向量与三角综合题类型及解法

合集下载

2025届高考数学二轮复习提升微专题几何篇第06讲怎样用向量法解三角函数问题含解析

2025届高考数学二轮复习提升微专题几何篇第06讲怎样用向量法解三角函数问题含解析

第06讲 怎样用向量法解三角函数问题一、学问与方法本讲主要探究平面对量与三角函数以及解三角形的综合问题的命题形式与解题思路,主要体现在以下 3 个方面。

(1)题设给出向量的坐标中含有三角函数的形式,运用向量共线或垂直或等式成立等,得到三角函数的关系式,然后求解.(2)给出用三角函数表示的向量坐标,要求的是向量的模或者其他向量表达式,解题思路是经过向量的运算,利用三角函数在定义域内的有界性,探求值域或最值或参数的取值范围等.(3) 运用向量法解三角形主要是向量的垂直与夹角问题,一对向量垂直与向量所在直线的垂直是一样的,向量的线性运算与向量的坐标运算是求解两向量关系问题的两大途径,关于夹角问题,可以把两个向量的夹角放在三角形中,利用正余弦定理. 三角形的面积公式求解.二、典型例题【例1】(1) .在锐角ABC 中,若137,8,,cos ,sin ,22a b m A n A ⎛⎫⎛⎫====- ⎪ ⎪ ⎪⎝⎭⎝⎭, 且m ⊥n , 则ABC 的面积为().A.C. D.(2) .平面直角坐标系中,角θ满意()34sin,cos ,0,12525OA θθ=-==-,设点B 是角θ终边上一动点,则| OA OB -∣的取值范围为【分析】 第(1)问,要求三角形的面积,只需求出B ∠的正弦值,而这就要借助已知条件两个向量的垂直关系,先求出A ∠, 进而再运用正弦定理求(B ∠或其三角函数值),最终利用三角形的内角定理,找到问题的解. 第(2)问是三角函数定义、二倍角公式与用坐标运算). 两个视角各具特色,作为填空题, 从“形”的角度处理相对简捷.【解析】(1) 1,sin 02m n A A ⊥∴=, 又090,cos 0A A ∠<<∴≠则有tan A =因此60A ∠=.由正弦定理知sin sin a b A B=, 又7,8,60a b A ∠===, 843sin sin6077B ∴==又ABC 为锐角三角形,1cos 7B ∴=.()11sin sin sin cos cos sin 272714C A B A B A B =+=+=+⨯=1sin 2ABCSab C ∴==故选C . (2)【解法1】 由2247sin 2sincos,cos 2cos 12225225θθθθθ==-=-= 可得 θ 为第四象限的角,且 sin 24tan cos 7θθθ==-. ∴ 点 B 在射线 ()2407y x x =-, 即 ()24700x y x += 上运动.又 OA OB BA -=, 而点 A 到射线的距离为 725d ==, 故所求取值范围为 7,25∞⎡⎫+⎪⎢⎣⎭. 【解法2】设OB t =, 由2247sin 2sincos,cos 2cos 12225225θθθθθ==-=-=, 可得θ为第四象限的角, 324cos<,cos sin 225OA OB πθθ⎛⎫∴=-=-= ⎝⎭>⎪. 由2222248||212cos<,125OA OB OA OB OA OB t t OA OB t t -=+-⋅=+-=+>-224494925625625t ⎛⎫=-+ ⎪⎝⎭(当且仅当2425t =时等号成立),故OA OB -的取值范围为7,25∞⎡⎫+⎪⎢⎣⎭.【解法3】 由 2247sin 2sincos,cos 2cos 12225225θθθθθ==-=-=设 (0)OB t t =>, 则依据三角函数定义可得点 B 坐标为 724,2525t t ⎛⎫-⎪⎝⎭.由此可得 2222227242477||012525252525OA OB t t t ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-=-+-+=-+ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭(当且仅当 2425t = 时等号成立).故 OA OB - 的取值范围为 7,25∞⎡⎫+⎪⎢⎣⎭.【例2】(1)已知,0,2παβ⎛⎫∈ ⎪⎝⎭, 且()3cos cos cos 2αβαβ+-+=, 求α和β的值; (2) 求246cos cos cos 777πππ++的值. 【解析】(1) 原条件可化为()3sin sin 1cos cos cos 2αβαβα+-=-. 构造向量()()sin ,1cos ,sin ,cos m n ααββ=-=由m nm n ⋅得23cos sin 2αα-+解得211 cos 0,cos ,0,222πααα⎛⎫⎛⎫-=∈ ⎪⎪⎝⎭⎝⎭3πα∴=.3παββ=根据和的对称性可知(2) 如图129-所示,将边长为 1 的正七边形ABCDEFO 放人直角坐标系中,则()224466 1,0,cos ,sin ,cos ,sin ,cos ,sin 777777OA AB BC CD ππππππ⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭8810101212cos ,sin,cos ,sin ,cos ,sin .777777DE EF FO ππππππ⎛⎫⎛⎫⎛⎫=== ⎪⎪⎪⎝⎭⎝⎭⎝⎭0OA AB BC CD DE EF FO ++++++=故2468101224 1coscos cos cos cos cos ,0sin sin 77777777ππππππππ⎛+++++++++ ⎝()681012sinsin sin sin 0,07777ππππ⎫+++=⎪⎭即246810121coscos cos cos cos cos 0777777ππππππ++++++=,① 86104122 coscos ,cos cos ,cos cos 777777ππππππ===由三角函数诱导公式可得 ∴①式可化为24612cos cos cos 0.777πππ⎛⎫+++= ⎪⎝⎭2461coscos cos 7772πππ∴++=-【例3】已知()()() cos ,sin ,cos ,sin ,sin 2sin ,cos 2cos a b x x c x x αααα===++,其中0x απ<<<。

例谈用向量解与三角形的“心”有关的综合题

例谈用向量解与三角形的“心”有关的综合题
= ( n 1 2一 . 3 — )”
( 若 n+≥口 , 口的取值 范 围. Ⅱ) 求
改编题 目: ( 中 b =S 一3 将 I) ”的铺 垫 撤去, 直接求 通项公 式.
2 ( 0 8年 四 川 卷 理 科 2 .20 O题 ) 数 列 设 { 的前几项 和为 S , n) 已知 6 。 (一1 n 一2一 6 )
数 学教 学 研 究
2 3


1( + 6 口 )
顶 角 D, 以 0 OD 再 C,
为邻边 作 平 行 四边 形 , 它 的第 4个顶 点 为 H. ( 若 一口 I) ,
一 b Oe — c 用 a, c , , b,




