307015====A P AB P A B P . 2.箱子里有10个白球,5个黄球,10个黑球.从中随机地抽取1个.已知它不是黑球,求它是黄球的概率.解:设=A {任取一个不是黑球},=B {任取一个是黄球},则(),532515==A P ();51255==B P 又A B ⊂ ,则()()B P AB P = ,于是()()()315351===A P AB P A B P3.某人有5把钥匙,其中2把能打开房门.从中随机地取1把试开房门,求第3次才打开房门的概率.解:设=i A {第i 次能打开门} ,;3,2,1=i 则 =321A A A {第3次才打开门},于是由乘法公式有53454.假设某地区位于甲、乙二河流的汇合处,当任一河流泛滥时,该地区就遭受水灾.设某时期内甲河流泛滥的概率为0.1,乙河流泛滥的概率为0.2.当甲河流泛滥时,乙河流泛滥的概率为0.3.求(1)该时期内这个地区遭受水灾的概率;(2)当乙河泛滥时甲河流泛滥的概率.解:设=A {某时期甲河泛滥},=B =A {某时期乙河泛滥},则(),1.0=A P ()2.0=B P , ()3.0=A B P于是()()()()()()15.02.03.01.0=⨯===B P A B P A P B P AB P B A P ()()()03.015.02.0=⨯==B A P B P AB P()()()()27.003.02.01.0=-+=-+=AB P B P A P B A P5. 甲、乙两车间加工同一种产品,已知甲、乙两车间出现废品的概率分别为3﹪、2﹪,加工的产品放在一起,且已知甲车间加工的产品是乙车间加工的产品的两倍.求任取一个产品是合格品的概率.解:设=A {任取一个为甲生产的产品},=B {任取一个产品为废品},则()()()()%2%,3,31,32====A B P A B P A P A P 由全概率公式有 ()()()()()752100231100332=⨯+⨯=+=A B P A P A B P A P B P 6.设甲袋中有3个红球及1个白球.乙袋中有4个红球及2个白球.从甲袋中任取一个球(不看颜色)放到乙袋中后,再从乙袋中任取一个球,求最后取得红球的概率.解:设=A {从甲袋中任取一个球为红球},=B {最后从乙袋中任取一个球为红球},则 ()()()();74,75,41,43====A B P A B P A P A P 由全概率公式287474 7.玻璃杯成箱出售,每箱20只,假设各箱含0,1,2只残次品的概率分别为0.8,0.1和0.1,一顾客欲购一箱玻璃杯,在购买时,售货员随意取一箱,而顾客随机的一次性抽取4只察看,若无残次品,则买下该箱玻璃杯,否则退回,试求:(1)顾客买下该箱的概率;(2)在顾客买下的一箱中,确实没有残次品的概率.解:设=i A {售货员任取一箱玻璃杯有i 个残品},2,1,0=i ,=B {顾客买下该箱玻璃杯},则()()();1.0,1.0,8.0210===A P A P A P()()();632.0,8.0,1420418242041910≈====C C A B P C C A B P A B P (1)由全概率公式得()()()()()()()943.0632.01.08.01.018.0221100=⨯+⨯+⨯≈++=A B P A P A B P A P A B P A P B P(2)由贝叶斯公式得 ()()()().848.0943.018.0000≈⨯==B P A B P A P B A P 8.已知一批产品中有95﹪是合格品,检查产品质量时,一个合格品被误判为次品的概率为0.02,一个次品被误判为合格品的概率是0.03,求:(1)任意抽查一个产品,它被判为合格品的概率;(2)一个经检查被判为合格的产品确实是合格品的概率.解:设=A {任取一个产品为合格品},=B {任取一个产品被判为合格品},则()()()();03.0,98.002.01,05.0,95.0==-===A B P A B P A P A P于是(1) 任意抽查一个产品,它被判为合格品的概率是 ()()()()()9325.003.005.098.095.0=⨯+⨯=+=A B P A P A B P A P B P(2)一个经检查被判为合格的产品确实是合格品的概率是 ()()()().9984.09325.098.095.0≈⨯==B P A B P A P B A P练习四 事件的独立性1.设甲、乙两人独立射击同一目标,他们击中目标的概率分别为0.9和0.8,求在一次射击中目标被击中的概率.解:设 =A {甲击中目标},=B {乙击中目标}, 则=B A {目标被击中},()()8.0,9.0==B P A P ,于是()()()()()()()().98.08.0098.09.0=⨯-+=-+=-+=B P A P B P A P AB P B P A P B A P2.三人独立地去破译一个密码,他们能译出的概率分别是41,31,51,问能将此密码译出的概率是多少?解:设=i A {第i 人破译密码} ,;3,2,1=i =B {破译密码}, 则 ()()(),41,31,51321===A P A P A P 321A A A B =, 于是()()()()()()().5343325411111321321321=⨯⨯-=-=-=-=-=A P A P A P A A A P A A A P B P B P3.电路由元件A 与两个并联的元件B 及C 串联而成,且它们工作是相互独立的.设元件A 、B 、C 损坏的概率分别是0.3,0.2,0.2,求电路发生间断的概率.解:设=D {电路正常},则()C A B A C B AD ==, 则 ()()()()()()()()()()().672.08.08.07.08.07.08.07.0=⨯⨯-⨯+⨯=-+=-+=C P B P A P C P A P B P A P C B A P C A P B A P D P 所以 ()()328.0672.011=-=-=D P D P4. 设每次射击时命中率为0.2,问至少必须进行多少次独立射击才能使至少击中一次的概率不小于0.9?解:设至少要进行n 次独立射击,则至少击中一次的概率不小于0.9可表为: ()(),9.0011≥=-=≥k P k P n n由于,2.0=p 则,8.0=q 于是()n n k P 8.0101-==-,所以有,1.08.0≥n 即32.103.0ln 2.0ln =≥n所以至少进行11次独立射击才能使至少击中一次的概率不小于0.9.综合练习题一、选择题1.设事件B A ,,有A B ⊂,则下列式子正确的是( A ).(A ));()(A P B A P = (B) );()(A P AB P =(C) );()|(B P A B P = (D) ).()()(A P B P A B P -=-2.设A 与B 为两个相互独立的事件,0)(>A P ,0)(>B P ,则一定有=)(B A P ( B).(A ))()(B P A P + (B ))()(1B P A P -(C ))()(1B P A P + (D ))(1AB P -.3.设B A ,为两事件,且B A ⊃,则下列结论成立的是( C ).(A )A 与B 互斥;(B ) A 与B 互斥;(C)A 与B 互斥;(D) A 与 B 互斥.4.设B A ,为任意两事件,且,0)(,>⊂B P B A 则下列选择必然成立的是( C ).(A))|()(B A P A P <; (B) )|()(B A P A P >;(C) )|()(B A P A P ≤; (D) )|()(B A P A P ≥.5.假设事件A 和B 满足1)(=A B P ,则下列正确的是( D ).(A )A 是必然事件; (B )();0=A B P ; (C )A B ⊂ ; (D )B A ⊂.6.对于任意二事件B A ,( B ).(A) 若AB ≠∅,则B A ,一定独立; (B) ,AB ≠∅则B A ,有可能独立;(C) AB =∅,则B A ,一定独立; (D) AB ≠∅,则B A ,一定不独立;7.若事件A 和B 满足)}(1)}{(1{)(B P A P B A P --= ,则正确的是( D ).(A )互不相容与B A ; (B ) 互不相容与B A ;(C ) B A ⊃; (D ) 互为独立与B A .8.设当事件A 与B 同时发生时,事件C 必发生,则( B ).(A )1)()()(-+≤B P A P C P ; (B )1)()()(-+≥B P A P C P ;(C ))()(AB P C P =; (D ))()(B A P C P =.9.设B A 、是两个事件,则=-)(B A P ( C ).(A ))()(B P A P -; (B ))()()(AB P B P A P +-;(C) )()(AB P A P -; (D) )()()(AB P B P A P ++.10.设C B A ,,是三个随机事件,41)()()(===C P B P A P ,81)(=AB P ,0)()(==AC P BC P ,则C B A ,,三个随机事件中至少有一个发生的概率是( B ).(A )43; (B ) 85; (C ) 83; (D ) 81. 11.某学生做电路实验,成功的概率是0(p ﹤p ﹤1),则在3次重复实验中至少失败1次的概率是( B ).(A )3p ; (B )31p -; (C )3)1(p -; (D )3)1(p -)1()1(22p P p p -+-+.12.设A P B P A P (,7.0)(,8.0)(==|8.0)=B ,则下面结论正确的是( A ).(A )事件A 与B 互相独立; (B )事件A 与B 互不相容;(C );B A ⊂ (D )).()()(B P A P B A P +=13.下列事件中与A 互不相容的事件是( D )(A )ABC ; (B) C B C B A ; (C) )(C B A ; (D) ))()((B A B A B A .14.若事件A 、B 相互独立且互不相容,则{}=)(),(min B P A P ( C ).(A) )(A P ; (B ) )(B P ; (C ) 0; (D ) )()(B P A P -.15.,1)|()|(,1)(0,1)(0=+<<<<B A P B A P B P A P 设则( A ).(A) )()|(A P B A P = ; (B) A B =; (C) Φ≠AB ; (D) )()()(B P A P AB P ≠.二、填空题1.已知B A ⊂,3.0)(,2.0)(==B P A P ,则)(B A P - 0 .2.设7.0)(=A P ,5.0)(=B P .则的最小值为)(AB P 0.2 .3.三次独立的试验中,成功的概率相同,已知至少成功一次的概率为2719,则每次试验成功的概率为 1/3 .4.已知()0.5,()0.8P A P B ==,且(|)0.8 P B A =,则=)(B A P 0.9 .5. 设5.0)(=A P ,4.0)(=B P ,6.0)|(=B A P ,则)|(B A A P = 20/29 .6.假设事件A 和B 满足1)(=A B P ,则A 和B 的关系是B A ⊂.7.已知7.0)(=A P ,3.0)(=-B A P ,则=)(AB P 0.4 . 8.已知41)(=A P ,31)(=AB P ,21)(=B A P ,则=)(B A P 1/3 . 9.设两个相互独立的事件A 和B 都不发生的概率为91,A 发生B 不发生的概率与B 发生A 不发生的概率相等,则=)(A P 2/3 .10.设C B A ,,构成一个完备事件组,且()0.5,()0.7P A P B ==,则=)(C P 0.2 .11.设A 与B 为互不相容的事件,0)(>B P ,则=)(B A P 0 .12.设事件C B A ,,两两互斥,且,4.0)(,3.0)(,2.0)(===C P B P A P则=-])[(C B A P 0.5 .13.设事件A 与B 相互独立,已知1)()(-==a B P A P ,97)(=B A P ,则=a 5/3或4/3 .14.甲、乙两人独立的对同一目标射击一次,其命中率分别为6.0和5.0,现已知目标被命中,则它是甲射中的概率为 3/4 .15.假设随机事件A 与B 满足),()(B A P AB P =且p A P =)(,则=)(B P p -1.三、应用题1.甲、乙、丙3人同向一飞机射击,设击中飞机的概率分别为0.4,0.5,0.7.如果只有一人击中飞机,则飞机被击落的概率是0.2;如果有2人击中飞机,则飞机被击落的概率是0.6;如果3人都击中飞机,则飞机一定被击落.求飞机被击落的概率.解:设=i A {第i 人击中飞机},=i 甲,乙,丙;=i B {i 人击中飞机};3,2,1,0=i ,=C {飞机被击落};则()()();7.0;5.0;4.0321===A P A P A P()()()()36.03213213211=++=A A A P A A A P A A A P B P ,()()()()41.03213213212=++=A A A P A A A P A A A P B P ,()()14.03213==A A A P B P ;(),2.01=B C P (),6.02=B C P ();13=B C P所以()()()()()()()458.0332211=++=B C P B P B C P B P B C P B P C P2.甲、乙2人投篮命中率分别为0.7,0.8,每人投篮三次,求(1)两人进球数相等的概率;(2)甲比乙进球数多的概率. 解:设=i A {甲人三次投篮进i 个球},=i B {乙人三次投篮进i 个球},则()(),027.07.0130=-=A P ()(),189.07.017.02131=-⨯⨯=C A P()()(),411.07.017.02232=-⨯⨯=C A P ()();343.07.03333=⨯=C A P()(),008.08.0130=-=B P ()(),096.08.018.02131=-⨯⨯=C B P()()(),384.08.018.02232=-⨯⨯=C B P ()();512.08.033==B P(1)=C {两人进球相等}33221100B A B A B A B A =,()()()()()()()()()()()()();36332.03322110033221100=+++=+++=B P A P B P A P B P A P B P A P B A P B A P B A P B A P C P (2)=D { 甲比乙进球数多}331303120201B A B A B A B A B A B A =()()()()()()()()()()()()().21476.0231303120201=+++++=B P A P B P A P B P A P B P A P B P A P B P A P D P3.一射手命中10环的概率为0.7,命中9环的概率为0.3.该射手3发子弹得到不小于29环的概率.解:设=1A {命中10环},=2A {命中9环},则;,2121Ω=Φ=A A A A 于是=B {3发子弹得到不小于29环}={3发子弹均为10环} {有2发击中10环},所以()()()()()()784.03.07.03.07.023223033333=⨯⨯+⨯⨯=+=C C P P B P4.有2500人参加人寿保险,每年初每人向保险公司交付保险费12元.若在这一年内投保人死亡,则其家属可以向保险公司领取2000元.假设每人在这一年内死亡的概率都是0.002,求保险公司获利不少于10000元的概率.解:设参加保险的人中有x 人死亡,当,100002000122500≥-⨯x 即10≤x 时,保险公司获利不少于10000元。

