化工设计课程设计--管道设计计算

化工设计课程设计--管道设计计算
化工设计课程设计--管道设计计算

中南民族大学

化工专业课程设计

学院:化学与材料科学学院

专业:化学工程与工艺年级:2011级题目:KNO3水溶液三效蒸发工艺设计

学生姓名:** 学号:******

指导教师姓名:*** 职称: 教授

2014年12 月29 日

化工专业课程设计任务书

设计题目:KNO

水溶液三效蒸发工艺设计

3

设计条件:

1.年处理能力为×104 t/a KNO3水溶液;

2.设备型式中央循环管式蒸发器;

3.KNO3水溶液的原料液浓度为8%,完成液浓度为48%,原料液温度为20℃,比热容为(kg. ℃);

4.加热蒸汽压力为400kPa(绝压),冷凝器压力为20kPa(绝压);

5.各效加热蒸汽的总传热系数:K1=2000W/(m2?℃);K2=1000W/(m2?℃);K3=500W/(m2?℃);

6.各效加热蒸汽的冷凝液均在饱和温度下排出。各效传热面积相等,并忽略浓缩热和热损失,不计静压效应和流体阻力对沸点的影响;

7.每年按300天计,每天24小时运行;

设计任务:

1.设计方案简介:对确定的工艺流程进行简要论述。

2.蒸发器和换热器的工艺计算:确定蒸发器、换热器的传热面积。

3.蒸发器的主要结构尺寸设计。

4.主要辅助设备选型,包括气液分离器及换热器等。

5.绘制KNO3水溶液三效蒸发装置的流程图及蒸发器设备工艺简图。

姓名:

班级:化学工程与工艺专业

学号:

指导教师签字:

目录

1 概述 ...................................................... 错误!未定义书签。蒸发简介.................................................... 错误!未定义书签。蒸发操作的分类.............................................. 错误!未定义书签。蒸发操作的特点.............................................. 错误!未定义书签。2设计条件及设计方案说明..................................... 错误!未定义书签。设计方案的确定以及蒸发器选型................................. 错误!未定义书签。工艺流程简介................................................. 错误!未定义书签。

3. 物性数据及相关计算........................................ 错误!未定义书签。换热器设计计算............................................... 错误!未定义书签。管道选材及计算............................................... 错误!未定义书签。

料液管道管径的确定....................................... 错误!未定义书签。

加热蒸汽管道与二次蒸气管道管径的确定..................... 错误!未定义书签。

冷凝水管道管径的确定..................................... 错误!未定义书签。管材的选择................................................... 错误!未定义书签。4对本次设计任务的评价....................................... 错误!未定义书签。

1 概述

蒸发简介

在化工、轻工、医药、食品等工业中,常常需要将溶有固体溶质的稀溶液加以浓缩,以便得到浓溶液(固体产品)或制取溶剂,例如硝酸铵、烧碱、抗生素、食糖等生产以及海水淡化等。工业上常用的浓缩方法是蒸发,蒸发是采用加热的方法,使含有不挥发性杂质(如盐类)的溶液沸腾,除去其中被汽化单位部分杂质,使溶液得以浓缩的单元操作过程。

化工生产中蒸发主要用于以下几种目的:

(1)获得浓缩的溶液产品;

(2)将溶液蒸发增浓后,冷却结晶,用以获得固体产品,如烧碱、抗生素、糖等产品;

(3)脱除杂质,获得纯净的溶剂或半成品,如海水淡化。进行蒸发操作的设备叫做蒸发器。

蒸发器内要有足够的加热面积,使溶液受热沸腾。溶液在蒸发器内因各处密度的差异而形成某种循环流动,被浓缩到规定浓度后排出蒸发器外。蒸发器内部有足够的分离空间,以除去汽化的蒸汽夹带的雾沫和液滴,或装有适当形式的除沫器以除去液沫,排出的蒸汽可回收热量加以利用,或经过冷凝器冷凝

蒸发过程中经常采用饱和蒸汽间壁加热的方法,通常把作热源用的蒸汽称做一次蒸汽,从溶液蒸发出来的蒸汽叫做二次蒸汽。

蒸发操作的分类

按操作的方式可以分为间歇式和连续式,工业上大多数蒸发过程为连续稳定操作的过程。

按操作压力,蒸发可以分为常压蒸发、加压或减压蒸发。真空蒸发有许多优点:

(1)在低压下操作,溶液沸点较低,有利于提高蒸发的传热温度差,减小蒸发器的传热面积;

(2)可以利用低压蒸气作为加热剂;

(3)有利于对热敏性物料的蒸发;

(4)操作温度低,热损失较小。

按二次蒸汽的利用情况可以分为单效蒸发和多效蒸发,倘若将加热蒸汽通入一蒸发器,则液体受热而沸腾,所产生的二次蒸汽,其压力与温度比较原加热蒸汽(生蒸汽)为低。但此二次蒸汽仍可设法加以利用。最普遍的利用方法是将其当作加热蒸汽,引入另一个蒸发器,只要后者的蒸发室压力和溶液沸点均较原来蒸发器中为低,则引入的二次蒸汽仍能起到加热作用。此时第二个蒸发器的加热室便是第一个蒸发器的冷凝器,这就是多效蒸发的原理。将多个蒸发器这样连接起来一同操作,即组成一个多效蒸发器。每一蒸发器称为一效,通入生

蒸汽的,称为第一效,利用第一效的二次蒸汽为加热蒸汽的称为第二效,以此类推。由于各效(最后一效除外)的二次蒸汽都作为下一效蒸发器的加热蒸汽,提高了生蒸汽的利用率,节省了生蒸汽用量,所以,在蒸发大量水分时,广泛采用多效蒸发,常用的多效蒸发有双效、三效或四效,有的多达六效。

多效蒸发按加料方式又可分为以下四种:

①溶液与蒸汽成并流的方法,简称并流法;

②溶液与蒸汽成逆流的方法,简称为逆流法;

③溶液与蒸汽在有些效间成并流而在有些效间则成逆流,简称错流法;

④每一效都加入原料液的方法,简称平流法。

以三效为例加以说明,当效数有所增减时,其原则不变。

(1)并流法

图1 三效蒸发并流加料流程

并流法是工业中最常用的为并流加料法,如图1所示,溶液流向与蒸汽相同,即第一效顺序流至末效。因为后一效蒸发室的压力较前一效为低,故各效之间可无须用泵输送溶液,此为并流法的优点之一。其另一优点为前一效的溶液沸点较后一效的为高,因此当溶液自前一效至后一效内,即成过热状态而立即自行蒸发(常称为自蒸发或闪蒸),可以发生更多的二次蒸汽,使能在次一效蒸发更多的溶液。其缺点则为最后一效的溶液的浓度较前一效的大,而温度又较低,粘度增加显著,因而传热系数就小很多。这种情况在最末一、二效尤为严重,使整个蒸发系统的生产能力降低。因此,如果遇到溶液的粘度随浓度的增大而很快增加的情况,不宜采用并流法。

(2)逆流法

图2 三效蒸发逆流加料流程

如图2所示,原料液由末效流入,而由泵打入前一效。逆流法的优点在于溶液的浓度愈大时蒸发的温度亦愈高,使各效溶液均不致出现粘度太大的情况,因而传热系数也就不致过小。其缺点是,除进入末效的溶液外,效与效之间皆需用泵输送溶液,且各效进料温度(末效除外)都较沸点为低,故与并流法比较,所产生的二次蒸汽量减少。

(3)平流法

图3 三效蒸发平流加料流程

此法是按各效分别进料并分别出料的方式进行的,如图3所示。此法适用于在蒸发

过程中同时有结晶体析出的场合。例如食盐溶液,当蒸发至27%左右的浓度即达饱

和,若继续蒸发,就有结晶析出;此结晶不便在效与效之间输送,故可采用此种流

程将含结晶的浓溶液自各效分别取出。

(4)错流法

此法的特点是在各效间兼用并流和逆流加料法。例如在三效蒸发设备中,溶液的流向可为3 1 2或2 3 1。此法的目的是利用以上并流法和逆流法的优点,克服或减轻二者的缺点,但其操作比较复杂。

