图论课件--图的顶点着色41页PPT

合集下载

离散数学——图论PPT课件

离散数学——图论PPT课件
第19页/共93页
• 完全图:一个(n,m)图G,其n个结点中每个结点均与其它n-1个结点相邻接,记为Kn。 • 无向完全图:m=n(n-1)/2 • 有向完全图:m=n(n-1) • 举例说明以上几种图。
第20页/共93页
定义补图
• 设图G=<V,E> , G’=<V,E’> ,若G’’=<V,E∪E’> 是完全图,且E∩E’= 空集,则称G’是G的补图。 • 事实上,G与G’互为补图。
正则图
• 所有结点均有相同次数d的图称为d次正则图。 • 如4阶的完全图是3次正则图,是对角线相连的四边形。 • 试画出两个2次正则图。
第27页/共93页
两图同构需满足的条件
• 若两个图同构,必须满足下列条件: (1)结点个数相同 (2)边数相同 (3)次数相同的结点个数相同
• 例子
第28页/共93页
• 图是人们日常生活中常见的一种信息载体,其突出的特点是直观、形象。图论,顾 名思义是运用数学手段研究图的性质的理论,但这里的图不是平面坐标系中的函数, 而是由一些点和连接这些点的线组成的结构 。
第8页/共93页
• 在图形中,只关心点与点之间是否有连线,而不关心点具体代表哪些对象,也不关 心连线的长短曲直,这就是图的概念。
定义图的子图
• 子图:设G=<V,E> , G’=<V’,E’> ,若V’是V的子集, E’是E的子集,则 G’是G的子图。 • 真子图:若V’是V的子集,E’是E的真子集。 • 生成子图:V’=V,E’是E的子集。 • 举例说明一个图的子图。
第18页/共93页
定义(n,m)图
• (n,m)图:由n个结点,m条边组成的图。 • 零图:m=0。即(n,0)图,有n个孤立点。 • 平凡图:n=1,m=0。即只有一个孤立点。

图论课件-PPT课件

图论课件-PPT课件

学习方法
目的明确
态度端正 理论和实践相结合
充分利用资源
逐步实现从知识到能力到素质的深化和
升华
课程考核
平时成绩 (30%-40%)
闭卷考试 (60%-70%)
图论模型
为了抽象和简化现实世界,常建立数学模型。图是关 系的数学表示,为了深刻理解事物之间的联系,图 是常用的数学模型。 (1) 化学中的图论模型 19世纪,化学家凯莱用图论研究简单烃——即碳氢 化合物 用点抽象分子式中的碳原子和氢原子,用边抽象原子间 的化学键。
E={w1r1, w1r2, w2r2, w2r3, w2r4, w3r3, w3r5}代表每个仓库和每个 零售店间的关联。则图模型图形为: w1 w2 w3
r1
r2
r3
r4
r5
29
(3) 最短航线问题 用点表示城市,两点连线当且仅当两城市有航线。为了 求出两城市间最短航线,需要在线的旁边注明距离值。 例如:令V={a, b, c, d, e}代表5个城市} E={a b, ad, b c , be, de}代表城市间的直达航线 则航线图的图形为: a 320 500 d 370 b 140 430 e c

图论学科简介 (2)
19世纪末期,图论应用于电网络方程组
和有机化学中的分子结构 20世纪中叶,由于计算机的发展,图论 用来求解生产管理、军事、交通运输、 计算机和网络通信等领域中的离散性问 题 物理学、化学、运筹学、计算机科学、 电子学、信息论、控制论、网络理论、 社会科学、管理科学等领域应用
七桥问题
近代图论的历史可追溯到18世纪的七桥问题:
穿过Kö nigsberg城的七座桥,要求每座桥通过 一次且仅通过一次。

图论基础知识PPT课件

图论基础知识PPT课件

.
6
图论算法与实现
一、图论基础知识
2、图的基本概念:
连通图:如果一个无向图中,任意两个顶点之间
都是连通的,则称该无向图为连通图。否则称为非连通图;左图为一个连通图。
强连通图:在一个有向图中,对于任意两个顶点U和V,都存在着一条从U到V的
有向路径,同时也存在着一条从V到U的有向路径,则称该有向图为强连通图;右 图不是一个强连通图。
深度优先遍历与宽度优先遍历的比较:
深度优先遍历实际上是尽可能地走“顶点表”; 而广度优先遍历是尽可能沿顶点的“边表”进行访问, 然后再沿边表对应顶点的边表进行访问,因此,有关边表 的顶点需要保存(用队列,先进先出),以便进一步进行广度 优先遍历。
下面是广度优先遍历的过程:
.
14
图论算法与实现
一、图论基础知识
简单路径:如果一条路径上的顶点除了起点和终点可以相同外,其它 顶点均不相同,则称此路径为一条简单路径;起点和终点 相同的简单路径称为回路(或环)。
.
4
图论算法与实现
一、图论基础知识
2、图的基本概念:
路径和简单路径的举例:
左图1—2—3是一条简单路径,长度为2, 而1—3—4—1—3就不是简单路径;
一、图论基础知识
2、图的基本概念: 路径:对于图G=(V,E),对于顶点a、b,如果存在一些顶点序列
x1=a,x2,……,xk=b(k>1),且(xi,xi+1)∈E,i=1,2…k-1,则称 顶点序列x1,x2,……,xk为顶点a到顶点b的一条路径,而路径上边 的数目(即k-1)称为该路径的长度。 并称顶点集合{x1,x2,……,xk}为一个连通集。
边集数组
邻接表
优点