概率论与数理统计练习册—第一章答案

概率论与数理统计练习册—第一章答案

第一章 概率论的基本概念基础训练I一、选择题1. 以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为:( D )。

A )甲种产品滞销,乙种产品畅销;B )甲乙产品均畅销;C )甲种产品滞销;D )甲产品滞销或乙种产品畅销.2、设A ,B ,C 是三个事件,则C B A ⋃⋃表示( C )。

A ) A ,B ,C 都发生; B ) A ,B ,C 都不发生;C ) A ,B ,C 至少有一个发生;D ) A ,B ,C 不多于一个发生3、对于任意事件B A ,,有=-)(B A P ( C )。

A ))()(B P A P -; B ))()()(AB P B P A P +-;C ))()(AB P A P -;D ))()()(AB P B P A P -+。

4、已知5个人进行不放回抽签测试,袋中5道试题(3道易题,2道难题),问第3个人抽中易题的概率是( A ) 。

A ) 3/5;B )3/4;C )2/4;D )3/10.5、抛一枚硬币,反复掷4次,则恰有3次出现正面的概率是( D )。

A ) 1/16B ) 1/8C ) 1/10D ) 1/46、设()0.8P A =,()0.7P B =,(|)0.8P A B =,则下列结论正确的有( A )。

A )B A ,相互独立; B )B A ,互不相容;C )A B ⊃;D ))()()(B P A P B A P +=⋃。

二、填空题1.设C B A ,,是随机事件,则事件“A 、B 都不发生,C 发生”表示为C B A , “C B A ,,至少有两个发生”表示成BC AC AB ⋃⋃ 。