在加压蒸发中,所得到的二次蒸气温度较高,可作为下一效的加热蒸气加以利用。因此,单效蒸发多为真空蒸发;多效蒸发的前效为加压或常压操作,而后效则在真空下操作。

蒸发操作的特点

从上述对蒸发过程的简单介绍可知,常见的蒸发时间壁两侧分别为蒸气冷凝和液体沸腾的传热过程,蒸发器也就是一种换热器。但和一般的传热过程相比,蒸发操作又有如下特点 :

(1)沸点升高蒸发的溶液中含有不挥发性的溶质,在港台压力下溶液的蒸气压较同温度下纯溶剂的蒸气压低,使溶液的沸点高于纯溶液的沸点,这种现象称为溶液沸点的升高。在加热蒸气温度一定的情况下,蒸发溶液时的传热温差必定小于加热纯溶剂的纯热温差,而且溶液的浓度越高,这种影响也越显著。

(2)物料的工艺特性蒸发的溶液本身具有某些特性,例如有些物料在浓缩时可能析出晶体,或易于结垢;有些则具有较大的黏度或较强的腐蚀性等。如何根据物料的特性和工艺要求,选择适宜的蒸发流程和设备是蒸发工艺设计时必须要考虑的问题。

(3)节约能源蒸发时汽化的溶剂量较大,需要消耗较大的加热蒸气。如何充分利用热量,提高加热蒸气的利用率是蒸发操作要考虑的另一个问题。

蒸发设备

蒸发设备的作用是使进入蒸发器的原料液被加热,部分汽化,得到浓缩的完成液,同时需要排出二次蒸气,并使之与所夹带的液滴和雾沫相分离。

蒸发的主体设备是蒸发器,它主要由加热室和蒸发室组成。蒸发的辅助设备包括:使液沫进一步分离的除沫器,和使二次蒸气全部冷凝的冷凝器。减压操作时还需真空装置。兹分述如下:

由于生产要求的不同,蒸发设备有多种不同的结构型式。对常用的间壁传热式蒸发器,按溶液在蒸发器中的运动情况,大致可分为以下两大类:

(1)循环型蒸发器

特点:溶液在蒸发器中做循环流动,蒸发器内溶液浓度基本相同,接近于完成液的浓度。操作稳定。此类蒸发器主要有:

a.中央循环管式蒸发器

b.悬筐式蒸发器

c.外热式蒸发器

d.列文式蒸发器

e.强制循环蒸发器

其中,前四种为自然循环蒸发器。

(2)单程型蒸发器

特点:溶液以液膜的形式一次通过加热室,不进行循环。

优点:溶液停留时间短,故特别适用于热敏性物料的蒸发;温度差损失较小,表面传热系数较大。

缺点:设计或操作不当时不易成膜,热流量将明显下降;不适用于易结晶、结垢物料的蒸发。

此类蒸发器主要有:

a.升膜式蒸发器

b.降膜式蒸发器

c.刮板式蒸发器

2设计条件及设计方案说明

设计方案的确定以及蒸发器选型

本次设计要求采用中央循环管式蒸发器,在工业上被称为标准蒸发器(如图4所示)。其特点是结构紧凑,制造方便,传热较好,操作可靠等优点,应用十分广泛,有"标准蒸发器"之称。它的加热室由垂直的加热管束组成,在管束中央有一根直径很大的管子,称为中央循环管。当管内液体被加热沸腾时,中央循环管内气液混合物的平均密度较大;而其余加热管内气液混合物的平均密度较小。在密度差的作用下,溶液由中央循环管下降,而由加热管上升,做自然循环流动。溶液的循环流动提高了沸腾表面传热系数,强化了蒸发过程。为使溶液有良好的循环,中央循环管的截面积,一般为其余加热管总截面积的40%~100%;加热管

的高度一般为1~2m;加热管径多为25~75mm之间。但实际上,由于结构上的限制,其循环速度一般在~s以下;蒸发器内溶液浓度始终接近完成液浓度;清洗和维修也不够方便。

在蒸发操作中,为保证传热的正常进行,根据经验,每效分配到的温差不能小于5~7℃。通常,对于沸点升高较大的电解质溶液,应采取2~3效。由于本次设计任务是处理KNO3溶液。这种溶液是一种沸点升高较大的电解质,故选用三效蒸发器。另外,由于KNO3溶液是一种粘度不大的料液,故多效蒸发流程采用并流操作。

多效蒸发器工艺设计的主要依据是物料衡算、热量衡算及传热速率方程。计算的主要项目有:加热蒸气(生蒸气)的消耗量,各效溶剂蒸发量以及各效的传热面积等。多效蒸发器的计算一般采用迭代计算法。图4 中央循环管式蒸发器

工艺流程简介

图5 蒸发工艺流程简图

如图5所示,20℃的原料液三台列管式换热器换热后达到泡点进入第Ⅰ效蒸发器,在生蒸汽的给热下蒸发大量水蒸气形成二次蒸汽,同时生蒸汽损失热量发生相变冷凝成水,但此时其温度仍很高,是品味很高的热源,可做为第Ⅲ换热器的热流体,由并流加料法的特点知第Ⅱ效蒸发器压力较第Ⅰ效为低,故第Ⅰ效中产生的大量二次蒸汽作为第Ⅱ效的加热蒸汽进入第Ⅱ效,经加热料液冷凝成冷凝水,但较第Ⅰ效的冷凝水温度为低,作为第Ⅱ换热器的热源对原料液进行预热。第Ⅱ效料液的沸点较第Ⅰ效为低,故第Ⅰ效的完成液一进入第Ⅱ效便成过热状态而立即蒸发出大量二次蒸汽,同理,该二次蒸气作为加热蒸汽进入第Ⅲ效蒸发器,其冷凝水温度进一步降低,只能作为第Ⅰ换热器的热源,对常温下的原料液进行初步的预热。第Ⅲ效蒸发器的二次蒸汽经冷却器冷却,冷凝成水后回收利用。从第三效蒸发器出来的料液已达到所需浓度要求,可输送到储槽储存利用。为实现能量利用的最大化,选择泡点进料,但经换热器Ⅰ~Ⅲ预热后的原料液无法达到泡点,故用高温的过热蒸汽在换热器Ⅳ中对原料液进行进一步加热使其达到泡点。

3. 物性数据及相关计算

蒸发器设计计算

图6 并流加料三效蒸发的物料衡算及热量衡算图

对三效蒸发器进行物料衡算和热量衡算,得到下述结果:

表1 物料计算的结果

效次ⅠⅡⅢ冷凝器加热蒸汽温度,0C

操作压力P'i,kPa2020溶液温度(沸点)t i,0C

完成液浓度x i,%48

蒸发量W i,kg/h

蒸气消耗量D,kg/h

传热面积S i,m2

完成液流量kg/h

换热器设计计算

对换热器进行物料衡算和热量衡算得到如下结果:

表2 物料计算结果

效次ⅠⅡⅢⅣ管程进/出口温度,0C20/49

壳程进/出口温度,0C102

管程流量kg/s

壳程流量kg/s

管程流体密度kg/m31300

壳程流体密度kg/m3

管程流体比热容kJ/(kg?℃)

kJ/(kg?℃)

壳程流体比热容kJ/(kg?℃)

管程流体粘度10-7Pa?s

43000

10-7Pa?s

壳程流体粘度10-7

Pa ?s

145

管程流体热导率W/m ?℃

壳程流体热导率W/m ?℃

表3 换热器结构参数

效次 ⅠⅡⅢ

热流量,KW 5900

传热系数,W/(m 2

K)

600 裕度/% 10 形式 固定板式换热器 壳体内径 mm 273

400

管径 mm 5

.225?φ5

.225?φ管长 mm 2000 3000 管子根数 38 76 台数 3 1 管程数 1 4 管子排列 △

材质 碳钢

管道选材及计算

流体进出口计算公式:

