《几何画板》教案

合集下载

初中数学几何画板讲解教案

初中数学几何画板讲解教案

初中数学几何画板讲解教案教学目标:1. 了解几何画板的基本功能和操作方法。

2. 学会使用几何画板绘制基本几何图形。

3. 能够利用几何画板进行几何证明和分析。

教学重点:1. 几何画板的基本功能和操作方法。

2. 使用几何画板绘制基本几何图形。

教学难点:1. 几何画板的高级功能和操作方法。

2. 利用几何画板进行几何证明和分析。

教学准备:1. 计算机和投影仪。

2. 几何画板软件。

教学过程:一、导入(5分钟)1. 向学生介绍几何画板的概念和作用。

2. 引导学生思考如何利用几何画板辅助数学学习。

二、基本功能和操作(15分钟)1. 演示几何画板的启动和界面布局。

2. 讲解几何画板的基本功能,如画点、画线、画圆等。

3. 引导学生动手操作,尝试绘制基本几何图形。

三、绘制复杂图形(15分钟)1. 讲解如何使用几何画板绘制复杂图形,如三角形、四边形等。

2. 引导学生动手操作,尝试绘制复杂几何图形。

四、几何证明和分析(15分钟)1. 讲解如何利用几何画板进行几何证明和分析。

2. 引导学生动手操作,尝试利用几何画板进行几何证明和分析。

五、总结和拓展(10分钟)1. 总结本节课所学的几何画板的基本功能和操作方法。

2. 引导学生思考如何利用几何画板解决实际问题。

教学反思:本节课通过讲解和操作,使学生了解了几何画板的基本功能和操作方法,能够利用几何画板绘制基本几何图形,并进行几何证明和分析。

但在教学过程中,要注意引导学生主动探索和操作,提高学生的动手能力。

同时,教师应不断学习和掌握几何画板的高级功能,为学生提供更多的学习资源和帮助。

人教版信息技术八年级下册第一章认识“几何画板”教案

人教版信息技术八年级下册第一章认识“几何画板”教案
2.能够运用几何画板软件进行简单的图形绘制,如直线、圆、多边形等,并能够进行变换操作,如平移、旋转、缩放等。
3.能够利用几何画板软件进行图形的度量,如计算线段长度、圆的面积等,并能够进行数据的统计和分析。
4.能够通过几何画板软件进行数学实验,如探究三角形内角和定理、圆的周长和面积公式等,提高数学思维和解决问题的能力。
4.请学生利用几何画板软件进行数学建模,如建立函数模型、几何模型等,提高数学应用能力和创新思维。
5.请学生与他人合作使用几何画板软件,进行小组讨论和合作学习,提高团队协作能力和沟通能力。
6.请学生利用几何画板软件进行数学探究和创造,如设计数学游戏、制作数学课件等,提高数学实践能力和创新能力。
7.请学生利用几何画板软件进行数学问题解决,如解决几何问题、代数问题等,提高数学解题能力和逻辑思维能力。
2.请学生利用几何画板软件进行图形的度量,如计算线段长度、圆的面积等,并能够进行数据的统计和分析。
3.请学生通过几何画板软件进行数学实验,如探究三角形内角和定理、圆的周长和面积公式等,提高数学思维和解决问题的能力。
4.请学生利用几何画板软件进行数学建模,如建立函数模型、几何模型等,提高数学应用能力和创新思维。
2.几何画板软件的界面组成:菜单栏、工具栏、绘图区、度量工具栏
3.几何画板软件的操作方式:选择工具、绘制图形、变换图形、度量图形
4.几何画板软件的应用:数学实验、数学建模、数学问题解决、数学教学
5.几何画板软件的学习方法:实践操作、小组合作学习、自主学习、探索创新
说明:
1.板书设计紧扣教学内容,突出几何画板软件的基本功能和操作方式。
互动探究:
设计小组讨论环节,让学生围绕软件的基本功能和操作方式展开讨论,培养学生的合作精神和沟通能力。

2024版几何画板教程(珍藏版)

2024版几何画板教程(珍藏版)