÷ , c ,
一 一
= 一 一 c 6。 ~
(-) ÷ 1 h= A
消去 得 百 1十 =3 1: :


髓 =(+6 (-b c )c )
一c一b 一 l I一 l l 。 。 b c .
因为 0为△ABC的外 心 , 以 所
S.
3 课 堂小节 , 总结 出一 般性 问题 的处理 方法
1对 S 一k ) a +6既 可 以通 过递 归 写 出
S =k +6 两式 相 减 , 到关 于 { 数 a , 得 口}
列的递 推关 系式 , 可 以倒用 a 一S 一S一 也
转 化为关 于{ 的数 列进行 处理. S)
2 2
数 学教 学 研 究
第 2 卷 第 3期 9
21 0 0年 3月
例谈 用 向量解 与三角 形的“ 有关 的综 合题 心"
佘世 庆 李 学文
( . 肃 省 武威 第 十 五 中学 7 30 1甘 3 00 ・. 2 宁夏 同心 回民 中学 7 10 ) 5 30

-三角函数三角形平面向量高考常考14种题型解题方法

-三角函数三角形平面向量高考常考14种题型解题方法

三角函数三角形平面向量高考常考题型解题方法本专题要特别小心: 1.平面向量的几何意义应用 2. 平面向量与三角形的综合 3. 三角形的边角互化4.向量的数量积问题等综合问题5. 向量夹角为锐角、钝角时注意问题6.三角形中角的范围7.正余弦定理综合。