πu 4V d s =

表4 各效冷凝水密度

各效中溶液的平均密度计算:

()/1i i i i i

F F F

V V F FX X ρρρ=

≈==--水水水 31931.7

1045.7/10.109kg m ρ=

=-

32949.91151.4/10.175

kg m ρ==-

33981.0

1886.5/10.48

kg m ρ=

=-

3.3.1料液管道管径的确定

为统一管径,按第Ⅰ效的流量计

算,溶液的适

宜流速按强制流动算,即

u 0.8~15 m /s,u 0.8 m /s ==此处选取则

3S 1F 11000V 0.0029 m /s ρ1045.73600

d 0.06795m =67.95mm ===?=

==

依据钢管的常用规格选为76 3.5mm φ?的标准管。 3.3.2加热蒸汽管道与二次蒸气管道管径的确定

表5 流体的适宜流速

强制流体的液体,m/s 自然流体的液体,m/s

饱和蒸汽,m/s

空气及其他气体,m/s

~15

20~30

15~20

饱和蒸汽适宜的流速

u 20~30 m /s, u 30 m /s ==气此处取

为统一管径,取体积流量最大的末效流量为计算管径的体积流量,则

3333W 3190.9

V 6.7816m /s ρ0.13073600d 0.5366m =536.6mm

S ===?=

=

=气

依据无缝钢管的常用规格选用为60010mm φ?的标准管。

3.3.3冷凝水管道管径的确定

冷凝水的排出属于自然流,u 0.08~0.15 m /s, u 0.15 m /s ==冷凝水设 分别计算各效冷凝水的管径:

43S11D 2764.1V 8.2410 m /s ρ931.73600

-'===??水

31d 1083.65mm '=

==

431S22W 2897.5V 8.4710 m /s ρ949.93600

-'===??水

32d 1084.83 mm '=

==

432S33W 3190.9V 9.0410 m /s ρ981.03600

-'===??水

33d 1087.60mm '=

==

为统一管径,取计算得到各效最大的管径为设计的管径,则

3d 87.60mm '=

依据无缝钢管的常用规格选用直径为95 3.5mm φ?的标准管。

表6 主要管道尺寸的确定

加热管主要结构 设计尺寸

料液输送管道管径

76 3.5mm φ?

加热蒸气与二次蒸气输送管道管径

60010mm φ? 冷凝水管道管径

95 3.5mm φ?

管材的选择

在进行压力管道设计时,管径经计算确定以后,就要选择管子的材料。压力管道常用管子材料的使用是根据所输送介质的操作条件(如压力、温度)及其在该条件下的介质特性决定

的。材料选择不当,会造成浪费或埋下事故隐患。如可以用普通材料的管子时,选用了较昂

贵材料的管子,就增加了不必要的基建投资。该用耐酸不锈钢的场合用了碳钢就会直接影响

压力管道的正常运行,甚至留下祸根。所以在选择管子材料时,要求设计人员首先要了解管

子的种类、规格、性能、使用范围,最好还要调查该管子在其他类似的压力管道的应用情况,

再根据以下的原则确定管子的材料。

(1)优先选用的管材

在选用管子材料时,一般先考虑采用金属材料,金属材料不适用时,再考虑非金属材料。金属材料优先选择钢制管材,后考虑选用有色金属材料。钢制管材中,先考虑采用碳钢,不适用时再选用不锈钢。在考虑碳钢材料时,先考虑焊接钢管,不适用时再选用无缝钢管。

(2)介质压力的影响

输送介质的压力越高,管子的壁厚就越厚,对管子材料的要求一般也越高。介质压力在1.6MPa以上时,可选用无缝钢管或有色金属管子。压力很高时,如在合成氨、尿素和甲醇生产中,有的管子介质压力高达32MPa,一般选用材料为20钢或15MnV的高压无缝钢管。在真空设备上的管子及压力大于10MPa时的氧气管子,一般采用铜管和黄铜管。介质压力在1.6MPa以下时,可考虑采用焊接钢管、铸铁管或非金属管子。但铸铁管子承受介质的压力不得大于1.0MPa。非金属管子所能承受的介质压力,与非金属材料品种有关,如硬聚氯乙烯管子,使用压力小于或等于1.6MPa;增强聚丙烯管子,使用压力小于或等于1.0MPa;ABS管子,使用压力小于或等于0.6MPa。对水管,当水的压力在1.0MPa 以下时,通常采用材料为Q235A的焊接钢管;当水的压力大于2.5MPa时,一般采用材料为20钢的无缝钢管。

(3)介质温度的影响

不同材料的管子,适用于不同的温度范围。压力为1.0MPa的氢气,当氢气的温度小于350℃时,一般采用20无缝钢管,当氢气的温度在351~400℃范围时,一般采用15MnV 或12CrMo无缝钢管。

表7 不同材料管道的使用温度范围

(4)介质化学性质的影响

输送不同介质,采用不同的管材。有的介质呈中性,一般对材料要求不高,可选用普通碳钢管;有的介质呈酸性或碱性,就要选择耐酸或耐碱的管材。强酸强碱与弱酸弱碱对管子的材料要求也不一样,同样的酸或碱,浓度不同对管子的材料要求也有区别。如输送水及水蒸汽,采用碳钢材料的管子就可以了。如在尿素装置中,输送二氧化碳的管子,一般采用不锈钢管,因为二氧化碳遇水形成碳酸,碳酸对一般钢管有腐蚀作用。如发烟硫酸可选用碳钢管子,稀硫酸就不得用碳钢管子,因为稀硫酸和碳钢能起化学反应,对碳钢有腐蚀,可采用硬铝管。

(5)管子本身功能的影响

有些管子除需具备输送介质的功能外,还要具有吸震的功能、吸收热胀冷缩的功能,在工作状况下,能经常移动的功能。如民用液化石油气、氧气、乙炔气在灌瓶的部位,管子常采用高压钢丝编织胶管,而不能使用移动不方便的硬质钢管。

(6)常用管道的类型

一般用途及选用材料情况参见下表:

综上原则,原料液输送的KNO3水溶液温度和压力较低,呈中性,腐蚀性较小,使用碳素无缝钢管。蒸汽压力和温度也较低,选用焊接钢管。

4对本次设计任务的评价

刚刚开始这项工作的时候,我的队友们都感到很迷茫,不知道该从什么地方入手,因为

有很多东西都要我们亲自去查,拖了好久终于入手了,但是知道怎么做以后发现更难,和以

前那种单纯的单元操作根本是两个概念,那段时间由于我又在准备考试的事情没有多少时间

帮他们,说实话我感到特别惭愧,我发自内心的感谢我的队友们。

这个设计的难点是需要我们去查原料的各种物性,查处了以后还要进行各种计算,比如

物料衡算和热量衡算,其次就是设备的选型和连接方式,蒸发器是采用并联还是采用串联都

是我们要认真思考的地方。个人觉得最难的地方是热量衡算,因为很多地方需要估算,怎么

估算呢这需要我们有扎实的基础知识,需要化工热力学和物理化学知识。所以我觉得我们不要好高骛远一定要注重基础知识的学习,好的基础是做好工作的前提。

从这次合作当中我终于真正明白三个和尚没水喝的道理,有时候并不是人越多越好,关键是每个人都要发挥自己的作用,如果都把责任推给别人,那这项工作将永无完成之日。既然是团队合作,那就要多多交流,做好自己的本职工作,这样才能把事情做好。