电磁学现象展示及原理剖析
电场线模拟
利用几何画板绘制点电荷或带电体周围的电场线,观察电场线的 分布和特点,理解电场的性质。
磁场可视化
构建电流或磁体周围的磁场模型,观察磁感线的分布和方向,理解 磁场的性质。
电磁感应现象展示
创建线圈和磁场模型,模拟线圈在磁场中运动或磁场变化时产生的 感应电流,探究电磁感应的原理和应用。
收集不同物质的相关性质数据,如熔点、沸点、密度等。
数据可视化处理
利用几何画板的数据可视化功能,将收集到的数据进行图 表化展示。
变化规律探究
通过对数据的分析比较,探究物质性质随条件变化而变化 的规律,为化学教学提供有力支持。
07
总结与展望
回顾本次教程重点内容
几何画板基本功能介绍 包括画板界面、工具栏、菜单栏等各 个部分的详细解释和使用方法。
对未来版本功能期待
增强智能识别功能
希望未来的几何画板能够更准确 地识别用户绘制的图形,并提供
相应的自动标注和计算功能。
增加3D绘图功能
随着3D打印技术的发展,希望几 何画板能够支持3D图形的绘制和 导出,为教学和科研提供更多可 能性。
完善在线协作功能
期待未来的几何画板能够实现多 人在线协作编辑功能,方便教师 和学生进行远程教学和合作学习。
圆的绘制
选择圆工具,单击画板上的任意一 点作为圆心,然后拖动鼠标确定半 径长度,再单击即可创建一个圆。
多边形和曲线的绘制方法
多边形的绘制
选择多边形工具,依次单击画板上 的多个点来创建一个多边形。最后 一个点与第一个点重合时,多边形 会自动封闭。
曲线的绘制
选择曲线工具,在画板上拖动鼠标 即可自由绘制曲线。可以通过调整 曲线的控制点来改变其形状。

几何画板全教案

几何画板全教案

2、再选另一个:当一个对象被选中后,再用鼠标单击另一个对象,新的对 象被选中而原来被选中的对象仍被选中(选择另一对象的同时,并不需按住 “Shift”键,与一般的 windows 软件的选择习惯不同)。
3、选择多个:连续单击所要选择的对象(注意:在单击过程中,不得在画 板的空白处单击(或按“Esc”键)。
用平行线的性质等分线段。 八、画基本图形
1、画点 选画点,单击画板上一点。(并显示标签) 2、画圆 画圆的两种方法及区别。 (设置不同显示方式) 3、选线段/射线/直线 选画线;按左键不放→线段/射线/直线 九、课后反思 在图中标注文本文字,用辅助线把一线段如何分为四等份
3
第九课 对象的选取、删除和施动
五、把一个三角形分成四等份: 1)用画线工具画一个三形, 2)标注:选文本工具,单击画好的点,用文本工具双击显示的标签,可进行
修改。 3)选择“构造”,---“画中点”
2
六、验证面积相等: 1)按住 shift 键,选取点。 2)“构造”---“多边形内部”。 3)“测算”---“面积”
七、等分线段: 1)画射线作辅助线。 2)选取一段做标记向量。 3)“变换”---“平移”。 4)“作图”---“平行线”。
教学目标:1)通过几何画板对象的选取、删除和施动基本操作
2)了解几何画板初步操作
教学重点:让学生了解几何画对象的板选取、删除和施动基本操作
教学难点:能用几何画板中对象的操作方法
教学过程:
前面的叙述已涉及到对象的选取、拖动。几何画板虽然是 windows 软件,但
它的有些选择对象的选择方式,又与一般的 windows 绘图软件又— 几何画板 4.07
课 题:几何画板简介 教学目标:1)通过几何画板课件演示展示其魅力激起兴趣

几何画板教案(割圆术)

几何画板教案(割圆术)

几何画板教案课 题:割圆术教学目标:(1)了解古代求π的数学思想——割圆术(2)用几何画板的录制循环功能 验证割圆求π的过程。

教学过程:一)引入:关于π中国最古的数学典籍《周髀算经》上有“周三径一”的记载。

两千年前希腊学者阿基米德也证明了71371103<<π。

到了魏晋之际刘徽创立了割圆术,为计算圆周率和圆面积建立了相当严密的理论和完善的算法。

(它是利用勾股定理,从圆内接正n 边形的边长求出2n 边形边长。

“割之弥细,所失弥少。

”)刘徽从圆内接正六边形算起,逐步增加边数,经过艰苦而繁重的推算,一直算到正129边形,得π=3.14124,他又继续算到正3072边形得出更精确的圆周率值π=3.1416.我国南北朝时,祖冲之(429~500)发展了刘徽割圆术,远在1500年前,他就确定圆周率π的值在3.1415926和3.1415927之间。

