雷电电磁脉冲场

合集下载

关于雷击电磁脉冲的干扰分析

关于雷击电磁脉冲的干扰分析

关于雷击电磁脉冲的干扰分析摘要:有关雷击所产生的电磁脉冲及其致使这一现象的干扰因素是当前研究电磁转化的重要课题,而雷击这一自然现象带来了巨大的电子能量,但其能量也被某些因素所干扰。

文章旨在从雷击电磁脉冲所产生的原理、入侵方式、耦合方式三方面进行深入探讨。

关键词:脉冲原理;入侵方式;耦合方式1 雷击电磁脉冲产生原理云地闪电产生过程中,雷云的先导通道向地面发展,地面被击物(异性感应电荷)向上发展迎面(或回闪)流注。

当先导通道与迎面流注相遇,先导就通过回闪接地,闪电的主放电过程开始。

主放电形成后,云层电荷迅速与地面异性感应电荷中和,表现为回击电流迅速上升,其速率可以达到500 kA/us,闪电通道有上公里长。

此时,主放电通道中的放电电流是以脉冲形式。

平均一次闪电包含了上万个脉冲放电电流过程,平均幅值为几十千伏,持续时间几十至上百微秒。

在云地闪形成的先导、主放电过程中,向外辐射高频和甚高频电磁能量,即发出雷击电磁脉冲(LEMP)。

当建筑物遭到雷击,雷电流流入接闪器、引下线、均压环和接地体时,在建筑物内部闭合回路也产生瞬变电磁场,产生雷击电磁脉冲高电压。

通过电磁感应的作用,高频脉冲大电流产生的雷击电磁脉冲在闭合导体回路的断开处(或者非闭合导体回路)感应出过电压,在闭合导体环路中感应生成过电流。

某实验曾用阶跃电流偶极子天线模型计算雷击电磁脉冲效应,云地放电电流达到11.5 kA,在距离50 m处产生垂直电场强度为40 kV/m,此时在距离地面10 m的架空电线上感应出82 kV的过电压。

总所周知,电子元件耐受能量很低,特别是集成电路。

二十世纪七十年代美国一家公司曾做过一个有名的“希尔试验”验证电子设备的抗雷击电磁脉冲能力。

试验表明,无屏蔽条件的计算机遭受雷击电磁脉冲干扰时,当磁感应强度B=0.03 Gs时产生误动作,当磁感应强度B=0.75 Gs时产生假性损坏,当磁感应强度B=2.4 Gs时会永久性损坏。

雷击电磁脉冲是十分严重的电磁干扰源,电磁脉冲峰值电流大、电流陡度大、电场强度大,干扰频谱宽(从100~100 MHz)。

《防雷击电磁脉冲》课件

《防雷击电磁脉冲》课件

人工干扰
来自摩托、汽车、工厂等设备的电磁波,也可能对 设备造成电磁脉冲的干扰。
危害:电子设备的威胁
硬件受损
电磁脉冲可破坏设备硬件组件,使硬件失效。
障碍问题
电磁脉冲还可能引起干扰,导致电子设备出现故障 或因信号干扰而不正常运作。
防雷击电磁脉冲的重要性
高效运作
保护设备不受电磁脉冲干扰,确保设备可靠运行。
探索防雷击电磁脉冲
了解雷击电磁脉冲的威胁及其应对方法,是保护电子设备和人身安全的重要பைடு நூலகம்一步。
什么是防雷击电磁脉冲?
1 电磁脉冲
是指电子设备在闪电或高压电离放电时受到 的突发性电磁干扰。
2 雷击电磁脉冲
是由闪电引起的电磁脉冲,对设备造成的危 害更加严重。
雷击电磁脉冲的成因
大气电
高速移动的带电物质产生强大的电场和磁场。
防范
建立防范规范,定期进行检查、维护和 管理,确保安全性。
防雷击电磁脉冲的实施步骤
确定目标
制定具体的防雷击电 磁脉冲目标
资源调配
合理分配人员、资金 和设备等资源。
实施监控
制定监测计划并进行 监测和评估。
完善管理
对防雷受损的学校、 医院、银行、电力等 公共关键设施和地方 重点工程进行全面覆 盖。
实际案例:个人电脑防雷实践
降低维修成本
有了防雷击电磁脉冲措施,不仅延长了设备使用寿命,还降低了维修和更换的成本。
防患于未然
防止不可预测的事故发生,避免生产、生活中因电子设备问题而造成的财产损失和人身伤害。
防雷击电磁脉冲的解决方案
1
保护
2
将保护元件联接在电缆或设备上,采用
减小电磁辐射的措施降低电磁场的干扰。