参考文献

[1] 大连理工大学化工原理教研室《化工原理》。

[2] 天津大学化工原理教研室《化工原理》。

[3] 国家医药管理局上海医药设计院《化工工艺设计手册》。

[4] 《化学工程手册》编辑委委员会:《化学工程手册(第8篇)传热设备及工业生产》、

《化学工程手册(第9篇)蒸发与结晶》。

[5] 贺匡国主编《化工容器及设备简明设计手册》。

[6] 华东化工学院,浙江大学合编《化工容器设计》。

[7] 茅晓东,李建伟编《典型化工设备机械设计指导》。

[8] 兰州石油机械研究所. 换热器(上册). 烃加工出版社,1986

天然气输气管道设计与管理

一、天然气概况 1、天然气定义:从地下开采出来的可以燃烧的气体 2、天然气来源:气田气,油田气。 3、天然气组成:60%~90%为甲烷和乙烷,10%~40%的丙,丁,戊烷及重烃,在工标状态下只有甲、乙、丙、丁烷为气态,其余都为液态。 二、输气管道概况 1、输气管道分类:矿场集气管道,干线输气管道,城市配气管网 2、世界著名大型输气管道:前苏联乌连戈依——中央输气管道,全系统由6条输气干线组成,最著名的属亚马尔输气管道。该管道在苏联境内长4451km,建设了41座压缩机站和2座冷却站,经西西伯利亚地区穿越水域

945km,穿越河流700余处。 3、中沧线是中国第一次采用燃气轮机驱动离心压缩机输送油田伴生气的输气管线。 4、西气东输管线包括:青海涩北至甘肃兰州(2000年开工,02年竣工投产),重庆忠县至武汉(2000年开工),塔里木至上海(02年7开工,全长400多千米,管径1016mm,操作压力10MPa) 5、中国未来十年管网总体布局:两纵,两横,四枢纽(在北京,上海,信阳和武汉设立调度中心或分调度中心),五气库(在北京,上海,大庆,山东,和南阳建立地下储气库) 6、管道防腐技术:从简单的人工除锈刷漆发展到外涂层与阴极保护和牺牲阳极相结合的联合保护。自1964年开始使用阴极保护到今天,所有的输气管道上都建有阴极保护站,单站保护长度可达50~80km. 输气管道的主要工艺设备包括压缩机组,阀门,计量设备和调压设备。 三、天然气的性质 1、天然气的分类 (1)按矿藏特点分:纯气藏天然气(在天然气开发过程中,不论何阶段流体在地层中均成气体,采出地面后可能有部分液体析出),凝析气藏天然气(矿藏流体在地层原始状态呈气态,但开采到一定阶段,随地层压力减小有部分烃类在地层中呈液态析出),油田伴生天然气(与原油共存,开采时与原油同时被采出,经油气分离得到的天然气) (2)按烃类组分关系分:干气(地层中呈气态,开采出后在管线设备中也不会有液态烃析出),湿气(地层中呈气态,在一般地面设备的温度、压力

输气管道工程设计条件

一、基础资料 1 需业主提供的基础资料 开展输气管道工程设计前业主至少应提供下列资料,但不限于: 1.1 设计任务书或设计委托书; 1.2 资源与市场数据。 1.3 技术要求,至少应包括: 1)管道的起、终点、系统功能、建设水平、质量要求; 2)管输气体的来源及物性; 3)管道的任务输量、最小输量、最大输量; 4)管道沿线天然气的分输或注入要求; 5)管道用户用气特点及不均匀系数; 6)上游供气方不同年份供气量及供气压力; 7)不同年份用户用气量及用气压力需求; 8)工期要求。 1.4 管网规划及与拟建管道有关的已建的管道系统状况。 1.5 业主对工程管理的要求。 1.6 经济评价与概算资料 1)资金来源及贷款方式; 2)工程建设期及分年度投资比例; 3)类似工程投资及施工情况。 2 现场需要收集的外部接口资料 2.1 自然状况资料 1 管道沿线行政区划及地方志,沿线城市、乡镇发展规划。 2 管道沿线地形、地貌及植被分布情况; 3 管道沿线资源情况,包括:矿产、农业、林业、牧业、渔业、动植物、文物保护区分布等; 4 管道沿线重要设施分布,包括:军事设施、铁路枢纽、机场、码头、水库等的分布和发展计划; 5 管道沿线附近已建管线和构筑物的情况; 6 管道沿线重大项目的建设与规划; 7 基本气象资料。根据工程规模和建设水平的要求,气象资料宜为近10、20、30 年和50 年的统计数据。包括:全年平均气温、最冷月平均气温、极端最高温度、极端最低温度;管道埋深处最高、最低、和最冷月平均地温,标准冻土深度和最大冻土深度;降雨量(当地采用的降雨量计算公式,年和逐月的平均、最大、最小降雨量、最大强度降雨量、连续降雨最多的天数)、降雪量(初雪日、终雪日、连续降雪时间、最大积雪深度)、蒸发量,年平均日照、雷电日、沙尘暴天数,冰凌、冰雹强度;相对湿度;海拔高度;当地平均大气压;近年各月最大风速及各月风向、频率或全年的和夏季的风向频率玫瑰图、最大风速和风压值、静风出现的日期和持续时间、风暴和风沙出现的时间和状况。 8 沿线人文资料; 9 沿线水利设施、水利规划及水利部门的有关规定;

机械设计基础课程设计计算说明书模版.

机械设计基础课程设计 计算说明书 题目: 一级齿轮减速器设计 学院:生物科学与工程学院 班级:10级生物工程2班 设计者:詹舒瑶 学号:201030740755 指导教师:陈东 2013年 1 月16 日

目录 一、设计任务书……………………………………………………………………………… 1.1 机械课程设计的目的………………………………………………………………… 1.2 设计题目……………………………………………………………………………… 1.3 设计要求……………………………………………………………………………… 1.4 原始数据……………………………………………………………………………… 1.5 设计内容……………………………………………………………………………… 二、传动装置的总体设计…………………………………………………………………… 2.1 传动方案……………………………………………………………………………… 2.2 电动机选择类型、功率与转速……………………………………………………… 2.3 确定传动装置总传动比及其分配………………………………………………… 2.4 计算传动装置各级传动功率、转速与转矩……………………………………… 三、传动零件的设计计算…………………………………………………………………… 3.1 V带传动设计…………………………………………………………………………… 3.1.1计算功率…………………………………………………………………………… 3.1.2带型选择…………………………………………………………………………… 3.1.3带轮设计…………………………………………………………………………… 3.1.4验算带速…………………………………………………………………………… 3.1.5确定V带的传动中心距和基准长度……………………………………………… 3.1.6包角及其验算……………………………………………………………………… 3.1.7带根数……………………………………………………………………………… 3.1.8预紧力计算………………………………………………………………………… 3.1.9压轴力计算………………………………………………………………………… 3.1.10带轮的结构………………………………………………………………………… 3.2齿轮传动设计…………………………………………………………………………… 3.2.1选择齿轮类型、材料、精度及参数……………………………………………… 3.2.2按齿面接触疲劳强度或齿根弯曲疲劳强度设计………………………………… 3.2.3按齿根弯曲疲劳强度或齿面接触疲劳强度校核………………………………… 3.2.4齿轮传动的几何尺寸计算………………………………………………………… 四、铸造减速器箱体的主要结构尺寸……………………………………………………… 五、轴的设计………………………………………………………………………………… 5.1高速轴设计……………………………………………………………………………… 5.1.1选择轴的材料……………………………………………………………………… 5.1.2初步估算轴的最小直径…………………………………………………………… 5.1.3轴的机构设计,初定轴径及轴向尺寸…………………………………………… 5.2低速轴设计……………………………………………………………………………… 5.2.1选择轴的材料……………………………………………………………………… 5.2.2初步估算轴的最小直径…………………………………………………………… 5.2.3轴的机构设计,初定轴径及轴向尺寸…………………………………………… 5.3校核轴的强度…………………………………………………………………………… 5.3.1求支反力、弯矩、扭矩计算……………………………………………………… 5.3.2绘制弯矩、扭矩图………………………………………………………………… 5.3.3按弯扭合成校核高速轴的强度……………………………………………………