【题型方法】(一)考查平面向量基本定理例1. 设D 为ABC ∆所在平面内一点,若3BC CD =,则下列关系中正确的是( ) A .1433AD AB AC =-+ B .1433AD AB AC =- C .4133AD AB AC =+ D .4133AD AB AC =-【解析】∵3BC CD = ∴AC −−AB =3(AD −−AC ) ∴AD =43AC −−13AB . 选C练习1.设四边形ABCD 为平行四边形,,.若点M ,N 满足,,则( )A .20B .15C .9D .6【解析】不妨设该平行四边形为矩形,以为坐标原点建立平面直角坐标系 则,故练习2. 如图,在ABC 中,D 是BC 的中点,E 在边AB 上,BE =2EA ,AD 与CE 交于点O .若6AB AC AO EC ⋅=⋅,则ABAC的值是_____【解析】如图,过点D 作DF //CE ,交AB 于点F ,由BE =2EA ,D 为BC 中点,知BF =FE =EA ,AO =OD()()()3632AO EC AD AC AE AB AC AC AE =-=+-()223131123233AB AC AC AB AB AC AB AC AB AC ⎛⎫⎛⎫=+-=-+- ⎪ ⎪⎝⎭⎝⎭22223211323322AB AC AB AC AB AC AB AC AB AC ⎛⎫=-+=-+= ⎪⎝⎭得2213,22AB AC =即3,AB AC =故3AB AC=(二)考察数形结合思想(如:向量与圆等图形的结合) 例2. 已知点A ,B ,C 在圆上运动,且ABBC ,若点P 的坐标为(2,0),则的最大值为( )A .6B .7C .8D .9 【解析】由题意,AC 为直径,所以当且仅当点B 为(-1,0)时,取得最大值7选B练习1. 在平面内,定点A ,B ,C ,D 满足==, = = =–2,动点P ,M 满足=1,=,则的最大值是( )A .B .C .D .【解析】甴已知易得以为原点,直线为轴建立平面直角坐标系,如图所示则设由已知,得又,它表示圆上的点与点的距离的平方的,选B练习2. 在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP =λAB +μAD ,则λ+μ的最大值为( ) A .3 B .22 C .5 D .2 【解析】如图,建立平面直角坐标系设()()()()0,1,0,0,2,1,,A B D P x y 根据等面积公式可得圆的半径是25,即圆的方程是()22425x y -+=()()(),1,0,1,2,0AP x y AB AD =-=-=若满足AP AB AD λμ=+,即21x y μλ=⎧⎨-=-⎩ ,,12x y μλ==- ,所以12xy λμ+=-+设12x z y =-+ ,即102xy z -+-= 点(),P x y 在圆()22425x y -+=上,所以圆心到直线的距离d r ≤,即221514z -≤+ ,解得13z ≤≤ 所以z 的最大值是3,即λμ+的最大值是3,选A(三).考查向量的数量积 例3. 已知向量,则ABC =( )A .30B .45C .60D .120 【解析】由题意,得,所以,选A【小结】(1)平面向量与的数量积为,其中是与的夹角,要注意夹角的定义和它的取值范围:;(2)由向量的数量积的性质知,,,因此,利用平面向量的数量积可以解决与长度、角度、垂直等有关的问题练习1. 已知是边长为4的等边三角形,为平面内一点,则的最小值是A .B .C .D .【解析】以BC 中点为坐标原点,建立如图所示的坐标系则A (0,2),B (﹣2,0),C (2,0),设P (x ,y )则=(﹣x ,2﹣y ),=(﹣2﹣x ,﹣y ),=(2﹣x ,﹣y )所以•(+)=﹣x •(﹣2x )+(2﹣y )•(﹣2y )=2x 2﹣4y +2y 2=2[x 2+(y ﹣)2﹣3]所以当x =0,y =时,•(+)取得最小值为2×(﹣3)=﹣6,选D练习2.在等腰梯形ABCD 中,已知//,2,1,60AB DC AB BC ABC ==∠= ,动点E 和F 分别在线段BC 和DC 上,且,1,,9BE BC DF DC λλ==则AE AF ⋅的最小值为 . 【解析】因为1,9DF DC λ=12DC AB = 119199918CF DF DC DC DC DC AB λλλλλ--=-=-==;AE AB BE AB BC λ=+=+19191818AF AB BC CF AB BC AB AB BC λλλλ-+=++=++=+ ()221919191181818AE AF AB BC AB BC AB BC AB BC λλλλλλλλλ+++⎛⎫⎛⎫⋅=+⋅+=+++⋅⋅ ⎪ ⎪⎝⎭⎝⎭19199421cos1201818λλλλ++=⨯++⨯⨯⨯︒21172117299218921818λλλλ=++≥⋅+= 当且仅当2192λλ=即23λ=时AE AF ⋅的最小值为2918BAD C E(四)考查三角形中的边角互化例 4. 在ABC ∆中,角,,A B C 的对边分别为a , b , c .若ABC ∆为锐角三角形,且满足()sin 12cos 2sin cos cos sin B C A C A C +=+,则下列等式成立的是( )A .2a b =B .2b a =C .2A B =D .2B A = 【解析】()sin 2sin cos 2sin cos cos sin A C B C A C A C ++=+所以2sin cos sin cos 2sin sin 2B C A C B A b a =⇒=⇒=,选A练习1. 在中,角,,所对应的边分别为,,.已知,则()A.一定是直角三角形B.一定是等腰三角形C.一定是等腰直角三角形D.是等腰或直角三角形【解析】由题,已知,由正弦定理可得:即又因为所以即由余弦定理:,即所以所以三角形一定是等腰三角形,选B练习2. 在中,,为边上的一点,且,若为的角平分线,则的取值范围为()A.B.C.D.【解析】因为,为的角平分线,所以在中,,因为,所以在中,,因为,所以,所以则因为,所以所以,则即的取值范围为,选A练习3. 在锐角三角形ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知,,,则的面积( ) A .B .C .D .【解析】由题,,所以所以 又因为锐角三角形ABC ,所以 由题,即根据代入可得,,即再根据正弦定理: 面积故选D练习4. 在锐角ABC ∆中,角AB C ,,的对边分别为a b c ,,.且cos cos A B a b +=33Ca,23b =a c +的取值范围为_____.【解析】cos cos 33A B C a b a +=23cos cos sin 3b A a B C ∴+= ∴由正弦定理可得: 23sin cos sin cos sin 3B A A B BC +=,可得:23sin()sin sin A B C B C +==,3sin B ∴=, 又ABC ∆为锐角三角形,3B π∴=,∴可得:sin sin 24(sin sin )4sin 4sin sin sin 3b A b C a c A C A A B B π⎛⎫+=+=+=+- ⎪⎝⎭33A π⎛⎫=- ⎪⎝⎭ 2,3A A π-均为锐角,可得:,62636A A πππππ<<-<-<,(6,43]a c ∴+∈.练习5. 在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若sin cos cos sin sin sin ab Ca Bb A a A b Bc C+=+-,且3a b +=,则c 的取值范围为________________. 【解析】因为()sin sin sin cos cos sin C A B A B A B =+=+ 所以由正弦定理可得cos cos a B b A c +=, 又因为sin cos cos sin sin sin ab C a B b A a A b B c C+=+-,所以由正弦定理可得222abcc a b c =+- 即222a b c ab +-=,所以222c a b =+-2()3ab a b ab =+-, 因为3a b +=,所以293c ab =-,因为29()24a b ab +≤=, 当且仅当23==b a 时取等号,所以27304ab -≤-<, 所以99394ab ≤-<,即2994c ≤<,所以332c ≤<,故c 的取值范围为3[,3)2(五)三角形与向量综合 例5. 在△中,为边上的中线,为的中点,则( )A .B .C .D .【分析】首先将图画出来,接着应用三角形中线向量的特征,求得,之后应用向量的加法运算法则-------三角形法则,得到,之后将其合并,得到,下一步应用相反向量,求得,从而求得结果.【解析】根据向量的运算法则,可得,所以,故选A .练习1. 已知中,为的重心,则()A.B.C.D.【解析】因为中,为的重心,所以,由余弦定理可得:且所以=练习2. 下列命题中,①在中,若,则为直角三角形;②若,则的最大值为;③在中,若,则;④在中,,若为锐角,则的最大值为.正确的命题的序号是______【解析】①在中,若,可得或,则为直角或钝角三角形,故①错;②若时,即,即垂直,则的最大值为,故②正确;③在中,若,,即,即,,即为,由,可得,故③正确;④在中,,即为,即为,可得,即,可得锐角,可得时,的最大值为,故④正确故答案为:②③④练习3. 在ABC 中, 60A ∠=︒, 3AB =, 2AC =. 若2BD DC =, ()AE AC AB R λλ=-∈,且4AD AE ⋅=-,则λ的值为______________. 【解析】01232cos603,33AB AC AD AB AC ⋅=⨯⨯==+ 则()1221233493433333311AD AE AB AC AC AB λλλλ⎛⎫⋅=+-=⨯+⨯-⨯-⨯=-⇒= ⎪⎝⎭(六)向量与三角函数综合例6. 自平面上一点O 引两条射线OA ,OB ,点P 在OA 上运动,点Q 在OB 上运动且保持PQ 为定值a (点P ,Q 不与点O 重合),已知3AOB π∠=,7a =,则3||||PQ PO QP QOPO QO ⋅⋅+的取值范围为( )A .1,72⎛⎤⎥⎝⎦B .7,72⎛⎤⎥ ⎝⎦C .1,72⎛⎤- ⎥⎝⎦D .7,72⎛⎤- ⎥ ⎝⎦【解析】设OPQ α∠=,则23PQO πα∠=- 322cos 3cos 7cos 3cos 33PQ PO QP QO PQ QP POQO ππαααα⋅⋅⎫⎛⎫⎛⎫+=+-=+- ⎪ ⎪⎪⎝⎭⎝⎭⎭()3331337cos cos 7cos 7sin 22ααααααϕ⎫⎫=-=-+=-⎪⎪⎪⎪⎭⎭其中3tan 9ϕ=,则7sin 14ϕ=20,3πα⎛⎫∈ ⎪⎝⎭,∴当()sin 1αϕ-=时,原式取最大值7 ()()7sin sin 0sin 14αϕϕϕ->-=-=-,∴()77sin 2αϕ->- 37,72PQ PO QP QO PO QO ⎛⎤⋅⋅+∈- ⎥ ⎝⎦∴,选D练习1. 在同一个平面内,向量的模分别为与的夹角为,且与的夹角为,若,则_________.【解析】以为轴,建立直角坐标系,则, 由的模为与与的夹角为,且知,,可得,,由可得 ,(七)三角形中的最值 例7. 在中,内角所对的边分别为.已知,,,设的面积为,,则的最小值为_______. 【解析】在中,由得, 因为利用正弦定理得,再根据,可得,,,由余弦定理得,求得,所以,所以 ,所以,当且仅当,即时取等,所以 的最小值为。