2.设A 、B 互不相容,4.0)(=A P ,7.0)(=⋃B A P ,则=)(B P 0.3 ;3. 某市有50%住户订日报,有65%住户订晚报,有85%的住户至少订这两种报纸中的一种,则同时订这两种的住户百分比是:30%;4.设4/1)()()(===C P B P A P ,0)()(==BC P AB P ,8/1)(=AC P ,则C B A 、、三件事至少有一个发生的概率为:5/8;5. 若A 、B 互不相容,且,0)(>A P 则=)/(A B P 0 ;若A 、B 相互独立,,且,0)(>A P 则=)/(A B P )(B P 。

概率论与数理统计第一章总习题答案

概率论与数理统计第一章总习题答案

概率论与数理统计课后习题答案第一章总习题1.填空题(1)假设B A ,是两个随机事件,且B A AB ⋅=,则()A B =,()=AB ;解:AB A B AB A B =⋅⇔=即AB 与A B 互为对立事件,又AB AB ⊂所以()(),.AB A B A B AB A B AB Ω==∅==(2)假设B A ,是任意两个事件,则()()()()()P A B A B A B A B ⎡⎤=⎣⎦.解:()()()()()()P A B A B A B A B P AA AB AB B AAAB ABB ⎡⎤⎡⎤=⎣⎦⎣⎦()()0P BB P ==∅=.(3).已知41)()()(===C P B P A P , 0)(=AB P , 161)()(==BC P AC P 。

则事件A 、B 、C 全不发生的概率为解:所求事件的概率即为()P ABC ,又,ABC AB ⊂从而()()00,P ABC P AB ≤≤=则()0P ABC =,所以()()()1P ABC P A B C P A B C ==-()()()()()()()31311.488P A P B P C P AB P AC P BC P ABC =---+++-=-+=2.选择题(1)设8.0)(=A P ,7.0)(=B P ,()8.0=B A P ,则下列结论正确的是().(A )事件A 与事件B 相互独立;(B )事件A 与事件B 互逆; (C )A B ⊃;(D )()()()P AB P A P B =+.解:因为()56.0)()(==B A P B P AB P ,而56.0)()(=B P A P ,即)()()(B P A P AB P =,所以事件A 与事件B 相互独立,选(A ).(2)设B A ,为两个互逆的事件,且0)(>A P ,0)(>B P ,则下列结论正确的是().(A )()0>A B P ;(B )())(A P B A P =;(C )()0=B A P ;(D ))()()(B P A P AB P =. 解:因为B A ,为两个互逆的事件,所以当事件B 发生时,事件A 是不会发生的,故()0=B A P .选(C ).(3)设1)(0<<A P ,1)(0<<B P ,()()1=+B A P B A P ,则下列结论正确的是().(A )事件A 与事件B 互不相容;(B )事件A 与事件B 互逆; (C )事件A 与事件B 不互相独立;(D )事件A 与事件B 互相独立.解:因为()()()()()()()()()()1111P A B P A BP AB P AB P A B P A B P B P B P B P B⋅+=⇔+=⇔+=- ()()()()()()()()()()111111P AB P A B P AB P A P B P AB P B P B P B P B ---+⇔+=⇔+=⇔--()()[]()()()()[]()()[]⇔-=+--+-B P B P AB P B P A P B P B P AB P 111)()()(B P A P AB P =,所以事件A 与事件B 互相独立.选(D ).3.从五双不同的鞋子中任取四只,求取得的四只鞋子中至少有两只配成一双的概率. 解:此题考虑逆事件求解比较方便,即取得的四只鞋子中不能配成一双.设A 表示“取得的四只鞋子中至少有两只配成一双”,则()4101212124511)(C C C C C A P A P -=-=2113=.4.(找次品问题)盒中有4只次品晶体管,6只正品晶体管,随机地抽取一只进行测试,直到4只次品晶体管都找到为止,求第4次品晶体管在第五次测试中被发现的概率.解:设i A 表示“第i 次找到次品晶体管”()5,4,3,2,1=i ,则所求概率为:()54321543215432154321A A A A A A A A A A A A A A A A A A A A P ⋅⋅⋅⋅+⋅⋅⋅⋅+⋅⋅⋅⋅+⋅⋅⋅⋅()()()()()432153214213121A A A A A P A A A A P A A A P A A P A P ⋅⋅⋅⋅⋅⋅=()()()()()432153214213121A A A A A P A A A A P A A A P A A P A P ⋅⋅⋅⋅⋅⋅+ ()()()()()432153214213121A A A A A P A A A A P A A A P A A P A P ⋅⋅⋅⋅⋅⋅+ ()()()()()432153214213121A A A A AP A A A AP A A A P A A P A P ⋅⋅⋅⋅⋅⋅+61768293104617286931046172839610461728394106⨯⨯⨯⨯+⨯⨯⨯⨯+⨯⨯⨯⨯+⨯⨯⨯⨯=1052617283941064=⎪⎭⎫⎝⎛⨯⨯⨯⨯=.5.(讨论奖金分配的公平性问题)在一次羽毛球比赛中,设立奖金1000元.比赛规定:谁先胜三盘,谁获得全部奖金.设甲、乙两人的球技相当,现已打了三盘,甲2胜11000元应如何分配才算公平?解:应以预期获胜的概率为权重来分配这笔奖金,于是求出甲、乙两人获胜的预期概率即可.比赛采取的应是五局三胜制,比赛已打三盘,甲胜两盘,甲若再胜一盘即可获胜. 甲获胜的预期概率为:()()()()43212121544544=⨯+=+=+A P A P A P A A A P . 于是,甲应分得1000元奖金中的750100043=⨯元,乙分得250元.6.(彩票问题) 一种福利彩票称为幸福35选7,即从01,02,…,35中不重复地开出7个基本号码和一个特殊号码.中奖规则如下表所示.(1)试求各等奖的中奖概率(1,2,,7);i p i =(2) 试求中奖的概率.解:(1) 因为不重复地选号码是一种不放回抽样,所以样本空间Ω含有735C 个样本点.要中奖应把抽样看成是在三种类型中抽取:第一类号码:7个基本号码; 第二类号码:1个特殊号码; 第三类号码:27个无用号码。