输气管道课程设计

输气管道课程设计 姓名:李轩昂 班级:油储1541 学号:201521054114 指导教师:任世杰

目录 前言------------------------------------------------------------------------------------------------- 4第一章设计概述---------------------------------------------------------------------------------- 5 1.1设计原则--------------------------------------------------------------------------------- 5 1.2 管道设计依据和规范----------------------------------------------------------------- 5 1.3长输气管道设计原始资料------------------------------------------------------------ 6 1.3.1天然气管道的设计输量 ------------------------------------------------------- 6 1.3.2气源特性 ------------------------------------------------------------------------- 6 1.3.3气源处理 ------------------------------------------------------------------------- 6 1.3.4管道设计参数 ------------------------------------------------------------------- 7 1.3.5基本经济参数 ------------------------------------------------------------------- 7第2章管道工艺计算---------------------------------------------------------------------------- 9 2.1天然气物性参数计算------------------------------------------------------------------ 9 2.1.1天然气的平均分子质量、平均密度和相对密度------------------------- 9 2.1.2天然气压缩因子的计算 ------------------------------------------------------- 9 2.1.3天然气粘度计算 -------------------------------------------------------------- 10 2.1.4定压摩尔比热 ----------------------------------------------------------------- 10 2.2输气管道水力计算------------------------------------------------------------------- 11 2.2.1雷诺数的计算 ----------------------------------------------------------------- 11 2.2.2管道内压力的推算 ----------------------------------------------------------- 12 2.2.3管道壁厚推算 ----------------------------------------------------------------- 12 2.3输气管道热力计算------------------------------------------------------------------- 12 2.3.1总传热系数 -------------------------------------------------------------------- 12 2.3.2天然气的平均地温 ----------------------------------------------------------- 13 2.3.3考虑气体的节流效应时输气管沿管长任意点的温度计算----------- 13 2.4管道工艺计算结果------------------------------------------------------------------- 14 2.4.1首站到分输站1 --------------------------------------------------------------- 14 2.4.2分输站1到分输站2 --------------------------------------------------------- 14 2.4.3分输点2到末点 -------------------------------------------------------------- 15

化工单元操作课程设计

《化工单元操作》 课程整体教学设计(2014~ 2015学年第二学期) 课程名称:化工单元操作 所属系部:化工学院 制定人:宋丽萍 合作人:吴晓滨 制定时间: 2015年1月20日 包头轻工职业技术学院

课程整体教学设计 一、课程基本信息 课程名称:化工单元操作 课程代码:181103 学分:20 学时:360 授课时间:第二学期授课对象:三年制专科 课程类型:应用化工技术专业职业能力必修课。 先修课程:化工机械基础后续课程:现代煤化工生产技术 二、课程定位 《化工单元操作》课程面向的岗位有:管路安装、泵及其他动设备操作、流量控制、压力控制、温度控制、DCS控制操作、设备保全等。《化工单元操作》安排在《化工机械基础》之后,《现代煤化工生产技术》之前的一门专业基础课,时间安排在第三学期。其主要内容是以化工生产中的物理加工过程为背景,依据操作原理的共性,分成为若干单元操作过程,通过项目训练,掌握各单元典型设备的操作技能及设备选用原则和技能,学习各单元操作的基本原理、基本计算。中职定位:单元设备简单操作 本科定位:单元设备工作原理及生产能力设计 培训地位:单元设备工作原理简介 三、课程目标设计 总体目标: 本课程是应用化工技术专业专业核心类课程,专业课程体系符合高技能人才培养目标和

专业相关技术领域职业岗位(群)的任职要求,本课程对学生职业能力培养和职业素养养成起主要支撑或明显促进作用,与高等数学、无机化学、有机化学、化工图纸识用与绘制、物理化学等前续课程密切衔接,为后续课程《化工设计概论》、《化工工艺学》、《化工顶岗实习》、《毕业设计》等打下坚实的基础。同时注重培养学生的方法能力、社会能力,最终形成化工生产的职业综合能力。 能力目标: 1、能运用流体力学知识,根据输送流体的性质,正确选用管道及安装。根据输送机械设备操作规范,操作常见泵的开启与调节。根据输送机械设备操作规范,操作常见泵的开启与调节。 2、能运热量传递知识,根据传热设备的操作要求,操作和维护传热设备。 3、能运用蒸发原理知识,根据蒸发设备的操作要求,操作和维护蒸发设备。 4、能运用蒸馏原理知识,根据蒸馏设备的操作要求,操作和维护蒸馏设备。 知识目标:(知道...;了解…;理解…;掌握…。) 1、知道流体力学,了解其基本内容,理解流体动力学的基本概念,掌握机理及基本计 算方法; 2、知道非均相物系分离的基本原理,重力沉降和过滤的基本概念及相关计算;掌握 3、知道传热单元,了解传热过程,理解传热原理,掌握热量传递过程中的传热单元操 作的基本概念及传热基本方程; 4、知道吸收,了解吸收过程,理解吸收原理,掌握气体吸收的基本原理及其相关计算; 5、掌握两组分溶液精馏的原理和流程,精馏塔的操作及设计计算方法; 6、掌握干燥过程的基本概念,熟悉湿空气的性质及湿度图的应用,干燥过程的相关计 算。 素质目标:(职业道德、职业素质、职业规范在本课中的具体表现) 1、进入工作环境,必须穿着工作服、安全帽、工作鞋等。 2、不能随意触动设备。 3、操作设备要严格按照操作规程进行操作。 4、保持工作环境的卫生。 5、保持节俭节约。 四、课程内容设计:(包括顶岗实习、项目实施等,项目小于内容)

汽车设计课程设计--计算说明书..

汽车设计课程设计说明书 题目:曲柄连杆机构受力分析 设计者:侯舟波 指导教师:刘忠民吕永桂 2010 年 1 月18 日

一、课程设计要求 根据转速、缸内压力、曲柄连杆机构结构参数,计算发动机运转过程中曲柄连杆机构受力,完成计算报告,绘制曲柄连杆机构零件图。 1.1 计算要求 掌握连杆往复惯性质量与旋转离心质量折算方法; 掌握曲轴旋转离心质量折算方法; 掌握活塞运动速度一阶、二阶分量计算方法; 分析活塞侧向受力与往复惯性力及相应设计方案; 分析连杆力及相应设计方案; 采用C语言编写曲柄连杆机构受力分析计算程序; 完成曲柄连杆机构受力计算说明书。 1.2 画图要求 活塞侧向力随曲轴转角变化 连杆对曲轴推力随曲轴转角变化 连杆轴承受力随曲轴转角变化 主轴承受力随曲轴转角变化 活塞、连杆、曲轴零件图(任选其中两个) 二、计算参数 2.1 曲轴转角及缸内压力参数 曲轴转速为7000 r/min,缸内压力曲线如图1所示。 图1 缸内压力曲线 2.2发动机参数 本计算过程中,对400汽油机进行运动和受力计算分析,发动机结构及运动参数如表1所示。

表1 发动机主要参数 参数 指标 发动机类型 汽油机 缸数 1 缸径D mm 91 冲程S mm 63 曲柄半径r mm 31.5 连杆长l mm 117 偏心距e mm 0 排量 mL 400 活塞组质量'm kg 0.425 连杆质量''m kg 0.46 曲轴旋转离心质量k m kg 0.231 标定功率及相应转速 kw/(r/min ) 17/7500 最高爆发压力 MPa 5~6MPa 三、计算内容和分析图 3.1 运动分析 3.1.1曲轴运动 近似认为曲轴作匀速转动,其转角,t t t n 3 7006070002602π ππα=?== s rad s rad dt d /04.733/3700≈== π αω 3.1.2活塞运动规律 图2 中心曲轴连杆机构简图

排水工程课程设计 (1)

吉林师范大学环境科学与工程学院 课程设计报告 课程名称:排水工程 设计题目:某城市排水管网初步设计 姓名:傅浩然 专业:环境工程 班级:二班 学号: 指导教师:刘浩 2016年11 月7日

摘要:本次的排水管网课程设计任务是进行某城镇的污水管网的初步设计。根据课程设计任务书上所提供的各种数据及材料,并结合参考文献上的公式和经验数据,本次设计采用雨水污水分流制排放体系。具体内容包括污水干管及主干管的排水管网布置,首先在所提供的城市平面上进行排水管网的初步设计,此时需要考虑流量要求、施工条件、成本节约等因素。其后确定管网排布设计无误后,进行排水设计管段的水力计算,其中包括各