用向量法解三角几何

用向量法解三角几何

用向量法解三角几何本文介绍了一种用向量法解决三角几何问题的方法。

向量法是一种准确且直观的解题方法,可以应用于各种三角形相关的问题。

1. 向量表示为了使用向量法解决三角几何问题,首先需要将几何图形中的点和向量表示出来。

对于三角形ABC,可以用向量AB、向量AC 和向量BC表示三个边。

2. 向量运算通过向量的加法、减法和数量乘法,可以进行各种三角形相关的运算。

例如,两个向量的和表示两个边的向量和,而两个向量的差表示两个边的向量差。

3. 向量积向量积是向量法解决三角几何问题中的重要概念。

向量积有两种形式:数量积和向量积。

数量积表示两个向量之间的夹角关系,向量积表示两个向量所构成的平行四边形的面积。

4. 应用示例下面通过一个应用示例来说明如何用向量法解决三角几何问题。

已知三角形ABC的顶点坐标分别为A(1, 2),B(3, 3)和C(2, 4),求三角形ABC的面积。

解:首先将点A、B和C表示为向量。

向量AB = B - A = (3, 3) - (1, 2) = (2, 1),向量AC = C - A = (2, 4) - (1, 2) = (1, 2)。

然后计算向量AB和向量AC的向量积。

向量积的大小等于向量AB和向量AC的数量积的绝对值乘以它们夹角的正弦值。

根据向量的定义,向量积的大小等于平行四边形ABCB'的面积。

平行四边形ABCB'的底边AB的长度为|AB| = √(2^2 + 1^2) = √5,高为|AC|·sin(∠BAC) = √(1^2 + 2^2)·sin(∠BAC) = √5·sin(∠BAC)。

因此,三角形ABC的面积等于平行四边形ABCB'的面积的一半,即S = (1/2)·√5·√5·sin(∠BAC) = 5·sin(∠BAC)。

5. 总结向量法是一种有效而简洁的解题方法,适用于各种三角几何问题。

专题03 三角函数与平面向量综合问题(答题指导)(解析版)

专题03 三角函数与平面向量综合问题(答题指导)(解析版)