他还提出圆周率近似值为22/7(约率),355/113(密率)。

后着是成对的三个奇数“113355”折成两段组成。

人们猜测他用了15年的时间经过几千次复杂的计算和几百次反复的验算,算到圆内接与外切正34576边形时,才推得圆周率在3.1415926和3.1415927之间。

而且当时是用“算筹”计算的。

祖冲之的伟大贡献,使中国对π值的计算领先了一千年二)讲授新课现用几何画板利用递归求π,体会并实践割圆术。

画线段AB ;构造圆(A,B)、(B,A);构造两圆交点C ;构造线段CA 、CB ;隐藏圆B ; 构造∠CAB 的平分线l ;构造圆A 、l 交点E ;隐藏圆A ;构造C 、E 、B 的弧;隐藏E 点;测算距离A 、B ;测算2*距离AB ;测算|计算|6;改6为n ;测算距离C 、B ;测算距离CB*n 2*距离AB; 文件|新脚本|录制构造∠CAB 的平分线m ;构造m 、圆A 的交点E ;隐藏m ;测算距离E 、B ;测算n*2;测算距离EB*n*22*距离AB; 选E 、A 、B 、圆A 、n*2、距离AB*2;选脚本窗口;单击循环;单击停止;单击快放;对提问递归深度:4;确认。

《几何画板教程》课件

《几何画板教程》课件

《几何画板教程》课件目录1. 几何画板简介 (2)1.1 什么是几何画板 (3)1.2 几何画板的界面介绍 (4)2. 基本绘图工具 (5)2.1 点、线、圆、弧等基本图形绘制 (7)2.2 图形的编辑与操作 (8)3. 基本变换 (9)3.1 平移、旋转、缩放等基本变换操作 (10)3.2 利用坐标系统进行变换 (11)4. 图形的度量与计算 (12)4.1 测量长度、面积、体积等 (13)4.2 图形的代数运算 (14)5. 几何图形的动画与动态效果 (16)5.1 动画制作基础 (17)5.2 制作动态几何模型 (18)6. 交互式教学功能 (20)6.1 创建交互式课件 (21)6.2 利用教学模板进行教学设计 (22)7. 几何图形的性质与证明 (24)7.1 探究图形的性质 (25)7.2 使用几何画板进行数学证明 (27)8. 几何画板在教学中的应用 (28)8.1 制作几何教学课件 (29)8.2 利用几何画板提高教学效果 (31)9. 几何画板教案设计 (33)9.1 如何设计几何画板教案 (33)9.2 教案示例分析 (35)10. 课程设计与资源整合 (37)10.1 如何整合教学资源 (38)10.2 设计综合性几何画板课程 (39)11. 几何画板常见导致问题及解决方法 (40)11.1 常见导致问题 (40)11.2 解决方法 (41)12. 如何提高学习效率与兴趣 (42)12.1 提高学习效率的技巧 (43)12.2 激发学习兴趣的方法 (44)1. 几何画板简介几何画板是一款强大的数学教学软件,它以直观、生动的方式呈现几何图形,帮助学生更好地理解几何概念。