设计管段的管长、设计流量、管道数据的选取(流量、流速、管径、充满度)、管道输水能力、标高(地面、管内水面、管内底)、以及管道埋深等等。 关键词:主干管干管支管 目录 1 设计任务及设计资料 (1) 课程设计任务 (1) 1.2 课程设计原始资料 (1) 1.2.1 城市规划资料 (1) 1.2 .2课程设计原始资料 (1) 1.2 .3课程设计原始资料 (2) 1.3 课程设计原始资料 (2) 1.课程设计原始资料 (2) 1.3.2 课程设计原始资料 (3) 1.3.3 课程设计原始资料 (3)

2 污水管道设计计算 (4) 在小区平面图上布置污水管道 (4) 街区编号并计算其面积 (4) 划分设计管段,计算设计流量 (4) 水力计算 (7) 2.4.1水力计算 (7) 2.4.2水力计算 (7) 2.4.3水力计算 (8) 2.4.4水力计算 (8) 2.4.5水力计算 (8) 2.4.6水力计算 (9) 3 绘制管道平面图和纵剖面图见附录 (10) 4 结论 (10)

输气管道设计

天然气输气管道设计 1 管道材质及壁厚选择 壁厚 F D P S H H σδ2= H P —设计压力,MPa ; H D —管道的外径,mm ; S σ—所选钢材的最小屈服强度,MPa ; F —根据地区等级确定的设计系数; 2 管道轴向应力及稳定性验算 h l t t E μσασ+-=)(21 σ σ2Pd h = l σ—管道轴向应力,MPa ; E —钢材的弹性模量,为51006.2?MPa ; α—钢材的线性膨胀系数,取5102.1-?MPa ; 1t —管线安装温度,C 0; 2t —管线工作温度,C 0; μ—泊松比,取0.3;

h σ—管线的环向应力,MPa ; P —管道内压,MPa ; d —钢管内径,cm ; σ—钢管的公称壁厚,cm ; 应力满足如下条件: s l h σσσ9.0<- 敷设: 弯头的曲率半径大于等于4倍管外直径,并应满足清管器或检测仪器能顺利通过管道要求。 试压。

工艺说明,,, 1物理和热力性质(平均分子量,相对密度,平均密度,热值) 2压缩因子相关方程式。(Gopal 的相关方程式) 3定压摩尔比热(根据干线输气管道实用工艺计算方法) 4焦—汤系数(根据干线输气管道实用工艺计算方法) 二,水力计算 1雷诺数Re 2水力摩阻系数λ 三,输气管道内径 δ2-=H B D D

强度设计系数 地区等级 强度系数 一级地区 0.72 二级地区 0.6 三级地区 0.5 四级地区 0.4 2压力 (1)压缩机入口压力εH B P P = =设计压力/压比 (2)起点压力 211P P P P H δδ--= 1P δ—压缩机与干线输气管之间连接管线的压力损失,输气工作压力 为7.5~10MPa 时,1P δ≈0.05~0.07MPa 2P δ—天然气冷却系统的压力损失,按照“标准”取0.0588MPa (3)终点压力 32P P P B δ+= B P —压缩机入口压力;

输气管道设计规范 GB50251-2003

1 总则 1.0.1 为在输气管道工程设计中贯彻国家的有关法规和方针政策,统一技术要求,做到技术先进、经济合理、安全适用、确保质量,制订本规范。 1.0. 2 本规范适用于陆上输气管道工程设计。 1.0.3 输气管道工程设计应遵照下列原则: 1 保护环境、节约能源、节约土地,处理好与铁路、公路、河流等的相互关系; 2 采用先进技术,努力吸收国内外新的科技成果; 3 优化设计方案,确定经济合理的输气工艺及最佳的工艺参数。 1.0.4 输气管道工程设计除应符合本规范外,尚应符合国家现行有关强制性标准的规定。 2 术语 2.O.1 管输气体 pipeline gas 通过管道输送的天然气和煤气。 2.O.2 输气管道工程 gas transmission pipeline project 用管道输送天然气和煤气的工程。一般包括输气管道、输气站、管道穿(跨)越及辅助生产设施等工程内容。 2.O.3 输气站 gas transmission station 输气管道工程中各类工艺站场的总称.一般包括输气首站、输气末站、压气站、气体接收站、气体分输站、清管站等站场。

2.O.4 输气首站 gas transmission initial station 输气管道的起点站。一般具有分离,调压、计量、清管等功能。 2.O.5 输气末站 gas transmission terminal station 输气管道的终点站。一般具有分离、调压、计量、清管、配气等功能。 2.O.6 气体接收站 gas receiving station 在输气管道沿线,为接收输气支线来气而设置的站,一般具有分离、调压、计量、清管等功能。 2.O.7 气体分输站 gas distributing station 在输气管道沿线,为分输气体至用户而设置的站,一般具有分离、调压、计量、清管等功能。 2.O.8 压气站 compressor station 在输气管道沿线,用压缩机对管输气体增压而设置的站。 2.0.9 地下储气库 underground gas storage 利用地下的某种密闭空间储存天然气的地质构造。包括盐穴型、枯竭油气藏型、含水层型等。 2.O.10 注气站 gas injection station 将天然气注入地下储气库而设置的站。 2.O.11 采气站 gas withdraw station 将天然气从地下储气库采出而设置的站。 2.O.12 管道附件 pipe auxiliahes 指管件、法兰、阀门、清管器收发筒、汇管、组合件、绝缘法兰或绝缘接头等管道专用承压部件。

机械课程设计计算说明书

机械课程设计 计算说明书 ——题目D4.机械厂装配车间输送带传动装置设计 机电工程学院机自11-8 班 设计者cqs 指导老师tdf 2014年1月15号 中国矿业大学

目录 第一章机械设计任务书 机械课程设计任务书 (2) 第二章机械课程设计第一阶段 2.1、确定传动技术方案 (3) 2.2、电动机选择 (4) 2.3、传动件的设计 (6) 第三章机械课程设计第二阶段 3.1装配草图设计第一阶段说明 (23) 3.2轴的设计及校核 (23) 3.3轴承的设计及校验 (28) 3.4键的设计及校验 (22) 第四章机械课程设计第三阶段 4.1、轴与齿轮的关系 (30) 4.2、端盖设计 (30) 4.3、箱体尺寸的设计 (32) 4.4、齿轮和轴承的润滑 (34) 第五章机械课程设计小结 机械课程设计小结 (34) 附1:参考文献

第一章机械设计课程设计任务书 题目D3.机械厂装配车间输送带传动装置设计 图1:设计带式运输机传动装置(简图如下) 一、设计要求 1、设计条件: 1)机器功用由输送带传送机器的零部件; 2)工作情况单向运输、轻度振动、环境温度不超过35℃; 3)运动要求输送带运动速度误差不超过5%; 4)使用寿命10年,每年350天,每天16小时; 5)检修周期一年小修;两年大修; 6)生产批量单件小批量生产; 7)生产厂型中型机械厂 2、设计任务 1)设计内容1、电动机选型;2、带传动设计;3、减速器设计;4、联轴器选型设计;5、其他。 2)设计工作量1、传动系统安装图1张;2、减速器装配图1张;3、零件图2张;4、设计计算说明书一份。 3、原始数据 主动滚筒扭矩(N·m):800 主动滚筒速度(m/s):0.9 主动滚筒直径(mm):300

给排水管道系统课程设计报告

《给水排水管道系统》课程设计 计算说明书 题目:杭州市给水排水管道工程设计 学院:市政与环境工程学院 专业:给排水科学与工程 姓名: 学号:02 指导老师:谭水成张奎宋丰明刘萍 完成时间:2013年12月25日