专题03 三角函数与平面向量综合问题(答题指导)【题型解读】题型特点命题趋势▶▶题型一:三角函数的图象和性质1.注意对基本三角函数y =sin x ,y =cos x 的图象与性质的理解与记忆,有关三角函数的五点作图、图象的平移、由图象求解析式、周期、单调区间、最值和奇偶性等问题的求解,通常先将给出的函数转化为y =A sin(ωx +φ)的形式,然后利用整体代换的方法求解. 2.解决三角函数图象与性质综合问题的步骤 (1)将f (x )化为a sin x +b cos x 的形式. (2)构造f (x )=a 2+b 2⎝⎛⎭⎪⎫a a 2+b 2·sin x +b a 2+b 2·cos x . (3)和角公式逆用,得f (x )=a 2+b 2sin(x +φ)(其中φ为辅助角). (4)利用f (x )=a 2+b 2sin(x +φ)研究三角函数的性质. (5)反思回顾,查看关键点、易错点和答题规范.【例1】 (2017·山东卷)设函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π6+sin ⎝ ⎛⎭⎪⎫ωx -π2,其中0<ω<3.已知f ⎝ ⎛⎭⎪⎫π6=0.(1)求ω;(2)将函数y =f (x )的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移π4个单位,得到函数y =g (x )的图象,求g (x )在⎣⎢⎡⎦⎥⎤-π4,3π4上的最小值.【答案】见解析【解析】(1)因为f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π6+sin ⎝⎛⎭⎪⎫ωx -π2,所以f (x )=32sin ωx -12cos ωx -cos ωx =32sinωx -32cos ωx =3⎝ ⎛⎭⎪⎫12sin ωx -32cos ωx =3sin ⎝ ⎛⎭⎪⎫ωx -π3.因为f ⎝ ⎛⎭⎪⎫π6=0,所以ωπ6-π3=k π,k ∈Z .故ω=6k +2,k ∈Z .又0<ω<3,所以ω=2.(2)由(1)得f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π3,所以g (x )=3sin ⎝ ⎛⎭⎪⎫x +π4-π3=3sin ⎝ ⎛⎭⎪⎫x -π12.因为x ∈⎣⎢⎡⎦⎥⎤-π4,3π4,所以x -π12∈⎣⎢⎡⎦⎥⎤-π3,2π3,当x -π12=-π3,即x =-π4时,g (x )取得最小值-32.【素养解读】本题中图象的变换考查了数学直观的核心素养,将复杂的三角函数通过变形整理得到正弦型函数,从而便于对性质的研究,考查数学建模的核心素养.【突破训练1】 设函数f (x )=32-3sin 2ωx -sin ωx cos ωx (ω>0),且y =f (x )的图象的一个对称中心到最近的对称轴的距离为π4.(1)求ω的值;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤π,3π2上的最大值和最小值. 【答案】见解析 【解析】(1)f (x )=32-3·1-cos2ωx 2-12sin2ωx =32cos2ωx -12sin2ωx = -sin ⎝ ⎛⎭⎪⎫2ωx -π3.因为y =f (x )的图象的一个对称中心到最近的对称轴的距离为π4,故该函数的周期T =4×π4=π.又ω>0,所以2π2ω=π,因此ω=1.(2)由(1)知f (x )=-sin ⎝ ⎛⎭⎪⎫2x -π3.当π≤x ≤3π2时,5π3≤2x -π3≤8π3,所以-32=sin 5π3≤sin ⎝ ⎛⎭⎪⎫2x -π3≤sin 5π2=1,所以-1≤f (x )≤32,即f (x )在区间⎣⎢⎡⎦⎥⎤π,3π2上的最大值和最小值分别为32,-1.▶▶题型二 解三角形1.高考对解三角形的考查,以正弦定理、余弦定理的综合运用为主.其命题规律可以从以下两方面看:(1)从内容上看,主要考查正弦定理、余弦定理以及三角函数公式,一般是以三角形或其他平面图形为背景,结合三角形的边角关系考查学生利用三角函数公式处理问题的能力;(2)从命题角度看,主要是在三角恒等变换的基础上融合正弦定理、余弦定理,在知识的交汇处命题. 2.用正、余弦定理求解三角形的步骤第一步:找条件,寻找三角形中已知的边和角,确定转化方向.第二步:定工具,根据已知条件和转化方向,选择使用的定理和公式,实施边角之间的转化. 第三步:求结果,根据前两步分析,代入求值得出结果.第四步:再反思,转化过程中要注意转化的方向,审视结果的合理性.【例2】 在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,且cos(C +B)cos(C -B)=cos2A -sin Csin B . (1)求A ;(2)若a =3,求b +2c 的最大值. 【答案】见解析【解析】(1)cos(C +B)cos(C -B)=cos2A -sinCsinB =cos2(C +B)-sinCsinB ,则cos(C +B)[cos(C -B)-cos(C +B)]=-sinCsinB ,则-cosA·2sinCsinB=-sinCsinB ,可得cosA =12,因为0<A <π,所以A=60°.(2)由a sinA =b sinB =csinC =23,得b +2c =23(sinB +2sinC)=23[sinB +2sin(120°-B)]=23(2sinB+3cosB)=221sin(B +φ),其中tanφ=32,φ∈⎝ ⎛⎭⎪⎫0,π2.由B ∈⎝ ⎛⎭⎪⎫0,2π3得B +φ∈⎝⎛⎭⎪⎫0,7π6,所以sin(B +φ)的最大值为1,所以b +2c 的最大值为221.【素养解读】试题把设定的方程与三角形内含的方程(三角形的正弦定理、三角形内角和定理等)建立联系,从而求得三角形的部分度量关系,体现了逻辑推理、数学运算的核心素养.【突破训练2】 (2017·天津卷)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a >b ,a =5,c =6,sin B =35.(1)求b 和sin A 的值; (2)求sin ⎝ ⎛⎭⎪⎫2A +π4的值.【答案】见解析【解析】(1)在△ABC 中,因为a >b ,故由sin B =35,可得cos B =45.由已知和余弦定理,有b 2=a 2+c 2-2ac cos B=13,所以b =13.由正弦定理得sin A =a sin B b =31313. (2)由(1)及a <c ,得cos A =21313,所以sin2A =2sin A cos A =1213,cos2A =1-2sin 2A =-513.故sin ⎝⎛⎭⎪⎫2A +π4=sin2A cos π4+cos 2A ·sin π4=7226.▶▶题型三 三角函数与平面向量的综合1.三角函数、解三角形与平面向量的综合主要体现在以下两个方面:(1)以三角函数式作为向量的坐标,由两个向量共线、垂直、求模或求数量积获得三角函数解析式;(2)根据平面向量加法、减法的几何意义构造三角形,然后利用正、余弦定理解决问题.2.(1)向量是一种解决问题的工具,是一个载体,通常是用向量的数量积运算或性质转化成三角函数问题.(2)三角形中的三角函数要结合正弦定理、余弦定理进行转化,注意角的范围对变形过程的影响. 【例3】 (2019·佛山调考)已知函数f (x )=a ·b ,其中a =(2cos x ,-3sin2x ),b =(cos x,1),x ∈R .(1)求函数y =f (x )的单调递减区间;(2)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,f (A )=-1,a =7,且向量m =(3,sin B )与n =(2,sin C )共线,求边长b 和c 的值. 【答案】见解析【解析】(1)f (x )=a ·b =2cos 2x -3sin2x =1+cos2x -3sin2x =1+2cos ⎝ ⎛⎭⎪⎫2x +π3,由2k π≤2x +π3≤2k π+π(k ∈Z ),解得k π-π6≤x ≤k π+π3(k ∈Z ),所以f (x )的单调递减区间为⎣⎢⎡⎦⎥⎤k π-π6,k π+π3(k ∈Z ).(2)因为f (A )=1+2cos ⎝ ⎛⎭⎪⎫2A +π3=-1,所以cos ⎝ ⎛⎭⎪⎫2A +π3=-1.因为0<A <π,所以π3<2A +π3<7π3,所以2A +π3=π,即A =π3.因为a =7,由余弦定理得a 2=b 2+c 2-2bc cos A =(b +c )2-3bc =7.①因为向量m =(3,sin B )与n =(2,sin C )共线,所以2sin B =3sinC . 由正弦定理得2b =3c ,② 由①②可得b =3,c =2.【突破训练3】(2019·湖北八校联考) 已知△ABC 的面积为S ,且32AB →·AC →=S ,|AC →-AB →|=3.(1)若f (x )=2cos(ωx +B )(ω>0)的图象与直线y =2相邻两个交点间的最短距离为2,且f ⎝ ⎛⎭⎪⎫16=1,求△ABC 的面积S ;(2)求S +3 3 cos B cos C 的最大值. 【答案】见解析【解析】设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c , 因为32AB →·AC →=S ,所以32bc cos A =12bc sin A , 解得tan A =3,所以A =π3.由|AC →-AB →|=3得|BC →|=a =3.(1)因为f (x )=2cos(ωx +B )(ω>0)的图象与直线y =2相邻两个交点间的最短距离T =2,即2πω=2,解得ω=π,故f (x )=2cos(πx +B ).又f ⎝ ⎛⎭⎪⎫16=2cos ⎝⎛⎭⎪⎫π6+B =1,即cos ⎝ ⎛⎭⎪⎫π6+B =12.因为B 是△ABC 的内角,所以B =π6,从而△ABC 是直角三角形,所以b =3,所以S △ABC =12ab =332.(2)由题意知A =π3,a =3,设△ABC 的外接圆半径为R ,则2R =a sin A = 332=23,解得R =3,所以S+33cos B cos C =12bc sin A +33cos B cos C =34bc +33cos B cos C =33sin B sin C +33cos B cos C =33cos(B -C ),故S +33cos B cos C 的最大值为3 3.。