概率论与数理统计答案第一章

概率论与数理统计答案第一章

概率论第一章习题解答习题1.11. 写出下列随机试验的样本空间Ω及指定的事件:(1)袋中有3个红球和2个白球,现从袋中任取一个球,观察其颜色;(2)掷一枚硬币,设H 表示“出现正面”,T 表示“出现反面”.现将一枚硬币连掷两次,观察出现正、反面的情况,并用样本点表示事件A =“恰有一次出现正面”;(3)对某一目标进行射击,直到击中目标为止,观察其射击次数,并用样本点表示事件A =“射击次数不超过5次”;(4)生产某产品直到5件正品为止,观察记录生产该产品的总件数;(5)从编号a 、b 、c 、d 的四人中,随机抽取正式和列席代表各一人去参加一个会议,观察选举结果,并用样本点表示事件A =“编号为a 的人当选”.解:(1)Ω = {红色, 白色}; (2)Ω = {(H , H ), (H , T ), (T , H ), (T , T )},A = {(H , T ), (T , H )};(3)Ω = {1, 2, 3, …, n , …},A = {1, 2, 3, 4, 5}; (4)Ω = {5, 6, 7, …, n , …};(5)Ω = {(a , b ), (a , c ), (a , d ), (b , a ), (b , c ), (b , d ), (c , a ), (c , b ), (c , d ), (d , a ), (d , b ), (d , c )},A = {(a , b ), (a , c ), (a , d ), (b , a ), (c , a ), (d , a )}.2. 某射手射击目标4次,记事件A =“4次射击中至少有一次击中”,B =“4次射击中击中次数大于2”.试用文字描述事件A 与B . 解:A 表示4次射击都没有击中,B 表示4次射击中击中次数不超过2.3. 设A , B , C 为三个事件,试用事件的运算关系表示下列事件:(1)A , B , C 都发生;(2)A , B , C 都不发生;(3)A , B , C 中至少有一个发生;(4)A , B , C 中最多有一个发生;(5)A , B , C 中至少有两个发生;(6)A , B , C 中最多有两个发生.解:(1)ABC ; (2)C B A ; (3)A ∪B ∪C ; (4)C B A C B A C B A C B A U U U ;(5)ABC BC A AB U U U ; (6)ABC .4. 在一段时间内,某电话交换台接到呼唤的次数可能是0次,1次,2次,….记事件A n =“接到的呼唤次数小于n ”(n = 1, 2, …),试用事件的运算关系表示下列事件:(1)呼唤次数大于2;(2)呼唤次数在5到10次范围内;(3)呼唤次数与8的偏差大于2.解:(1)3A ; (2)A 11 − A 5; (3)116A A U .5. 证明:(1)Ω=−A B A AB U U )(; (2)AB B A B A B A =))()((U U U .证:(1)Ω==Ω===−A A B A A AB B A AB U U U U U U U U )()(;(2)U U U U U U A B A B B A B A B A B A ())(())()((==∅AB AB A A B A A B A ===U U U )())(.习题1.21. 设P (A ) = P (B ) = P (C ) = 1/4,P (AB ) = P (BC ) = 0,P (AC ) = 1/8,求A 、B 、C 三个事件至少有一个发生的概率.解:因P (AB ) = P (BC ) = 0,且ABC ⊂ AB ,有P (ABC ) = 0, 则8581414141)()()()()()()()(=−++=+−−−++=ABC P BC P AC P AB P C P B P A P C B A P U U . 2. 设P (A ) = 0.4,P (B ) = 0.5,P (A ∪B ) = 0.7,求P (A − B )及P (B − A ).解:因P (AB ) = P (A ) + P (B ) − P (A ∪B ) = 0.4 + 0.5 − 0.7 = 0.2,则P (A − B ) = P (A ) − P (AB ) = 0.4 − 0.2 = 0.2,P (B − A ) = P (B ) − P (AB ) = 0.5 − 0.2 = 0.3.3. 某市有A , B , C 三种报纸发行.已知该市某一年龄段的市民中,有45%的人喜欢读A 报,34%的人喜欢读B 报,20%的人喜欢读C 报,10%的人同时喜欢读A 报和B 报,6%的人同时喜欢读A 报和C 报,4%的人同时喜欢读B 报和C 报,1%的人A , B , C 三种报纸都喜欢读.从该市这一年龄段的市民中任选一人,求下列事件的概率:(1)至少喜欢读一种报纸;(2)三种报纸都不喜欢;(3)只喜欢读A 报;(4)只喜欢读一种报纸.解:分别设A , B , C 表示此人喜欢读A , B , C 报,有P (A ) = 0.45,P (B ) = 0.34,P (C ) = 0.2,P (AB ) = 0.1,P (AC ) = 0.06,P (BC ) = 0.04,P (ABC ) = 0.01,(1)P (A ∪B ∪C ) = P (A ) + P (B ) + P (C ) − P (AB ) − P (AC ) − P (BC ) + P (ABC ) = 0.8;(2)2.0)(1)((=−==C B A P C B A P P U U U U ;(3)3.0)()()()()()()(=+−−=−=ABC P AC P AB P A P B A P B A P C B A P ;(4)因21.0)()()()()()()(=+−−=−=ABC P BC P AB P B P P B P B P ,11.0)()()()()()()(=+−−=−=ABC P BC P AC P C P BC A P C A P C B A P , 故62.0)()()()(=++=++C B A P C B A P C B A P C B A C B A C B A P .4. 连续抛掷一枚硬币3次,求既有正面又有反面出现的概率.解:样本点总数n = 2 3 = 8,事件A 中样本点数62313=+=C C k A ,则75.043)(===n k A P A . 5. 在分别写有2, 4, 6, 7, 8, 11, 12, 13的8张卡片中任取两张,把卡片上的两个数字组成一个分数,求所得分数为既约分数的概率.解:样本点总数2828==C n ,事件A 中样本点数18231315=+=C C C k A ,则6429.0149)(===n k A P A . 6. 一部5卷文集任意地排列在书架上,问卷号自左向右或自右向左恰好为1, 2, 3, 4, 5顺序的概率等于多少?解:样本点总数12055==A n ,事件A 中样本点数k A = 2,则0167.0601)(===n k A P A . 7. 10把钥匙中有3把能打开某一门锁,今任取两把,求能打开某该门锁的概率.解:样本点总数45210==C n ,事件A 中样本点数24231317=+=C C C k A ,则5333.0158)(===n k A P A . 8. 一副扑克牌有52张,进行不放回抽样,每次一张,连续抽取4张,计算下列事件的概率:(1)四张花色各异;(2)四张中只有两种花色. 解:样本点总数270725452==C n ,(1)事件A 1中样本点数285611131131131131==C C C C k A ,则1055.0208252197)(11===n k A P A ; (2)事件A 2表示两种花色各两张,或者一种1张一种3张,样本点数81120)2(113313213213242=+=C C C C C k A ,则2996.041651248)(22===n k A P A . 9. 口袋内装有2个伍分、3个贰分、5个壹分的硬币共10枚,从中任取5枚,求总值超过壹角的概率. 解:样本点总数252510==C n ,事件A 分三种情形:①两枚5分,三枚其它,②一枚5分,三枚2分,一枚1分,③一枚5分,两枚2分,两枚1分,样本点数1262523121533123822=++=C C C C C C C C k A ,则5.021)(===n k A P A . 方法二:10枚硬币总额2角1分,任取5枚若超过1角,那么剩下的5枚将不超过1角,可见事件A 中的样本点与A 中的样本点一一对应,即A k k =,则5.0)()(==A P A P .10.在10个数字0, 1, 2, …, 9中任取4个(不重复),能排成一个4位偶数的概率是多少(最好是更正为:排在一起,恰好排成一个4位偶数的概率是多少)?解:样本点总数5040410==A n ,事件A 的限制条件是个位是偶数,首位不是0,样本点数2296281814281911=+=A A A A A A k A ,则4556.09041)(===n k A P A . 11.一个教室中有100名学生,求其中至少有一人的生日是在元旦的概率(设一年以365天计算). 解:样本点总数n = 365 100,A 的对立事件A 表示所有学生生日都不在元旦,100364=A k , 则2399.036536411(1)(100=⎟⎠⎞⎜⎝⎛−=−=−=n k A P A P A .12.在 [0, 1] 区间内任取两个数,求两数乘积小于1/4的概率.解:设所取得两个数为x , y ,Ω = {(x , y ) | 0 < x < 1, 0 < y < 1},}1,10,10|),{(<<<<=y x y x A 有m (Ω) = 1,4034.042ln 23)41ln 4141(1)ln 41(411()(141141=−=−−=−=−=∫x x dx x A m 则5966.042ln 21)()(1(1)(=+=Ω−=−=m A m P A P . 习题1.31. 一只盒子有3只坏晶体管和7只好晶体管,在其中取二次,每次随机地取一只,作不放回抽样,发现第一只是好的,问另一只也是好的概率是多少?