河南城建学院 2013年12月25日 前言 给水排水管道工程是给水排水工程的重要组成部分,可分为给水管道工程和排水管道工程两大类。 给水管道工程是论述水的提升,输送,贮存,调节和分配的科学。其最基本的任务是保证水源的原料水送至水处理构筑物及符合用户用水水质标准的水输送和分配到用户。这一任务是通过水泵站,输水管,配水管网及调节构筑物等设施的共同工作来实现的,它们组成了给水管道工程。设计和管理的基本要求是以最少的建中造费用和管理费用,保证用户所需的水量和水压,保证水质安全,降低漏损,并达到规定的可靠性。 给水排水管网工程是给水排水工程中很重要的组成部分,所需(建设)投资也很大,同时管网工程系统直接服务于民众,与人们生活和生产活动息息相关,其中任一部分发生故障,都可能对人们生活、生产及保安消防等产生极大影响。因此,合理地进行给水排水管道工程规划、设计、施工和运行管理,保证其系统安全经济地正常运行,满足生活和生产的需要,无疑是非常重要的。 室外给水排水工程是城镇建设的一个重要组成部分,其主要任务就是为城镇提供足够数量并符合一定水质标准的水;同时,把人们在生活、生产过程使用后的污水汇集并输送到适当地点进行净化处理,达到一定水质标准后,或重复使用,或灌溉农田,或排入水体。 室内给水排水工程的任务是将室外给水系统输配的净水组织供应到室内各个用水点,将用后的污水排除汇集到室外排水系统中去。 做为工程类专业学生,实践学习和设计是我们自身获取知识和经验的最好环节。学

输气管道工程设计规范2015

输气管道工程设计规范 1 总则 2 术语 3 输气工艺 3.1一般规定 3.1.1 输气管道的设计输送能力应按设计委托书或合同规定的年或日最大输气量计量。当采用年输气量时,设计年工作天数应按350d计算。 3.1.2进入输气管道的气体应符合现行国家标准《天然气》GB17820中二类气的指标,并应符合下列规定: 1 应清除机械杂质; 2 露点应比输送条件下最低环境温度低5℃; 3 露点应低于最低环境温度; 4 气体中硫化氢含量不应大于20mg/m3; 5 二氧化碳含量不应大于3%。 3.1.3 输气管道的设计压力应根据气源条件、用户需求、管材质量及管道附近的安全因素,经技术经济比较后确定。 3.1.4 当输气管道及其附近已按现行国家标准《钢质管道外腐蚀控制规范》GB/T21447和《埋地钢质管道阴极保护技术规范》GB/T21448的要求采取了防腐措施时,不应再增加管壁的腐蚀裕量。 3.1.5 输气管道应设清管设施,清管设施与输气站合并建设。 3.1.6 当管道采用内壁减阻涂层时,应经技术经济比较确定。 3.2工艺设计 3.2.1工艺设计应根据气源条件、输送距离、输送量、用户的特点和要求以及与已建管网和地下储气库容量和分布的关系,对管道进行系统优化设计,经综合分析和技术经济对比后确定。 3.2.2 工艺设计应确定下列内容: 1 输气总工艺流程; 2 输气站的工艺参数和流程; 3 输气站的数量及站间距; 4 输气管道的直径、设计压力及压气站的站压比。

3.2.3 工艺设计中应合理利用气源压力。当采用增压输送时,应结合输量、管径、输送工艺、供电及运行管理因素,进行多方案技术经济必选,按经济和节能的原则合理选择压气站的站压比和确定站间距。 3.2.4 压气站特性和管道特性应匹配,并应满足工艺设计参数和运行工况变化的要求。再正常输气条件下,压缩机组应在高效区内工作。 3.2.5 具有分输或配气功能的输气站宜设置气体限量、限压设施。 3.2.6 当输气管道起源来自油气田天然气处理厂、地下储气库、煤制天然气工厂或煤层气处理厂时,输气管道接收站的进气管线上应设置气质监测设施。 3.2.7 输气管道的强度设计应满足运行工况变化的要求。 3.2.8 输气站宜设置越站旁通。 3.2.9进、出输气站的输气管线必须设置截断阀,并应符合现行国家标准《石油天然气工程设计防火规范》GB50183的有关规定。 3.3 工艺设计与分析 3.3.1 输气管道工艺设计至少应具备下列资料: 1 管道气体的组成; 2 气源的数量、位置、供气量及其可变化范围; 3 气源的压力、温度及其变化范围; 4 沿线用户对供气压力、供气量及其变化的要求。当要求利用管道储气调峰时,应具备用户的用气特性曲线和数据; 5 沿线自然环境条件和管道埋设处地温。 3.3.2 输气管道水力计算应符合下列规定: 1 当输气管道纵断面的相对高差Δh ≤200m 且不考虑高差影响时,应按下式计算: 5.052221)(1051???????-=TL Z d P P q v λ (3.3.2—1) 式中:v q ——气体(P 0=0.101325MPa ,T=293K )的流量(m 3/d ); P 1——输气管道计算段的起点压力(绝)(MPa ); P 2——输气管道计算段的终点压力(绝)(MPa ); d ——输气管道内径(cm ); λ——水力摩阻系数; Z ——气体的压缩因子; ?——气体的相对密度; T ——输气管道内气体的平均温度(K ); L ——输气管道计算段的长度(km )。 2 当考虑输气管道纵断面的相对高差影响时,应按下列公式计算: 5 .01152221)(21)1(1051??? ?????????????????++??+-=∑=-n i i i i v L h h L TL Z d h P P q αλα (3.3.2—2)

甲醇冷凝冷却器的设计

化工单元操作课程设计

目录 一、设计任务书 (2) 二、设计方案 (3) 1、确定设计方案 (3) 2、确定物性数据 (3) 3、计算总传热系数 (4) 4、计算传热面积 (5) 5、工艺结构尺寸 (5) 6、换热器核算 (7)

设计任务书 1、设计题目 甲醇冷凝冷却器的设计 2、设计任务及操作条件 (1)处理能力11000 kg/h甲醇。 (2)设备形式列管式换热器 (3)操作条件 ①甲醇:入口温度64℃,出口温度50℃,压力为常压。 ②冷却介质:循环水,入口温度30℃,出口温度40℃,压力为0.3MPa。

③允许压降:不大于105 Pa。 ④每年按330天计,每天24小时连续运作。 3、设计要求 选择适宜的列管式换热器并进行核算。 设计方案1.确定设计方案 (1)选择换热器的类型

两流体温度变化情况: 热流体进口温度64℃,出口温度50℃冷流体。 冷流体进口温度30℃,出口温度40℃。 从两流体温度来看,换热器的管壁温度和壳体壁温之差不会很大,因此初步确定选用列管式换热器。 (2)流动空间及流速的确定 由于循环冷却水易结垢,为便于清洗,应使冷却水走管程,甲醇走壳程。另外,这样的选择可以使甲醇通过壳体壁面向空气中散热,提高冷却效果。同时,在此选择逆流。选用φ25mm ×2.5mm 的碳钢管,管内流速取u i = 0.6 m/s 。 2、确定物性数据 定性温度:可取流体进出口温度的平均值。 壳程甲醇的定性温度为: 6450572 +T ==℃ 管程循环水的定性温度为: ℃=+= 352 40 30t 根据定性温度,分别查取壳程和管程流体的有关物性数据。

输气管道工程设计规范,gb50251-2015

输气管道工程设计规 范,gb50251-2015 篇一:输气管道设计规范GB50251-2003 1 总则 1.0.1 为在输气管道工程设计中贯彻国家的有关法规和方针政策,统一技术要求,做到技术先进、经济合理、安全适用、确保质量,制订本规范。 1.0. 2 本规范适用于陆上输气管道工程设计。 1.0.3 输气管道工程设计应遵照下列原则: 1 保护环境、节约能源、节约土地,处理好与铁路、公路、河流等的相互关系; 2 采用先进技术,努力吸收国内外新的科技成果; 3 优化设计方案,确定经济合理的输气工艺及最佳的工艺参数。 1.0.4 输气管道工程设计除应符合本规范外,尚应符合国家现行有关强制性标准的规定。 2 术语 2.O.1 管输气体pipeline gas