向量与三角函数创新题型的解题技巧

向量与三角函数创新题型的解题技巧

向量与三角函数创新题型的解题技巧导言向量与三角函数是高中数学中重要的概念和工具。

在解题过程中,我们经常会遇到创新型的题目,需要我们运用向量和三角函数的知识来解决。

然而,这些题目往往较为复杂和难以直接套用常规的解题方法。

本文将介绍一些解题技巧,帮助读者更好地解答向量与三角函数创新题型。

技巧一:理解向量运算在解答向量与三角函数创新题型时,熟练掌握向量运算是非常重要的。

向量运算包括向量加法、向量减法和向量数乘。

首先,我们需要清楚地理解向量的几何意义,即向量是有方向和大小的量,并可以表示为一个有向线段。

在题目中,通常会涉及向量的平移、旋转以及投影等运算。

理解这些运算的几何意义可以帮助我们更好地理解问题,从而找到解题的关键。

技巧二:灵活运用平移与旋转许多向量与三角函数创新题型涉及到平移和旋转操作。

平移是指将向量的起点平移至其他位置,旋转是指将向量绕定点旋转一定的角度。

在解题过程中,我们可以通过平移和旋转来简化问题,使得解题更加容易。

例如,对于一个平面上的向量问题,我们可以通过平移将向量的起点设置为坐标原点,从而大大简化计算。

类似地,我们还可以通过旋转来使向量与坐标轴对齐,从而化简计算过程。

技巧三:利用三角函数的性质三角函数是向量与三角函数创新题型中经常会涉及到的概念。

在解答这类题目时,熟练掌握三角函数的性质是非常重要的。

首先,我们需要理解三角函数的定义和图像。

例如,正弦函数和余弦函数的图像是周期性的,周期为2π。

其次,我们还需要掌握三角函数的基本关系式,如正弦定理、余弦定理和正切函数的定义等。

利用这些性质和关系式,我们可以将问题转化为一些简单的代数方程或三角方程,然后再进行求解。

技巧四:巧用向量之间的关系在解决向量与三角函数创新题型时,我们经常会用到一些向量之间的关系。

例如,向量的数量积和叉积可以帮助我们求解角度和长度等问题。

在应用这些关系式时,我们需要注意向量的顺序和方向,以及向量之间的运算法则。

灵活运用这些关系式可以帮助我们简化计算,从而更快地解决问题。

向量与三角综合题类型及解法

向量与三角综合题类型及解法

数学爱好者2007·6专业精心策划S高一数学爱好者名师点金MingShiDianJin平面向量与三角函数在“角”之间存在着密切的联系.如果在平面向量与三角函数的交汇处设计考题,其形式多样,解法灵活,极富思维性和挑战性.若根据所给的三角式的结构及向量间的相互关系进行处理,可使解题过程得到简化,从而提高解题的速度.下面举例说明.一、求三角式的值例1设a!=(1+cosα,sinα),b"=(1-cosβ,sinβ),c!=(1,0),α∈(0,π),β∈(π,2π),a!与c!的夹角为θ1,b"与c!的夹角为θ2,且θ1-θ2=π6,求sinα-β4的值.解析因为a!=(1+cosα,sinα)=2(cos2α2,2sinα2·cosα2)=2cosα2(cosα2,sinα2),又因为a!与c!的夹角为θ1,所以θ1=α2,又b"=(1-cosβ,sinβ)=(2sin2β2,2sinβ2cosβ2)=2sinβ2(sinβ2,cosβ2),而b"与c!的夹角为θ2,所以θ2=β2-π2,又θ1-θ2=π6$α2-β2+π2=π6,所以α-β2=-π3,所以sinα-β4=sin(-π6)=-12.二、求两向量所成的角例2已知a!=(cosα,sinα),b"=(cosβ,sinβ),其中0<α<β<π,(1)求证:a!+b"与a!-b"互相垂直;(2)若ka!+b"与ka!-b"(k≠0)的长度相等,求β-α.解析(1)因为(a!+b")·(a!-b")=a!2-a!·b"+b"·a!-b"2=a!2-b"2=a!2-b"2=cos2α+sin2α&-cos2β+sin2β&=1-1=0,所以a!+b"与a!-b"互相垂直.方法技巧向量与三角综合题类型及解法◇辽宁省海城市大屯镇育英学校张恩强"#$数学爱好者2007·6专业精心策划S高一数学爱好者MingShiDianJin名师点金Apeculiarbeautyreignsintherealmofmathematics,(abeautywhichresemblesnotsomuchthebeautyofartasthebeautyofnature)andwhichaffectsthereflectivemind,whichhasacquiredanappreciationofit,verymuchlikethelater.一种奇特的美统治着数学王国,这种美不像艺术之美而与自然之美更为类似,她深深地感染着人们的心灵,激起人们对她的欣赏,与自然之美是十分相象的.———库默(2)ka!+b"=(kcosα+cosβ,ksinα+sinβ),ka!-b"=(kcosα-cosβ,ksinα-sinβ),所以ka!+b"=k2+2kcos(β-α)+1#,ka!-b"=k2-2kcos(β-α)+1#,因为ka!+b"=ka!-b",所以k2+2kcos(β-α)+1=k2-2kcos(β-α)+1,有2kcos(β-α)=-2kcos(β-α),因为k≠0,故cos(β-α)=0,又因为0<α<β<π,0<β-α<π,所以β-α=π2.三、判断三角形的形状例3已知在△ABC中,A&’B=A&’C,且2A&’B·C&’A+A&’B2=0,判断△ABC的形状.解析因为2A&’B·C&’A+A&’B2=0,所以2A&’B·A&’C-A&’B2=0,所以A&’B·A&’C=12A&’B2,所以由向量的夹角公式,得cosA=A&’B·A&’CA&’C·A&’B=12A&’B2A&’B2=12,所以A=60°,又A&’B=A&’C,所以△ABC为等边三角形.四、求向量的模例4△ABC中,三个内角分别是A、B、C,向量a!=(5#2cosC2,cosA-B2),当tanA·tanB=19时,求a!.解析因为a!=(5#2cosC2,cosA-B2),则a!2=54cos2C2+cos2A-B2=54sin2A+B2+cos2A-B2=54·1-cos(A+B)2+1+cos(A-B)2=18[9+4cos(A-B)-5cos(A+B)]=18(9+4cosAcosB+4sinAsinB-5cosAcosB+5sinAsinB)=18(9+9sinAsinB-cosAcosB),又tanAtanB=19,即sinAsinBcosAcosB=19,所以9sinAsinB=cosAcosB.所以a!2=98,故a!=32#4.五、其他综合问题例5若向量a!n=(cos2nθ,sinnθ),b"n=(1,2sinnθ)(n∈N*),试判断数列{a!n·b"n2-1}是等差数列还是等比数列?解析因为a!n=(cos2nθ,sinnθ),b"n=(1,2sinnθ)(n∈N*),所以a!n·b"n2-1=(cos2nθ,sinnθ)·(1,2sinnθ)2-1=cos2nθ+2sin2nθ2-1=1-2sin2nθ+2sin2nθ2-1=1-1=0,所以数列{a!n·b"n2-1}是等差数列.mingrenmingyan"#$。