解:设A 表示第一只是好的,B 表示第二只是好的,当第一只是好的时,第二次抽取前有3只是坏的,6只是好的,则6667.03296)|(===A B P . 2. 某商场从生产同类产品的甲、乙两厂分别进货100件、150件,其中:甲厂的100件中有次品4件,乙厂的150件中有次品1件.现从这250件产品中任取一件,从产品标识上看它是甲厂生产的,求它是次品的概率.解:设A 表示甲厂产品,B 表示次品,故04.01004)|(==A B P . 3. 根据抽样调查资料,2000年某地城市职工家庭和农村居民家庭收入按人均收入划分的户数如下:户数 6000元以下 6000 ~ 12000元 12000元以上 合计城市职工 25 125 50 200 农村居民 120 132 48 300 合计 145 257 98 500 现从被调查的家庭中任选一户,已知其人均收入在6000元以下,试问这是一个城市职工家庭的概率是多少?解:设A 表示人均收入在6000元以下,B 表示城市职工家庭,故1724.014525)|(==A B P . 4. 某单位有92%的职工订阅报纸,93%的职工订阅杂志,在不订阅报纸的职工中仍有85%的职工订阅杂志,从单位中任找一名职工,求下列事件的概率:(1)该职工至少订阅报纸或杂志中一种;(2)该职工不订阅杂志,但是订阅报纸. 解:设A 表示订阅报纸,B 表示订阅杂志,有P (A ) = 0.92,P (B ) = 0.93,85.0|(=A B P , 则068.085.008.0)|()()(=×==A B P A P B A P ,862.0068.093.0)()()(=−=−=B A P B P AB P ,(1)P (A ∪B ) = P (A ) + P (B ) − P (AB ) = 0.92 + 0.93 − 0.068 = 0.988;(2)P (A − B ) = P (A ) − P (AB ) = 0.92 − 0.862 = 0.058.5. 某工厂有甲、乙、丙三个车间生产同一种产品,各个车间的产量分别占全厂产量的25%、35%、40%,各车间产品的次品率分别为5%、4%、2%.(1)求全厂产品的次品率;(2)如果从全厂产品中抽取一件产品,恰好是次品,问这件次品是甲、乙、丙车间生产的概率分别是多少?解:(1)任取一件产品,设A 1, A 2, A 3分别表示甲、乙、丙车间产品,B 表示次品,则P (B ) = P (A 1) P (B | A 1) + P (A 2) P (B | A 2) + P (A 3) P (B | A 3)= 0.25 × 0.05 + 0.35 × 0.04 + 0.4 × 0.02 = 0.0345;(2)3623.069250345.005.025.0)()|()()()()|(1111==×===B P A B P A P B P B A P B A P , 4058.069280345.004.035.0)()|()()()()|(2222==×===B P A B P A P B P B A P B A P , 2319.069160345.002.04.0)()|()()()()|(3333==×===B P A B P A P B P B A P B A P . 6. 有三个形状相同的罐,在第一罐中有两个白球和一个黑球;在第二个罐中有三个白球和一个黑球;在第三个罐中有两个白球和两个黑球.某人随机地取一罐,再从该罐中任取一球,试问这球是白球的概率有多少?解:设321,,A A A 分别表示第一、二、三罐,B 表示白球, 则6389.03623423143313231)|()()|()()|()()(332211==×+×+×=++=A B P A P A B P A P A B P A P B P . 7. 三部自动的机器生产同样的汽车零件,其中机器A 生产的占40%,机器B 生产的占25%,机器C 生产的占35%,平均说来,机器A 生产的零件有10%不合格,对于机器B 和C ,相应的百分数分别为5%和1%,如果从总产品中随机地抽取一个零件,发现为不合格,试问:(1)它是由机器A 生产出来的概率是多少?(2)它是由哪一部机器生产的可能性最大?解:设A 1, A 2, A 3分别表示机器A , B , C 生产的零件,D 表示不合格的零件,(1))|()()|()()|()()|()()()()|(3322111111A D P A P A D P A P A D P A P A D P A P D P D A P D A P ++== 7143.075056.004.001.035.005.025.01.04.01.04.0===×+×+××=; (2)2232.011225056.00125.0056.005.025.0)()()|(22===×==D P D A P D A P ,0625.01127056.00035.0056.001.035.0)()()|(33===×==D P D A P D A P , 则由机器A 生产的概率最大.8. 设P (A ) > 0,试证:)()(1)|(A P B P A B P −≥. 证:)()(1)()(11)(1)()()()()()()()()|(A P B P A P B P A P B P A P A P B A P B P A P A P AB P A B P −=−−=−+≥−+==U . 习题1.41. 一个工人看管三台机床,在一小时内机床不需要工人看管的概率分别为0.9、0.8、0.7,求在一小时内3台机床中最多有一台需要工人看管的概率.解:设A 1, A 2, A 3分别表示一小时内第一、二、三台机床不需要工人照管,可以认为A 1, A 2, A 3相互独立, 则概率为)()()()()(321321321321321321321321A A A P A A A P A A A P A A A P A A A A A A A A A A A A P +++=U U U)()()()()()()()()()()()(321321321321A P A P A P A P A P A P A P A P A P A P A P A P +++== 0.9 × 0.8 × 0.7 + 0.9 × 0.8 × 0.3 + 0.9 × 0.2 × 0.7 + 0.1 × 0.8 × 0.7 = 0.902.2. 电路由电池A 与两个并联的电池B 及C 串联而成,设电池A , B ,电路发生断电的概率. 解:设A , B , C 分别表示电池A , B , C 损坏,电路断电为事件A ∪BC ,则概率为P (A ∪BC ) = P (A ) + P (BC ) − P (ABC ) = P (A ) + P (B ) P (C ) − P (A ) P (B ) P (C ) = 0.3 + 0.2 × 0.2 − 0.3 × 0.2 × 0.2 = 0.328.方法二:设A , B , C 分别表示电池A , B , C 正常工作,系统正常工作为事件A (B ∪C ) = AB ∪AC , 则概率为1 − P (AB ∪AC ) = 1 − P (AB ) − P (AC ) + P (ABC )= 1 − P (A ) P (B ) − P (A ) P (C ) + P (A ) P (B ) P (C )= 1 − 0.7 × 0.8 − 0.7 × 0.8 + 0.7 × 0.8 × 0.8 = 0.328.3. 加工某一零件共需经过四道工序.设第一、二、三、四道工序的次品率分别为2%, 3%, 5%, 3%,假定各道工序是互不影响的,求加工出来的零件的次品率.解:设A 1, A 2, A 3, A 4分别表示第一、二、三、四道工序加工出合格品,有A 1, A 2, A 3, A 4相互独立,则概率为1 − P (A 1A 2A 3A 4) = 1 − P (A 1) P (A 2) P (A 3) P (A 4) = 1 − 0.98 × 0.97 × 0.95 × 0.97 = 0.1240.4. 抛掷一枚质地不均匀的硬币8次,设正面出现的概率为0.6,求下列事件的概率:(1)正好出现3次正面;(2)至多出现2次正面;(3)至少出现2次正面.解:将每次掷硬币看作一次试验,出现正面A ,反面A ;独立;P (A ) = 0.6.伯努利概型,n = 8,p = 0.6.(1)1239.04.06.0)3(53388=××=C P ; (2)0498.04.06.04.06.04.06.0)2()1()0(622871188008888=××+××+××=++C C C P P P ;(3)9915.04.06.04.06.01)1()0(17118800888=××−××−=−−C C P P .5. 设每次射击时命中率为0.2,问至少必须进行多少次独立射击才能使至少击中一次的概率不小于0.9?解:将每次射击看作一次试验,击中A ,没击中A ;独立;P (A ) = 0.2.伯努利概型,n 次试验,p = 0.2,则9.08.018.02.01)0(100≥−=××−=−n n n n C P ,即0.8 n ≤ 0.1,故32.108.0lg 1.0lg =≥n ,取n = 11.6. 一大批产品的优质品率为60%,从中任取10件,求下列事件的概率:(1)取到的10件产品中恰有5件优质品;(2)取到的10件产品中至少有5件优质品;(3)取到的10件产品中优质品的件数不少于4件且不多于8件.解:将取每件产品看作一次试验,优质品A ,非优质品A ;独立;P (A ) = 0.6.伯努利概型,n = 10,p = 0.6.(1)2007.04.06.0)5(5551010=××=C P ;(2)P 10 (5) + P 10 (6) + P 10 (7) + P 10 (8) + P 10 (9) + P 10 (10)288103771046610555104.06.04.06.04.06.04.06.0××+××+××+××=C C C C8338.04.06.04.06.0010101019910=××+××+C C ;(3)P 10 (4) + P 10 (5) + P 10 (6) + P 10 (7) + P 10 (8)28810377104661055510644104.06.04.06.04.06.04.06.04.06.0××+××+××+××+××=C C C C C= 0.8989;7. 