通过管道输送的天然气和煤气。 2.O.2 输气管道工程gas transmission pipeline project 用管道输送天然气和煤气的工程。一般包括输气管道、输气站、管道穿(跨)越及辅助生产设施等工程内容。 2.O.3 输气站gas transmission station 输气管道工程中各类工艺站场的总称.一般包括输气首站、输气末站、压气站、气体接收站、气体分输站、清管站等站场。 2.O.4 输气首站gas transmission initial station 输气管道的起点站。一般具有分离,调压、计量、清管等功能。 2.O.5 输气末站gas transmission terminal station 输气管道的终点站。一般具有分离、调压、计量、清管、配气等功能。 2.O.6 气体接收站gas receiving station 在输气管道沿线,为接收输气支线来气而设置的站,一般具有分离、调压、计量、清管等功能。 2.O.7 气体分输站gas distributing station 在输气管道沿线,为分输气体至用户而设置的站,一般具有分离、调压、计量、清管等功能。 2.O.8 压气站compressor station 在输气管道沿线,用压缩机对管输气体增压而设置的站。

输气管道工程设计规范

输气管道工程设计规范 GB 50251-2003 ) 1、适用范围:本规范适用于陆上输气管道工程设计。 2、输气工艺: 1)输气管道的设计输送能力应按设计委托书或合同规定的年或日最大输气量计算,设 计年工作天数应按350d 计算(350d 是为冬夏平衡,同时最大输气量应以标态计算。)。 2)进入输气管道的气体必须除去机械杂质,且至少符合n级天然气标准(GB17820)。 3)当输气管道及其附件已按照国家现行标准《钢质管道及储罐腐蚀控制工程设计规范》 SY0007和《埋地钢质管道强制电流阴极保护设计规范》SY/T0036的要求采取了防腐措施时, 不应再增加管壁的腐蚀裕量。 4)工艺设计应确定的参数有:输气总工艺流程;输气站的工艺参数和流程;输气站的数量和站间距;输气管道的直径、设计压力及压气站的站压比。 5)管道输气应合理利用气源压力。当采用增压输送时,应合理选择压气站的站压比和 站间距。当采用离心式压缩机增压输送时,站压比宜为~,站间距不宜小于100km。 6)具有配气功能的分输站的分输气体管线宜设置气体的限量、限压设施。 7)输气管道首站和气体接收站的进气管线应设置气质监测设施。 8)输气管道的强度设计应满足运行工况变化的要求。 10)输气站应设置越站旁通。进出站管线必须设置截断阀。截断阀的位置应与工艺装置区保持一定距离,确保在紧急情况下便与接近和操作。截断阀应当具备手动操作的功能。 11)输气管道工艺设计应具被以下资料:管输气体的组成;气源数量、位置、供气量及可调范围;气源压力及可调范围,压力递减速度及上限压力延续时间;沿线用户对供气压力、供气量及其变化的要求,当要求利用管道储气调峰时,应具备用户的用气特性曲线和数据;沿线自然环境条件和管道埋设处地温。 12)输气管道的水力计算见本标准6?9页以及简化标准的附录。 13 )输气管道安全泄放 ( 1 )输气站应在进站截断阀上游和出站截断阀下游设置泄压放空设施。 (2)输气站存在超压可能的受压设备和容器,应设置安全阀。安全阀泄放的气体可引入同级压力的放空管线。 (3)安全阀的定压(P o)应根据管道最大允许操作压力(P)确定,并应符合下列要求: a 当P W时,P o= P+; b 当v P W时,P o=; c 当P>时,P o=。 (4)安全阀泄放管直径应按照下列要求计算:

输气管道设计过程 万

输气管道设计过程 1)在确定输气管道计算流量时要考虑年平均输气不均衡性,确定输气管评估性通过能力利用系数H K : 959.0=??=?πH P H K K K K 2)计算输气管评估性通过能力q : 857.43501017365108 2 =?=??=H K Q q 106m 3/d 8856.3350 106.1336510820=?=??=H K Q q 106m 3 /d 3)设定3个设计压力H P :5.5,6.0,6.5 a MP ; 4)对每个设计压力H P 设定3个压比ε,一般压力比为1.26—1.5之间,我取压力比为:1.3、1.4、1.5; 5) 设定管径(711㎜)为例,与3个设计压力(H P )和3个压比(ε)组成9个输气工艺方案;以下各项计算仅以其中的一个方案(H P =6a MP ,ε =1.3)作为示范,其余各方案的计算列入计算成果表(表1-3)。 6)设计管材的钢种等级为X60,其最小屈服强度σs =413 a MP ; 7)计算钢管的壁厚δ(初定地区等级为Ⅲ类,设计系数F=0.5):

mm F D P s H H 1.113.105 .041327115.62→=???==σδ 8)确定输气管内径: mm D D H B 8.6881.1127112=?-=-=δ 9)根据设计压力H P =6a MP (即压缩机出口压力)和压比ε=1.3,计算压缩机入口压力B P : a H B MP P P 62.43 .16===ε 10)确定输气管计算段的起点压力(即压气站出站压力)1P : a H MP P P P P 90.50588.00412.05.6211=--=--=δδ (天然气在压气站出口端的工艺管线和设备中的压力损失定为0.1 a MP ,小于附录Ⅰ中所列的数值0.11a MP ) 11)确定输气管计算段的终点压力(即下一压气站进站压力)2P : a B MP P P P 70.408.062.42=+=+=δ (天然气在压气站进口端的一级除尘装置和连接管线中的压力损失定为0.08a MP ,小于附录Ⅰ中所列的数值0.10 a MP ) 12)计算输气管计算段的平均压力CP P :

甲醇冷凝冷却器的设计

化工单元操作课程设计 题目甲醇冷凝冷却器的设计 学院化学与化工学院 专业轻化工程 班级轻化11002班 学号1016121072 学生姓名李江露 指导教师陈飞飞 完成日期2013年01月07 日

一、前言 (2) 二、设计任务书 (3) 三、方案简介 (4) 四、选型与设计指导思想 (5) 五、设计方案 (6) 1、确定设计方案 (6) 2、确定物性数据 (6) 3、计算总传热系数 (7) 4、计算传热面积 (8) 5、工艺结构尺寸 (8) 6、换热器核算 (11) 六、设计结果一览表 (15) 七、主要符号说明 (16) 八、个人小结 (17) 九、参考文献 (19)

化工原理主要研究各单元操作的基本原理以及所用典型设备的结构和设备工艺尺寸的计算或设备选型。 化工单元操作课程设计是综合运用化工原理课程的基本知识,进行融会贯通的独立思考,并在规定的时间内完成指定的化工设计任务,从而得到化工工程设计的初步训练。 课程设计与平时的作业不同,在设计中需要自己做决策,主观性较强。确定方案、选择流程、查阅资料、进行过程和设备计算,并对自己和选择作出论证和核算,经反复的分析比较,选择出最理想的方案和最合理的设计。 本次设计的主要任务是换热器的选型和设计,即对在生产过程中甲醇冷却装置的设计。此次课程设计的主要内容是通过对甲醇和循环水的分析,确定设计方案,选择最佳流程并计算、核算、制图等一系列过程。 通过课堂理论知识的学习及课程设计的实际行动和创新,不仅有助于理解和掌握知识,更培养了分析和解决问题的能力。

设计任务书 1、设计题目 甲醇冷凝冷却器的设计 2、设计任务及操作条件 (1)处理能力12000 kg/h甲醇。 (2)设备形式列管式换热器 (3)操作条件 ①甲醇:入口温度64℃,出口温度50℃,压力为常压。 ②冷却介质:循环水,入口温度30℃,出口温度40℃,压力为0.3MPa。 ③允许压降:不大于105 Pa。 ④每年按330天计,每天24小时连续运作。 3、设计要求 选择适宜的列管式换热器并进行核算。

相关文档
最新文档