图论 图的着色

图论 图的着色

X(G(V1,V2))=
X(G)=2 G为二部图
Th5.1:如果图G的顶点次数≤ρ,则G是ρ+1可着色的。
Th5.2:如果G是一个简单连通的非完全图,如果它的最大顶点次 数为ρ(ρ≥3),则称G为ρ可着色的。
下面的讨论的图为平面图:
Th5.3:每个平面图都是6可着色的。 Th5.4:每个平面图都是5可着色的。 Th5.5:每个平面图都是4可着色的。
ρ ≤ X’(G)≤ ρ+1
对任意图判断X’(G)= ρ 或X’(G)= ρ+1没有解决,但对于一些特殊图, 答案是清楚的。
对于n个点圈图: 2 or 3
.13:对于n(n>1)的完全图,
X’(kn)=n (n为奇数)X’(kn)=n-1(n为偶数) Th5.15:如G为具有最大顶点次数ρ的二部图,则X’(G)= ρ。
Corollary 5.9:地图4色定理 平面图的4色定理。 Th5.10:设G为一张每个顶点都是3次的地图,则 G为3可面着色G的每个面皆被偶数条边所围 Th5.11:如果每个3正规的地图是4可面着色的,则4色定理成立。
5.3 边的着色
G是k可边着色的:如果图G的所有的边皆可用k种颜色着色,使得 任何两条相邻的边均具有不同的颜色,则称G是k边着色的。 k为G的边色数:如果G为k可边着色的,但不是k-1可边着色的,则 称k为G的边色数,记为:X’(G)。 Th5.12:如果G为简单图且它的最大顶点次数为ρ
第五章 图的着色
5.1 色数 5.2 地图的着色 5.3 边的着色
5.1 色数
G为k可着色的:设G是一个无自环图,如果对它的每个顶点可以用 k种颜色之一着色,使得没有两个相邻的顶点有相同的颜色,则称G 是k可着色的。

《图论》图的着色(课堂PPT)

《图论》图的着色(课堂PPT)
PK3(3) = 6
19
6.2 色数多项式
a
a
a
b
cb
cb
c
a
a
a
b
cb
cb
c
PK3(3)=6
20
6.2 色数多项式
➢ 若干特殊图的 PG(k) 1) 零图: G=(V, E) ,n=|V|,|E|=0,PG(k)=kn 2) 树:根节点在 k 种颜色中任取,非根节点选取 与其父亲节点不同的颜色。 PG(k)=k(k-1)n-1 3) 完全图: PG(k)=k(k-1)(k-2)…(k-n+1) 4) 非连通图:设图G由不连通的G1和G2构成,则 由乘法原理:PG(k)=PG1(k)PG2(k)
6
6.1 色数
[临界图] G=(V, E),若对G的任一真子图H均有
(H)<(G),则称G为一个临界图。
➢ k 色临界图称为 k-临界图。
[性质]
① 任何 k 色图通过对边的反复删减测试最后可以得
到其 k-临界子图。
② 临界图是连通图。
证:设G1、G2为临界图G的两个连通分支,则
(G)=max{(G1), (G2)}。不妨设 (G)=(G1),而
① 在图G中任取一边 e; ② 在图G中去掉 e,得新图G1;
在图G中收缩 e 的两端点,得新图G2,由上述有 PG(k) = PG1(k) - PG2(k)
③ 继续分解G1和G2,直到最后全部为零图。 ④ 利用 n 阶零图的 P(k)=kn 构造图G的色数多项式。
① 若 n=2,则G为 K2,PG(k)=k(k1)=k2k。
② 若 n>2,则G除一个 K2 外其它为孤立点:
PG(k)=k(k1)kn-2=knkn-1。