证明:若)|()|(B A P B A P =,则事件A 与B 独立. 证:因)(1)()()(1)()()()|()()()|(B P AB P A P B P B A P P B A P B A P B P AB P B A P −−=−−====, 则P (AB )[1 − P (B )] = P (B )[P (A ) − P (AB )],即P (AB ) − P (AB ) P (B ) = P (B ) P (A ) − P (B ) P (AB ), 故P (AB ) = P (A ) P (B ),A 与B 相互独立.复习题一1. 设P (A ) = 0.5,P (B ) = 0.6,问:(1)什么条件下P (AB )可以取最大值,其值是多少?(2)什么条件下P (AB )可以取得最小值,其值是多少?解:(1)当A ⊂ B 时P (AB ) 最大,P (AB ) = P (A ) = 0.5;(2)当A ∪B = Ω 时P (AB ) 最小,P (AB ) = P (A ) + P (B ) − P (A ∪B ) = 0.5 + 0.6 − 1 = 0.1.2. 一电梯开始上升时载有5名乘客,且这5人等可能地在8层楼的任何一层出电梯,求:(1)每层至多一人离开的概率;(2)至少有两人在同一层离开的概率;(3)只有一层有两人离开的概率.解:样本点总数是8取5次的可重排列,即n = 8 5 = 32768,(1)事件A 1中样本点数6720581==A k A ,则2051.0512105)(11===nk A P A ; (2)事件A 2是A 1的对立事件,则7949.0512407)(1)(12==−=A P A P ; (3)事件A 3表示有两人在同一层离开,而另外三人分别在3个不同楼层或者都在同一层离开,样本点数17360)(33173725183=+=C A A C A k A ,则5298.020481085)(33===n k A P A . 3. 从5副不同的手套中任取4只手套,求其中至少有两只手套配成一副的概率.解:样本点总数210410==C n ,A 的对立事件表示4只手套都不配套,801212121245==C C C C C k A , 则6190.021131(1)(==−=−=n k A P A P A . 4. 从1, 2, …, n 中任取两数,求所取两数之和为偶数的概率. 解:样本点总数为)1(212−=n n C n ,事件A 表示取得两个偶数或两个奇数,当n 为偶数时,共有2n 个偶数和2n 个奇数, 样本点数)2(41)12(22222−=−=+=n n n n C C k n n A ,则)1(22)(2−−==n n C k A P n A ; 当n 为偶数时,共有21−n 个偶数和21+n 个奇数, 样本点数2221221)1(41212121232121−=−⋅+⋅+−⋅−⋅=+=+−n n n n n C C k n n A ,则n n C k A P nA 21)(2−==. 5. 在中国象棋的棋盘上任意地放上一只红“车”及一只黑“车”,求它们正好可以一只吃掉另一只的概率.解:样本点总数4005290==C n ,事件A 中样本点数7652911021019=+=C C C C k A ,则1910.08917)(===n k A P A . 6. 某货运码头仅能容一船卸货,而甲、乙两船在码头卸货时间分别为1小时和2小时.设甲、乙两船在24小时内随时可能到达,求它们中任何一船都不需等待码头空出的概率.解:Ω = {(x , y ) | 0 ≤ x < 24, 0 ≤ y < 24},A = {(x , y ) | 0 ≤ x < 24, 0 ≤ y < 24, x − y > 2或y − x > 1},有m (Ω) = 24 2 = 576,5.50622212321)(22=×+×=A m , 则8793.05765.506)()()(==Ω=m A m A P . 7. 从区间 [0, 1] 中任取三个数,求三数和不大于1的概率.解:Ω = {(x , y , z ) | 0 ≤ x , y , z ≤ 1},A = {(x , y , z ) | 0 ≤ x , y , z ≤ 1, x + y + z ≤ 1},有m (Ω) = 1,A 是一个三棱锥,6112131)(=××=A m ,则1667.061)()()(==Ω=m A m A P . 8. 已知5%的男人和0.25%的女人是色盲,现随机地挑选一人,此人恰为色盲,问此人是男人的概率是多少?(假设男人和女人各占人数的一半.)解:设A 1, A 2分别表示男人和女人,B 表示色盲,则9524.021200025.05.005.05.005.05.0)|()()|()()|()()()()|(22111111==×+××=+==A B P A P A B P A P A B P A P B P B A P B A P . 9. 发报台分别以0.7和0.3的概率发出信号0和1(例如:分别用低电频和高电频表示).由于随机干扰的影响,当发出信号0时,接收台不一定收到0,而是以概率0.8和0.2收到信号0和1;同样地,当发报台发出信号1时,接收台以概率0.9和0.1收到信号1和0.试求:(1)接收台收到信号0的概率;(2)当接收台收到信号0时,发报台确是发出信号0的概率.解:设A 0, A 1分别表示发出信号0, 1,B 0, B 1表示收到信号0, 1,(1)P (B 0) = P (A 0) P (B 0 | A 0) + P (A 1) P (B 0 | A 1) = 0.7 × 0.8 + 0.3 × 0.1 = 0.59;(2)9492.0595659.08.07.0)()|()()()()|(000000000==×===B P A B P A P B P B A P B A P . 10.设A , B 独立,AB ⊂ D ,D B A ⊂,证明P (AD ) ≥ P (A ) P (D ).证:因AB ⊂ D ,有AB ⊂ AD ,则P (AD ) − P(AB ) = P (AD − AB ),B D ΩA因B A ⊂=U ,有D ⊂ A ∪B ,D − B ⊂ A ∪B − B ⊂ A ,则AD − AB = A (D − B ) = D − B ,故P (AD ) − P (AB ) = P (AD − AB ) = P (D − B ) ≥ P (A ) P (D − B ) ≥ P (A ) [P (D ) − P (B )],由于A , B 独立,有P (AB ) = P (A ) P (B ),故P (AD ) ≥ P (A ) P (D ).11.甲、乙、丙三人同时向一架飞机射击,他们击中目标的概率分别为0.4, 0.5, 0.7.假设飞机只有一人击中时,坠毁的概率为0.2,若2人击中,飞机坠毁的概率为0.6,而飞机被3人击中时一定坠毁.现在如果发现飞机已被击中坠毁,计算它是由三人同时击中的概率.解:结果:设B 表示目标被击毁,原因:设A 0, A 1, A 2, A 3分别表示无人、1人、2人、3人击中目标, 则)|()()|()()|()()|()()|()()()()|(332211003333A B P A P A B P A P A B P A P A B P A P A B P A P B P B A P B A P +++==, 且有P (B | A 0) = 0,P (B | A 1) = 0.2,P (B | A 2) = 0.6,P (B | A 3) = 1,又设C 1, C 2, C 3分别表示甲、乙、丙击中目标, 则09.03.05.06.0)()()()()(3213210=××===C P C P C P C C C P A P ,)()(3213213211C C C C C C C C C P A P U U =)()()()()()()()()(321321321C P P P P C P P P P C P ++== 0.4 × 0.5 × 0.3 + 0.6 × 0.5 × 0.3 + 0.6 × 0.5 × 0.7 = 0.36,)()(3213213212C C C C C C C C C P A P U U =)()()()()()()()()(321321321C P C P P C P P C P P C P C P ++== 0.4 × 0.5 × 0.3 + 0.4 × 0.5 × 0.7 + 0.6 × 0.5 × 0.7 = 0.41,P (A 3) = P (C 1C 2C 3) = P (C 1) P (C 2) P (C 3) = 0.4 × 0.5 × 0.7 = 0.14, 故3057.0458.014.0114.06.041.02.036.0009.0114.0)|(3==×+×+×+××=B A P . 12.已知某种疾病患者的痊愈率为25%,为试验一种新药是否有效,把它给10个病人服用,且规定若10个病人中至少有4人治好则认为这种药有效,反之则认为无效.试求:(1)虽然新药有效,且把痊愈率提高到35%,但通过试验被否定的概率;(2)新药完全无效,但通过试验被认为有效的概率. 解:将每人服药看作一次试验,痊愈A ,没有痊愈A ;独立;(1)新药有效,痊愈率为0.35,即P (A ) = 0.35,伯努利概型,n = 10,p = 0.35,故概率为P 10 (0) + P 10 (1) + P 10 (2) + P 10 (3) 5138.065.035.065.035.065.035.065.035.0733108221091110100010=××+××+××+××=C C C C .(2)新药完全无效,痊愈率为0.25,即P (A ) = 0.25,伯努利概型,n = 10,p = 0.25,故所求概率为1 − P 10 (0) − P 10 (1) − P 10 (2) − P 10 (3)2241.075.025.075.025.075.025.075.025.01733108221091110100010=××−××−××−××−=C C C C .。