通过几何画板,用户可以创建、编辑和分析各种几何图形,如点、线、圆、多边形等。

几何画板还支持丰富的几何变换和计算功能,为教师和学生提供了一个便捷的数学工具。

直观易用:几何画板采用图形化界面设计,用户无需编程知识即可轻松上手。

《几何图形》参考教案

《几何图形》参考教案

《几何图形》参考教案一、教学目标:知识与技能:1. 能够识别和理解基本的二维几何图形,如三角形、矩形、圆形等。

2. 能够掌握二维几何图形的性质和特征。

3. 能够运用二维几何图形进行简单的几何推理和计算。

过程与方法:1. 能够通过观察、描述和分析实际物体和图形,培养空间想象能力。

2. 能够运用几何图形的性质和特征,解决实际问题。

情感态度价值观:1. 培养学生的逻辑思维能力和解决问题的能力。

2. 培养学生的观察能力和创新意识。

二、教学重点与难点:重点:1. 基本二维几何图形的识别和理解。

2. 二维几何图形的性质和特征的掌握。

难点:1. 二维几何图形在实际问题中的应用。

2. 空间想象能力的培养。

三、教学方法与手段:教学方法:1. 采用问题驱动法,引导学生通过观察、描述和分析实际物体和图形,培养空间想象能力。

2. 采用案例教学法,通过实际问题,引导学生运用几何图形的性质和特征进行解决。

教学手段:1. 利用多媒体课件,展示实际物体和图形,帮助学生直观地理解二维几何图形。

2. 利用几何画板等软件工具,让学生进行实际操作,加深对二维几何图形性质和特征的理解。

四、教学过程:1. 导入:通过展示实际物体和图形,引导学生观察和描述,激发学生的学习兴趣。

2. 知识讲解:讲解基本二维几何图形的性质和特征,让学生理解并掌握。

3. 案例分析:通过实际问题,让学生运用几何图形的性质和特征进行解决,巩固所学知识。

4. 练习与讨论:布置练习题,让学生进行实际操作,引导学生进行小组讨论,互相交流学习心得。

5. 总结与反思:对本节课的内容进行总结,让学生反思自己的学习过程,提出问题并进行解答。

五、课后作业:1. 完成练习册上的相关题目。

2. 观察生活中的二维几何图形,描述并分析其性质和特征,下节课分享。

3. 选择一个实际问题,运用二维几何图形进行解决,写成小论文,下节课进行交流。

六、教学评价:1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答情况以及小组讨论的表现,评价学生的学习态度和合作能力。

几何画板教案

几何画板教案

主要教学方法
多媒体教室
课 型
多媒体
让学生掌握几何画板中测算的方法和相关知识,结助用几何画板探索 和归纳出 n 边形的内角和。 培养学生用几何画板解决数学问题的能力, 让学生感受到几何画板的魅 力,激发学生学习几何画板的兴趣;体现信息技术与数学的整合。 体现信息技术与数学学科的整合的特点。
教 学 过 程 设 计
用时:5 分钟 做中学 学生自主尝试 组间竞争 组内合作 用时:2 分钟 老师引导 学生讨论 用时:8 分钟
o
小组讨论:
n 边形的内角和与边的关系?
探索分析:
内容:n 边形的内角和与边的关系 结论:1、我们通过几何画板,探索出 n 边形的内角和为(n-2)×180 2、我们已成为一个会用信息技术的数学家了。
师生分析归纳 用时:7 分钟 课外扩展 熟能生巧 用时:3 分钟 总结复习 巩固提高 实践提高
自主探索: 内容:多边形的外角和定理
结论:多边形的外角一下这节课你学到了哪些东西?并畅所欲言,谈谈通过这节课你有何体会 和感想?看哪位课堂小英雄说的最好?
主教案栏(教学内容) 副教案栏 (教学方法) 用时:3 分钟 复习巩固 学生演示 用时:4 分钟 提出问题 情景导入:我们已学习过“三角形内角和定理为 180°” 这条定理,大家有没有想过, 最初发现这一规律的人,是用什么办法得到这一结果的呢?(按照课本剪纸的办法,通过不 断的测量不同的三角形而猜想得到结果„„.等等) 课前假设:假设我们现在是很久以前的数学家(就连三角形的内角和都是个未知数),现 在让我们以数学家的身份,结助几何画板来探索一下三角形的内角和是多少度? 解决办法:用几何画板从最原始的办法入手,一个角度一个角度的测量,然后计算不同 的三角形的内角和,看看结果到底如何。 展示课题: 《测算——多边形内角和定理的探索》 激发兴趣 展示课题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《几何画板》教案
──21世纪的动态几何
《几何画板》是一个适用于几何教学的软件,它给人们提供了一个观察几何图形的内在关系,探索几何图形奥妙的环境。

它以点、线、圆为基本元素,通过对这些基本元素的变换、构造、测算、计算、动画、跟踪轨迹等,构造出其它较为复杂的图形。

和其他同类软件相比,几何画板有如下几个优势,使得他成为数学、物理教学中的强有力的工具。

1.动态性。

2.形象性。

3.操作简单。

4.开发软件的速度非常快。

正是由于上述优势,使得几何画板教学逐渐成为教育改革的重要方向之一,成为21世纪的动态几何。

实例1、几何画板的简单动画制作
A、点在圆周上运动
B、线段一端点在圆周上运动
C、点在线段上运动
动画的制作是通过“编辑”菜单→“操作类按钮”→“动画”实现的。