(完整版)向量与三角,不等式等知识综合应用

(完整版)向量与三角,不等式等知识综合应用

第19讲 向量与三角、不等式等知识综合应用常熟市中学 蔡祖才一、高考要求平面向量与三角函数、不等式等知识的综合应用是高考的主要考查内容之一.掌握向量的几何表示、向量的加法与减法和实数与向量的积,掌握平面向量的坐标运算、平面向量的数量积极其几何意义,掌握向量垂直的条件,并且能熟练运用,掌握平移公式.注重等价转化、分类讨论等数学思想的渗透. 二、考点解读考查平面向量数量积的计算方法、三角公式、三角函数的性质及图像的基本知识,考查推理和运算能力.考查平面向量的概念和计算,三角函数的恒等变换及其图象变换的基本技能,着重考查数学运算能力.平面向量与三角函数结合是高考命题的一个新的亮点之一. 三、课前训练1.把曲线y cos x +2y -1=0先沿x 轴向右平移2π个单位,再沿y 轴向下平移1个单位,得到的曲线方程是 ( )(A)(1-y )sin x +2y -3=0 (B)(y -1)sin x +2y -3=0 (C)(y +1)sin x +2y +1=0 (D) -(y +1)sin x +2y +1=02.函数y =sin x 的图象按向量a =(32π-,2)平移后与函数g (x )的图象重合,则g (x )的函数表达式是 ( ) (A )cos x -2 (B )-cos x -2 (C )cos x +2 (D )-cos x +23.已知向量a = (1,sin θ),b = (1,cos θ),则 | a - b | 的最大值为.4.如图,函数y =2sin(πx+φ),x ∈R,(其中0≤φ≤2π)的图象与y 轴交于点(0,1). 设P 是图象上的最高点,M 、N 是图象与x 轴的交点,则PM PN u u u u r u u u r与的夹角余弦值为 .四、典型例题例1 已知a =(3sin ωx ,cos ωx ),b =(cos ωx ,cos ωx )(ω>0),记函数f (x )= a · b ,且f (x )的最小正周期是π,则ω= ( )(A) ω=1 (B) ω=2 (C) 21=ω ( D) 32=ω 例2 在△OAB 中,O 为坐标原点,]2,0(),1,(sin ),cos ,1(πθθθ∈B A ,则△OAB 的面积达到最大值时,=θ ( )(A)6π (B) 4π (C) 3π (D) 2π例3 设向量a r =(sin x ,cos x ),b r =(cos x ,cos x ),x ∈R ,函数f(x)=a r ·(a r +b r).使不等式f (x )≥23成立的x 的取值集合为 .例4 在△ABC 中,O 为中线AM 上的一个动点,若AM =2,则()OA OB OC ⋅u u u r u u u r u u u r+的最小值是 .例5 已知函数f (x )=a +b sin2x +c cos2x 的图象经过点A (0,1),B (4π,1),且当x ∈[0, 4π]时,f (x )取得最大值22-1.(Ⅰ)求f (x )的解析式;(Ⅱ)是否存在向量m ,使得将f (x )的图象按向量m 平移后可以得到一个奇函数的图象?若存在,求出满足条件的一个m ;若不存在,说明理由.例6 已知向量m =(cos ,sin )θθ和n =sin ,cos ),(,2)θθθππ∈,且| m + n |=,5求cos()28θπ+的值.第19讲 向量与三角、不等式等知识综合应用 过关练习1.已知i r ,j r 为互相垂直的单位向量,2a i j =-r r r ,b i j λ=+r r r ,且||||a b r r与的夹角为锐角,则实数λ的取值范围是( )(A )),21(+∞ (B ))21,2()2,(-⋃--∞ (C )),32()32,2(+∞⋃- (D ))21,(-∞2.在直角坐标系中,O 是原点,OQ =(-2+cos θ,-2+sin θ) (θ∈R),动点P 在直线x =3上运动,若从动点P 向Q 点的轨迹引切线,则所引切线长的最小值为 ( )(A ) 4 (B ) 5 (C ) 26 (D )263.已知||2||0a b =≠r r ,且关于x 的方程2||0x a x a b ++⋅=r r r 有实根,则a r 与b r 的夹角的取值范围是 ( )(A )[0,6π] (B )[,]3ππ (C )2[,]33ππ (D )[,]6ππ 4.设(0,0)O ,(1,0)A ,(0,1)B ,点P 是线段AB 上的一个动点,AP AB λ=u u u r u u u r,若OP AB PA PB ⋅≥⋅u u u r u u u r u u u r u u u r,则实数λ的取值范围是 ( )(A )112λ≤≤ (B )11λ-≤≤(C )1122λ≤≤+ (D )1122λ-≤≤+ 5. 已知向量a r =(cos α,sin α),b r =(cos β,sin β),且a b ≠±r r ,那么a b +r r 与a b-r r的夹角的大小是 .6. 已知向量].2,0[),2sin ,2(cos ),23sin,23(cos π∈-==x x x x x 且若||2)(x f +-⋅=λ的最小值为32-,则λ的值为 .7.已知A 、B 、C 是ABC ∆三内角,向量(m =-u r(cos ,sin ),n A A =r 且 1.m n ⋅=u r r(Ⅰ)求角A ; (Ⅱ)若221sin 23cos sin BB B+=--,求tanC . 8.设函数f (x )=a b ⋅r r ,其中向量a r =(2cos x ,1),b r=(cos x ,3sin2x ),x ∈R .(Ⅰ)若f(x)=1-3且x ∈[-3π,3π],求x ; (Ⅱ)若函数y =2sin2x 的图象按向量c r =(m ,n )(|m |<2π)平移后得到函数y =f (x )的图象,求实数m 、n 的值.第19讲 向量与三角、不等式等知识综合应用 参考答案课前训练部分1.C2.D3.4.1517典型例题部分例1 A例2 1111sin cos (1cos )(1sin )222ABC S θθθθ∆=----- 当2θπ=即2πθ=时,面积最大.例3 3,88x k x k k Z ππππ⎧⎫-≤≤+∈⎨⎬⎩⎭例4 如图,OM OA OC OB OA -≥-=⋅⋅=+⋅2)(=.222-=⋅- 即)(+⋅的最小值为:-2.例5 (Ⅰ)由题意知⎩⎨⎧=+=+,1,1b a c a ∴b =c =1-a , ∴f (x )=a +2(1-a )sin(2x +4π).∵x∈[0,4π], ∴2x +4π∈[4π,4π3].当1-a >0时,由a +2(1-a )=22-1, 解得a =-1; 当1-a <0时, a +2(1-a )·22=22-1,无解; 当1-a =0时,a =22-1,相矛盾. 综上可知a =-1. ∴f (x )=-1+22sin(2x +4π). (Ⅱ)∵g (x )=22sin2x 是奇函数,将g (x )的图象向左平移8π个单位,再向下平移一个单位就可以得到f (x )的图象. 因此,将f (x )的图象向右平移8π个单位,再向上平移一个单位就可以得到奇函数g(x )=22sin2x 的图象.故m u r =(8π,1)是满足条件的一个向量.例6 (cos sin sin )m n θθθθ+=-++u r rm n +=u r r由已知m n +=u r r ,得7cos()425πθ+=又2cos()2cos ()1428πθπθ+=+- 过关练习部分1.B2.C3.B4.B 5、2π6. 217(Ⅰ)∵1m n ⋅=u r r∴(()cos ,sin 1A A -⋅= cos 1A A -=12sin cos 12A A ⎛⎫⋅= ⎪ ⎪⎝⎭, 1sin 62A π⎛⎫-= ⎪⎝⎭ ∵50,666A A ππππ<<-<-<∴66A ππ-= ∴3A π= (Ⅱ)由题知2212sin cos 3cos sin B B B B+=--,整理得22sin sin cos 2cos 0B B B B --= ∴cos 0B ≠ ∴2tan tan 20B B --= ∴tan 2B =或tan 1B =-而tan 1B =-使22cos sin 0B B -=,舍去 ∴tan 2B =8.(Ⅰ)依题设可知,函数的解析式为f (x )=a b ⋅r r =2cos 2x +3sin2x =1+2sin(2x +6π).由1+2sin(2x +6π)=1-3,可得三角方程sin(2 x +6π)=-23.∵-3π≤x ≤3π,∴-2π≤2x +6π≤65π,∴2x +6π=-3π,即x =-4π. (Ⅱ)函数y =2sin2x 的图象按向量c r=(m ,n )平移后得到函数y =2sin2(x -m )+n 的图象,即函数y =f(x)的图象.由(1)得 f(x)=2sin2(x +12π)+1. ∵|m |<2π,∴12m π=-, 1.n =。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学爱好者
2007·6专
业精心策划