概率统计第一章概率论的基础知识习题与答案

概率统计第一章概率论的基础知识习题与答案

概率统计第一章概率论的基础知识习题与答案概率论与数理统计概率论的基础知识习题一、选择题1、下列关系正确的是( )。

A、0∈∅B、{0}∅=∅⊂D、{0}∅∈C、{0}答案:C2、设{}{}2222=+==+=,则( )。

P x y x y Q x y x y(,)1,(,)4A、P Q⊂B、P Q<C、P Q⊂与P Q⊃都不对D、4P Q=答案:C二、填空1、6个学生和一个老师并排照相,让老师在正中间共有________种排法。

答案:6!720=2、5个教师分配教5门课,每人教一门,但教师甲只能教其中三门课,则不同的分配方法有____________种。

答案:723、编号为1,2,3,4,5的5个小球任意地放到编号为A、B、C、D、E、F的六个小盒子中,概率论的基础知识第 1 页(共 19 页)每一个盒至多可放一球,则不同的放法有_________种。

答案:()65432720⨯⨯⨯⨯=4、设由十个数字0,1,2,3, ,9的任意七个数字都可以组成电话号码,则所有可能组成的电话号码的总数是_______________。

答案:710个5、九名战士排成一队,正班长必须排在前头,副班长必须排在后头,共有_______________种不同的排法。

答案:77!5040P==6、平面上有10个点,其中任何三点都不在一直线上,这些点可以确定_____个三角形。

答案:1207、5个篮球队员,分工打右前锋,左前锋,中锋,左后卫右后卫5个位置共有_____________种分工方法?答案:5!120=8、6个毕业生,两个留校,另4人分配到4个概率论的基础知识第 2 页(共 19 页)不同单位,每单位1人。

则分配方法有______种。

答案:(6543)360⨯⨯⨯=9、平面上有12个点,其中任意三点都不在一条直线上,这些点可以确定_____________条不同的直线。

答案:6610、编号为1,2,3,4,5的5个小球,任意地放到编号为A,B,C,D,E,F,的六个小箱子中,每个箱子中可放0至5个球,则不同的放法有___________种。

概率论与数理统计答案

概率论与数理统计答案

(3)当 P( AB) 1 时, P( AB) P(B) P( AB) 3 .
8
解:这是一个几何概型,样本空间 S 如图所示:
y
设事件 A ={两数之和小于 1.5}={(x, y) | x y 1.5, x 0, y 0} ,
1
如阴影部分所示,故
AS
1 1 0.5 0.5
P( A) 2
0.875
1
O
(1) 设 事 件 B = { 两 数 之 积 小 于 0 . 2 5 } = y
2.举例说明两事件 A, B “都不发生”与“不都发生”的区别. 解:甲 乙 2 人同 时向目 标射 击 1 次, 事件 A={甲命中目标} ,事件 B={乙命中目标},事件 A, B 都不发生表示甲乙都没有命中目标, A, B 不都发 生包含甲乙都没有命中目标、甲没有命中目标但乙命中目标、甲命中目标但
2
22
P(C)
SEFG

1 .
SOAB 4
8.设每个人在一年的 12 个月中出生是等可能的.试求 4 个人中至少有 2 个
人是同月出生的概率.
解:显然事件 A ={4 个人中至少有 2 个人是同月出生}与事件 B ={4 个人中没
有 2 个人是同月出生}互为逆事件.由题意知每个人在一年的 12 个月中出生是等 可能的,故试验可以看做一个古典概型,其中样本空间S 中含有样本点数为124 , 故
解:(1) 23 =8 ;(2) C320 =435 ;(3) 34 =81.
第二节 随机事件的概率 习 题 1-2
1.三个学生证混放在一起,现将其随意发给这三名学生,求事件 A ={没 有一名学生拿到自己的学生证}的概率.

《概率论与数理统计》第一章课后习题解答共16页word资料

《概率论与数理统计》第一章课后习题解答共16页word资料

吴赣昌编 《概率论与数理统计》(理工类)三版课后习题解答习题1-31、袋中5个白球,3个黑球,一次任取两个。

(1)求取到的两个求颜色不同的概率;(2)求取到的两个求中有黑球的概率。

解:略2、10把钥匙有3把能打开门,今取两把,求能打开门的概率。

解:设A=“能打开”,则210S n C =法一,取出的两把钥匙,可能只有一把能打开,可能两把都能打开,则112373A n C C C =+ 所以()A Sn P A n = 法二,A ={都打不开},即取得两把钥匙是从另7把中取得的,则27A n C =,所以27210()1()1C P A P A C =-=- 3、两封信投入四个信筒,求(1)前两个信筒没有信的概率,(2)第一个信筒内只有一封信的概率。

解:24S n =(两封信投入四个信筒的总的方法,重复排列)(1)设A=“前两个信筒没有信”,即两封信在余下的两个信筒中重复排列,22A n =;(2)设B=“第一个信筒内只有一封信”,则应从两封信中选一封放在第一个信筒中,再把余下的一封信放入余下的三个信筒中的任一个,1123B n C =带入公式既得两个概率。

4、一副扑克牌52张,不放回抽样,每次取一张,连续抽4张,求花色各异的概率.解:略5、袋中有红、黄、黑色求各一个,有放回取3次,求下列事件的概率。

A=“三次都是红球”;B=“三次未抽到黑球”,C=“颜色全不相同”,D=“颜色不全相同” 解:略6、从0,1,2,,9L 等10个数字中,任意选出不同的三个数字,试求下列事件的概率:1A =‘三个数字中不含0和5’,2A =‘三个数字中不含0或5’,3A =‘三个数字中含0但不含5’.解 3813107()15C P A C ==. 333998233310101014()15C C C P A C C C =+-=, 或 182231014()1()115C P A P A C =-=-=, 2833107()30C P A C ==. 7、从一副52张的扑克牌中任取3张,不重复,计算取出的3张牌中至少有2张花色相同的概率。

概率论与数理统计

概率论与数理统计

概率论与数理统计 习题参考答案(仅供参考) 第一章
第 2 页 (共 62 页)
4.设 P(A)=0.7,P(A-B)=0.3,试求P(AB)
解 由于 AB = A – AB, P(A)=0.7 所以 P(AB) = P(AAB) = P(A)P(AB) = 0.3,
所以 P(AB)=0.4, 故 P(AB) = 10.4 = 0.6.
(4) 取到三颗棋子颜色相同的概率.