图论课件第七章图的着色

图论课件第七章图的着色
总结词
平面图的着色问题是一个经典的图论问题,其目标是在满足相邻顶点颜色不同 的条件下,使用最少的颜色对平面图的顶点进行着色。
详细描述
平面图的着色问题可以使用欧拉公式和Kuratowski定理进行判断和求解。此外 ,也可以使用贪心算法、分治策略等算法进行求解。
树图的着色问题
总结词
树图的着色问题是一个经典的图论问 题,其目标是使用最少的颜色对树图 的顶点进行着色,使得任意两个相邻 的顶点颜色不同。
分支限界算法
总结词
分支限界算法是一种在搜索树中通过剪枝和 优先搜索来找到最优解的算法。
详细描述
在图的着色问题中,分支限界算法会构建一 个搜索树,每个节点代表一种可能的着色方 案。算法通过优先搜索那些更有可能产生最 优解的节点来加速搜索过程,同时通过剪枝 来排除那些不可能产生最优解的节点。分支 限界算法可以在较短的时间内找到最优解,
尤其适用于大规模图的着色问题。
03
图的着色问题的复 杂度
计算复杂度
确定图着色问题的计算复杂度为NP-完全,意味着该问题在多项式时间 内无法得到确定解,只能通过近似算法或启发式算法来寻找近似最优解 。
图着色问题具有指数时间复杂度,因为对于n个顶点的图,其可能的颜色 组合数量为n^k,其中k为每个顶点可用的颜色数。
02
图的着色算法
贪心算法
总结词
贪心算法是一种在每一步选择中都采取当前状态下最好或最优(即最有利)的选 择,从而希望导致结果是最好或最优的算法。
详细描述
贪心算法在图的着色问题中的应用是通过逐个对顶点进行着色,每次选择当前未 被着色的顶点中颜色数最少的颜色进行着色,直到所有顶点都被着色为止。这种 算法可以保证最小化使用的颜色数量,但并不保证得到最优解。

图论的介绍ppt课件

图论的介绍ppt课件
chedules
工程项目的任务安排,如何满足限制条件,并在最短时 间内完成?
Program structure
大型软件系统,函数(模块)之间调用关系。编译器分 析调用关系图确定如何最好分配资源才能使程序更有效 率。
Graph Applications
Graph Problems and Algorithms
图论的介绍ppt课件
欧拉路径 解決哥尼斯保七桥问題
原來是一笔画问题啊!
数学家欧拉(Euler, 1707-1783) 于1736年严格的证明了上述哥尼斯堡 七桥问题无解,并且由此开创了图论的典型思维方式及论证方式
实际生活中的图论 Graph Model
电路模拟
例:Pspice、Cadence、ADS…..
哈密頓(Hamilton) 周遊世界问題
正十二面体有二十个顶点 表示世界上20个城市 各经每个城市一次 最后返回原地
投影至平面
哈密頓路径至今尚无有效方法來解決!
最短路径问題
(Shortest Path Problem)
最快的routing
最快航線
B 2
1
E
3
A
C 1
3 2F
1
3
D
3 3
G
最短路径算法Dijkstra算 法
二分图(偶图) Bipartite graphs
A graph that can be decomposed into two partite sets but not fewer is bipartite
It is a complete bipartite if its vertices can be divided into two non-empty groups, A and B. Each vertex in A is connected to B, and viceversa

图论PPT

图论PPT

W (P) =
e∈ ( P) W (P
∑W(e)
则称W 为路径P(u, v) 的权或长度(距离). 长度(距离) 则称 (P)为路径 为路径 定义2:若P0 (u, v) 是G 中连接u, v的路径 且对任 定义 : 中连接 的路径, 的路径 意在G 中连接u, 的路径 的路径P 意在 中连接 v的路径 (u, v)都有 都有 W(P0)≤W(P), ≤ 则称P 中连接u, 的最短路. 则称 0 (u, v) 是G 中连接 v的最短路
解:
表示设备在第i 年年初的购买费, 设bi 表示设备在第 年年初的购买费 ci 表示设备使用 年后的维修费 表示设备使用i 年后的维修费, V={v1, v2, … , v6},点vi表示第 年年 表示第i 点 表示第 初购进一台新设备,虚设一个点 虚设一个点v6表 初购进一台新设备 虚设一个点 表 示第5年年底 年年底. 示第 年年底 E ={vivj | 1≤i<j≤6}. <
如果E的每一条边都是无向边 则称G为 如果 的每一条边都是无向边, 则称 为无向 的每一条边都是无向边 如图1) 如果E的每一条边都是有向边 1); 的每一条边都是有向边, 图(如图1) 如果 的每一条边都是有向边 则称 G为有向图(如图2) 否则 称G为混合图 2); 为有向图(如图2) 否则, 为混合图.
图论在数学建模中的应用
• • • • 第一部分 第二部分 第三部分 第四部分概念
图论中的“ 图论中的“图”并不是通常意义下的几何图 形或物体的形状图, 形或物体的形状图, 而是以一种抽象的形式来表 达一些确定的事物之间的联系的一个数学系统. 达一些确定的事物之间的联系的一个数学系统. 称为一个图, 定义1 :一个有序二元组 一个有序二元组( 定义1 :一个有序二元组(V, E ) 称为一个图, 记为G = (V, E ), 其中 的顶点集, 其元素称为顶点, ① V 称为G的顶点集, V≠φ, 其元素称为顶点, 简称点; 简称点; 的边集, 其元素称为边, ② E 称为G的边集, 其元素称为边, 它联结V 中的两个点, 如果这两个点是无序的, 中的两个点, 如果这两个点是无序的, 则称该边 为无向边, 否则, 称为有向边. 为无向边, 否则, 称为有向边.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档