高一
数学爱好者
名师点金
MingShiDianJin
平面向量与三角函数在“角”之间存在着密切的联系.如果在平面向量与三角函数的交汇处设计考题,其形式多样,解法灵活,极富思维性和挑战性.若根据所给的三角式的结构及向量间的相互关系进行处理,可使解题过程得到简化,从而提高解题的速度.下面举例说明.
一、求三角式的值
例1
设a!=(1+cosα,sinα),b"=(1-cosβ,sinβ),c
!=(1,0),α∈(0,π),β∈(π,2π),a!与c!的夹角为θ1,b"与c!的夹角为θ2,且θ1-θ2=
π6
,求sinα-β4
的值.解析
因为a!=(1+cosα,sinα)=2(cos2α2
,2sinα

·cosα2)=2cosα
2(cosα2,sinα2
),又因为a!与c!的夹角为θ1,所以θ1=
α2
,又b"=(1-cosβ,sinβ)=(2sin2β2
,2sinβ2
cosβ2
)=
2sinβ
2(sinβ2,cosβ2
),而b"与c!的夹角为θ2,所以θ2=β2
-π2
,又θ1-θ2=
π6$α2-β2+π2=π6

所以α
-β2
=-π3
,所以sinα-β4
=sin(-π6
)=-12

二、求两向量所成的角
例2
已知a!=(cosα,sinα),b"=(cosβ,sinβ),其
中0<α<β<π
,(1)求证:a!+b"与a!-b"互相垂直;(2)若ka!+b"与ka!-b"(k≠0)的长度相等,求β-α.
解析(1)因为(a!+b")·(a!-b")=a!2-a!·b"+b"·a!-b"2=a!2-b"2=a
!2-b"2
=cos2α+sin2α&-cos2β+sin2β&=1-1=0,所以a!+b
"与a!-b"互相垂直.方法
技巧
向量与三角综合题类型及解法
◇辽宁省海城市大屯镇育英学校张恩强
"#
$
数学爱好者2007·6

业精心策划

高一

学爱好者
MingShiDianJin
名师点金
Apeculiarbeautyreignsintherealmofmathematics,(abeautywhichresemblesnotsomuchthebeautyofartasthebeautyofnature)andwhichaffectsthereflectivemind,whichhasacquiredanappreciationofit,verymuchlikethelater.
一种奇特的美统治着数学王国,这种美不像艺术之美而与自然之美更为类似,她深深地感染着人们的心灵,激起人们对她的欣赏,与自然之美是十分相象的.
———库

(2)ka!+b"=(kcosα+cosβ,ksinα+sinβ
),ka!-b"=(kcosα-cosβ,ksinα-sinβ
),所以ka!+b"=k2+2kcos(β-α
)+1#,ka
!-b"=k2-2kcos
(β-α)+1#,因为ka!+b"=ka!-b",所以k2+2kcos(β-α
)+1=k2-2kcos(β-α)+1,有2kcos(β-α)=-2kcos(β-α
),因为k≠0,故cos(β-α
)=0,又因为0<α<β<π,0<β-α<π,所以β-α=π2

三、判断三角形的形状
例3
已知在△ABC中,A&’B=A&’C,且2A&’B·
C&’A+A&’B2=0,判断△ABC的形状.
解析因为2A&’B·C&’A+A&’B2=0,
所以2A&’B·
A&’C-A&’B2=0,所以A&’B·A&’C=12
A&’B


所以由向量的夹角公式,得cosA=
A&’B·A&’C
A&’C·A
&’B=12A&’B2
A&’B

=12

所以A=60°,又A&’B=A&’C,所以△ABC为等
边三角形.
四、求向量的模
例4
△ABC中,三个内角分别是A、B、C,向
量a!=(5#2
cosC2
,cosA-B2
),当tanA·tanB=1

时,求a
!.解析
因为a!=(5#2cosC2,cosA-B2
),则

!2
=54cos2C2+cos2A-B2=54sin2A+B2

cos2A-B2
=54·1-cos(A+B)2+1+cos(A-B)
2=18
[9+4cos(A-B)-5cos(A+B)]=18(9+4cosAcosB+4sinAsinB-5cosAcosB+
5sinAsinB)
=18
(9+9sinAsinB-cosAcosB),又tanAtanB=19,即sinAsinBcosAcosB=19

所以9sinAsinB=cosAcosB.
所以a
!2=98
,故a!=32#4
.五、其他综合问题
例5
若向量a!n=(cos2nθ,sinnθ),b"n=(1,2sinnθ)
(n∈N*),试判断数列{a!n·b
"n2
-1}是等差数列还是
等比数列?
解析
因为a!n=(cos2nθ,sinnθ),
b"n=(1,2sinnθ)(n∈N*),所以a!n·b
"n2-1=(cos2nθ
,sinnθ)·(1,2sinnθ)2-1=cos2nθ+2sin2nθ2-1=1-2sin2nθ+2sin2n
θ2
-1
=1-1=0,所以数列{a!n·b
"n2
-1}是等差数列.
mingrenmingyan
"
#$。

相关文档
最新文档