(1) 设 A={取到的都是白子} 则
P( A) C83 14 0.255. C132 55
(2) 设 B={取到两颗白子, 一颗黑子}
P(B)
C82C41 C132
0.509 .
(3) 设 C={取三颗子中至少的一颗黑子}
P( C) 1 P (A ) 0 . 7. 4 5
P( A2
|B
) P( Ai )P B( P(B )
A| i
) 0 . 1 5 0 .39 0
0.1268
0.8624
P( A3
|B
) P( Ai )P B( P(B )
A| i
) 0 . 0 5 0 .31 0 0 . 0 0 0 1 0.8624
由于 P( A1|B) 远大于 P( A3|B), P( A2|B), 因此可以认为这批货物的损坏率为 0.2.
2. 设 A、B、C 为三个事件,用 A、B、C 的运算关系表示下列事件: (1)A 发生,B 和 C 不发生; (2)A 与 B 都发生,而 C 不发生; (3)A、B、C 都发生; (4)A、B、C 都不发生; (5)A、B、C 不都发生; (6)A、B、C 至少有一个发生; (7)A、B、C 不多于一个发生; (8)A、B、C 至少有两个发生. 解 所求的事件表示如下
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

统计概率专题训练(一)
一. 选择题:
1.某中学有高中生3500人,初中生1500人.为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n 的样本,已知从高中生中抽取70人,则n 为( A )
A .100
B .150
C .200
D .250 2. 掷两颗均匀的骰子,则点数之和为5的概率等于( B )
A.118
B.19
C.16
D.112 3 .从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( B )
A .
12
B .
13
C .
14 D .16
4.总体编号为01,02,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表
第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为
( D )
A .08
B .07
C .02
D .01
5.在区间[,]22ππ
-
上随机取一个数x ,cos x 的值介于0到21
之间的概率为( A ). A.31 B.π
2
C.21
D.32 6.设不等式组⎩
⎨⎧≤≤≤≤20,
20y x ,表示平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于
2的概率是D (A )
4π (B )22π- (C )6
π (D )44π-
二.填空题:
7.甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运
动服的概率为____1
3____.
8. 将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为____2
3____.
9. 在3张奖券中有一、二等奖各1张,另1张无奖.甲、乙两人各抽取1张,两人都中奖的概率是___1
3_____.
10. 从1,2,3,6这4个数中一次随机地取2个数,则所取2个数的乘积为6的概率是___1
3_____. 11.在区间[2,4]-上随机地取一个数x ,若x 满足||x m ≤的概率为5
6,则m =_____52
_____.
12.某学校高一年级男生人数占该年级学生人数的40%.在一次考试中,男、女生平均分数分别为75、80,
则这次考试该年级学生平均分数为_____78 ___. 13.从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是____15
___。

14.盒子中装有编号为1,2,3,4,5,6,7的七个球,从中任意取出两个,则这两个球的编号之积为偶数的概率是___
5
7
____ 15.一支田径运动队有男运动员56人,女运动员42人。

现用分层抽样的方法抽取若干人,若抽取的男运动员有8人,则抽取的女运动员有___6___人。

16.一支田径队有男女运动员98人,其中男运动员有56人.按男女比例用分层抽样的方法,从全体运动员中抽出一个容量为28的样本,那么应抽取女运动员人数是__12_____.
17.某学校高一、高二、高三年级的学生人数之比为334::,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取 15 名学生.
18.从边长为1的概率是_____
2
5
______。

19. 从[1,4]中任取2个不同的整数,则取出的2个数之差的绝对值为2的概率是_______1
3
____。

20.三位同学参加跳高、跳远、铅球项目的比赛,若每人只选择一个项目,则有且仅有两位同学选择的项目相同的概率是
3
2
(结果用最简分数表示) 21.现有10个数,它们能构成一个以1为首项,3 为公比的等比数列,若从这10个数中随机抽取一个数,
则它小于8的概率是 3
5

22. 有一个底面半径为1、高为2的圆柱,点O 为这个圆柱底面圆的圆心,在这个圆柱内随机取一点P ,则点P 到点O 的距离大于1的概率为
2
3
23.在区间[-1,2]上随即取一个数x ,则x ∈[0,1]的概率为
1
3。

24.三张卡片上分别写上字母E 、E 、B ,将三张卡片随机地排成一行,恰好排成英文单词BEE 的概率为
1
.3。

25.某地有居民100 000户,其中普通家庭99 000户,高收入家庭1 000户.从普通家庭中以简单随机抽样方式抽取990户,从高收入家庭中以简单随机抽样方式抽取l00户进行调查,发现共有120户家庭拥有3套或3套以上住房,其中普通家庭50户,高收人家庭70户.依据这些数据并结合所掌握的统计知识,你认为该地拥有3套或3套以上住房的家庭所占比例的合理估计是 5.7% .
26.盒子中有大小相同的3只白球,1只黑球,若从中随机地摸出两只球,两只球颜色不同的概率是_ _316
2
p ==_.
27.从长度分别为2、3、4、5的四条线段中任意取出三条,则以这三条线段为边可以构成三角形的概率是__0.75______。

28.现有5根竹竿,它们的长度(单位:m )分别为2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2根竹竿,则它们的长度恰好相差0.3m 的概率为 0.2 .29. 一个总体分为A ,B 两层,用分层抽样方法从总体中抽取一个容量为10的样本。

已知B 层中每个个体被抽到的概率都为
1
12
,则总体中的个体数为 120 . 30.点A 为周长等于3的圆周上的一个定点,若在该圆周上随机取一点B ,则劣弧AB 的长度小于1的概
率为
2
3。

31. 如图1-5所示,在边长为1的正方形中随机撒1000粒豆子,
有180粒落到阴影部分,据此估计阴影部分的面积为___0.18 _____.
22.利用计算机产生1~0之间的均匀随机数a ,则事件“013<-a ”发生的概率为___
3
1
____ 13.在区间[0,5]上随机地选择一个数p ,则方程2
2320x px p ++-=有两个负根的概率为___3
2_____.
统计
8.对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示), 则改样本的中位数、众数、极差分别是 ( A ) A .46,45,56 B .46,45,53 C .47,45,56 D .45,47,53
9.设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(x i,y i)(i=1,2,…,n),用最小二乘法建立的回归方程为y=0.85x-85.71,则下列结论中不正确
...的是(D)
A.y与x具有正的线性相关关系
B.回归直线过样本点的中心(x,y)
C.若该大学某女生身高增加1cm,则其体重约增加0.85kg
D.若该大学某女生身高为170cm,则可断定其体重必为58.79kg
29.图2是某学校一名篮球运动员在五场比赛中所得分数的茎叶图,则该运动员在这五场比赛中得分的方差
为__6.8_______.089 1035 2

41.将容量为n的样本中的数据分成6组,绘制频率分布直方图。

若第一组至第六组数据的频率之比为2:3:4:6:4:1,且前三组数据的频数之和等于27,则n等于 60 。

48.从一堆苹果中任取5只,称得它们的质量如下(单位:克)125 124 121 123 127则该样本标准差s=2(克)(用数字作答).
28.某个年级有男生560人,女生420人,用分层抽样的方法从该年级全体学生中抽取一个容量为280的
样本,则此样本中男生人数为____160________.
10.某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为
[)[)
20,40,40,60,[)[)
60,80,820,100,若低于60分的人数是15人,则该班的学生人数是(B)
A.45B.50
C.55D.60
14.某电子商务公司对10000名网络购物者2014年度的消费情况进行统计,发现消费金额(单位:万元)都在区间
[0.3,0.9]内,其频率分布直方图如图所示.
(Ⅰ)直方图中的a=____3_____;
(Ⅱ)在这些购物者中,消费金额在区间[0.5,0.9]内
的购物者的人数为____6000._____.。

相关文档
最新文档