实例2、二次函数的轨迹图形(动态呈现运动轨迹)
操作步骤:
1、通过“图表”定义坐标系
2、在横坐标上定义一点
3、通过“度量”得出坐标及横坐标
4、通过“度量”→“计算”得出横坐标的平方值
5、选中横坐标及其平方值,通过“图表”→“绘制点”,绘制轨迹点
6、选中后绘制的点,设置“显示”→“追踪绘制点”
7、选中先绘制的点,通过“编辑”菜单设置动画。

实例3、奇妙的勾股树
【本课件运行结果】如(图5-1),单击动画按钮,“奇妙的勾股树”动态变化,颜色也进行不断改变,在展示数学规律的同时给人一种赏心悦目的感觉。

【功能运用】
通过本课件的学习,您将重点学习几何画板的【深度迭代】功能,在制作的过程中您还可以学习一些基本图形的构造方法以及如何用参数来控制对象颜色的变化。

【制作思路】
首先构造一个直角三角形,并以斜边为边长构造一个正方形,给正方形填充颜色后,用动态的度量值控制正方形内部填充色的改变,然后用【深度迭代】构造“勾股定理树”。

下面就让我们开始一步一步构造“勾股定理树”。

【操作步骤】
①新建画板后,用画线工具画出线段AB,双击点A(这样就把点A标记为中心),单击线段AB和点B,选择【变换】/【旋转】,打开【旋转】对话框,单击【旋转】按钮(此时默认旋转角度为90°),得到线段AB';双击点B'标记点B'为中心,旋转线段AB'(旋转角度为90°)得到线段B'A',依次单击点A'和点B,按快捷键Ctrl+l,构造线段A'B,此时构造出正方形ABA'B'.如(图5-2)
②单击选中线段A'B',按Ctrl+M组合键,构造出A'B'的中点C(点C为选中状态),再依次选中点A'和B'(注意顺序不要搞错啊),选择【构造】/【圆上的弧】,构造出以A'B'为直径的半圆,用画点工具在半圆上画出点D.如图(5-3)
回目录
③依次单击选中点A、B、A'、B',选择【构造】/【四边形内部】,把正方形填充上颜色;在工作区空白处单击后单击选中点A、D,选择【度量】/【距离】得到A、D两点间的度量值。

如(图5-4)
④依次单击选中正方形的填充色和度量值,选择【显示】/【颜色】/【参数】打开【颜色参数】对话框,按图(5-5)进行设置.(用鼠标托动点D看看正方形的填充色有什么改变么)
(图5-5)
(图5-6)
⑤选择【图表】/【新建参数】打开【新建参数】对话框,如(图5-6),单击【确定】得到参数t1=1.
⑥依次选中半圆和点C,按组合键Ctrl+H(隐藏它们,为了后面观察方便);依次单击选中点
A、点
B、参数t1=1.0,按住Shfit键的同时选择【变换】/【深度迭代】弹出【深度迭代】对话框,如(图5-7)。

(图5-7)
(图5-8)
⑦当点A对应的框为白色是,单击B',当点B对应的框为白色时,单击点D,结果如(图5-8)
⑧单击上图中的【结构】,出现结构对话框如(图5-9)
回目录
(图5-9)
⑨单击【添加新的映射】,当迭代对话框出现新的“?”后依次单击点D和点A’,如(图5-10);去掉结构对话框(参考图5-9)【生成迭代数据表】前的对钩,不显示表格,单击【迭代】按钮,完成迭代。

结果如(图5-11)。

(图5-11)(图5-10)
⑩选中参数t1=1.00,按键盘上的“+”、“-”键控制参数t1值的增减,同时也控制迭代层数的增减,请您自己试试看看迭代的效果是什么样子;最后选中点D,选择【编辑】/【操作类按钮】/【动画】,生成【动画】按钮,单击它点D在半圆上运动,同时迭代得到的图形进行相应的运动.
好了,这个课件的制作方法到此介绍完了,相信您已经制作出了一棵漂亮的“勾股定理树”。

自己多动手试试,您会用几何画板做出很多漂亮的效果的,祝您成功!。

相关文档
最新文档