雷击与电磁脉冲防护技术

雷击与电磁脉冲防护技术

雷击与电磁脉冲防护技术电子与电气工程是一门关于电力系统、电子设备和电磁场的学科,涵盖了广泛的领域,其中包括雷击与电磁脉冲防护技术。

雷击和电磁脉冲是电气工程中常见的问题,对电力系统和电子设备都可能造成严重的损坏。

因此,开发有效的防护技术对于保障电力系统和电子设备的正常运行至关重要。

雷击是指大气中形成的电荷差异引起的放电现象。

当云与地面或云与云之间的电荷差异达到一定程度时,就会形成雷电放电。

雷电放电会产生巨大的电流和电压,对电力设备和电子设备造成巨大的冲击。

为了防止雷击对电力系统和电子设备的损害,我们需要采取一系列的防护措施。

首先,我们可以在电力系统的设备和建筑物上安装避雷针和避雷网。

避雷针可以通过尖锐的尖端将雷电引向地面,避免其对设备和建筑物的直接冲击。

避雷网则可以将雷电分散到地面上,减小雷电对设备和建筑物的影响。

这些避雷设施可以有效地降低雷击风险,保护电力系统和电子设备的安全运行。

其次,我们还可以采取电磁屏蔽技术来防护电子设备。

电磁脉冲是由强电流和电压突变引起的短暂电磁波,可以对电子设备产生干扰甚至损坏。

为了防止电磁脉冲对电子设备的影响,我们可以在设备周围设置金属屏蔽,将电磁波引导到地下或远离设备。

此外,还可以使用特殊的材料和设计来减小电磁脉冲对设备的影响。

这些电磁屏蔽技术可以有效地保护电子设备免受电磁脉冲的损害。

除了以上的防护措施,我们还可以通过合理的电力系统设计来降低雷击和电磁脉冲的影响。

例如,可以采用合适的接地系统来分散雷击和电磁脉冲的能量,减小其对设备的冲击。

此外,还可以在电力系统中增加过电压保护装置,及时将过电压引向地面,保护设备的安全运行。

综上所述,雷击与电磁脉冲防护技术在电子与电气工程中具有重要的地位。

通过安装避雷设施、采用电磁屏蔽技术和合理的电力系统设计,我们可以有效地保护电力系统和电子设备免受雷击和电磁脉冲的损害。

随着科技的进步和工程技术的不断发展,我们相信雷击与电磁脉冲防护技术将会不断完善,为电力系统和电子设备的安全运行提供更可靠的保障。

雷电电磁脉冲防护基本原理和初步实践经验

雷电电磁脉冲防护基本原理和初步实践经验

太阳黑子
高压配电系统对地短路造成的过电压
上述七种外部干扰源经常出现并造成危
害的主要有 ∞ ° ≥∞ ° 和 ∞≥⁄ 在 ∞≤ ) 中对 ∞ ° 定义为 / 作为干扰源的
闪电电流和闪电电磁场 0与 ∞ ° 相比 ∞ ° 的电磁场强度!陡度和破坏范围都弱
得多 但雷电这一大气物理现象 每次释放的
数百兆焦耳 能量与足可影响敏感设备
在其
5过电压保护理论与实践6一书中列出防雷保护
系统框架图 经笔者修改后如下图 图 所示
外部防雷
内部防雷
过电压保护
接闪针网带
引下线
接地装置
空间屏蔽
等电位# 连接
防闪络 安全距离
∞≤
)
)
∞≤
∞≤
∞≤
∞≤
∞≤
)
图 雷电防护系统示意图
注 国际电信联盟公布的/ 干扰的防护0建议 × Ø 系列中 Ø ! ! ! ! ! ! ! ! ! ! ! 也有详细的规定和说明
就是电 距今也有 多年了 而对雷电波形
雷电流参数和电磁耦合过程的确认却是近十
几年的事
年 ∞≤
))和 年
∞≤
) 相继公布了雷电流参数 表 !表
! 表 和 雷 电 波 形 图 图 ! 图 ∞≤
) 的附录 ⁄ 提供了/ 电磁耦合过程0的
信息资料
表1 首次雷击的雷电流参数
雷电流参数 见图
Ι 幅值
Τ 波头时间 Λ
) 和 ∞≤ 提出如下注意事项
) 为准 笔者特
主要部分使用非金属材料 如木棍
或碳素纤维材料外表涂以漆物! 玻璃钢筒内
置高阻液体 的接闪装置 由于其通流后耐高
能量的能力低 接闪后容易炸断 在工程中应

雷击浪涌原理

雷击浪涌原理

雷击浪涌原理雷击浪涌是指在雷电天气中,由于雷电放电的作用,会产生雷电电磁脉冲,导致电力系统中出现的瞬时过电压和过电流现象。

这种现象对电力系统的设备和线路会造成严重的损坏,因此对雷击浪涌原理的研究和防护显得尤为重要。

雷击浪涌产生的原理主要是由雷电放电引起的。

在雷电放电的瞬间,会产生极强的电磁场,导致周围空气瞬间电离,形成一道极强的电磁脉冲。

这种电磁脉冲会通过空气传播,并通过电力系统的线路和设备传导,引起瞬时过电压和过电流,对电力设备和线路造成损坏。

为了有效防护雷击浪涌对电力系统的损害,我们需要了解雷击浪涌的传播和影响机理。

首先,雷击浪涌的传播是通过电磁波传播的,因此在电力系统设计中需要考虑电磁波的传播特性,采取合适的防护措施。

其次,雷击浪涌对电力设备和线路的影响是瞬时的,因此需要在设备和线路设计中考虑瞬时过电压和过电流的承受能力,采取相应的防护措施,如安装避雷针、避雷线、避雷器等设备。

除了了解雷击浪涌的传播和影响机理,我们还需要采取一些具体的防护措施来减少雷击浪涌对电力系统的影响。

首先,可以在电力系统的进线处安装避雷器,用于吸收雷击浪涌的能量,保护电力系统的设备和线路。

其次,可以在电力系统的关键设备和线路处安装过电压保护装置,用于限制雷击浪涌对设备和线路的影响,保护设备和线路的正常运行。

另外,还可以通过合理设计电力系统的接地装置,减少雷击浪涌对设备和线路的影响,提高电力系统的抗雷击能力。

总的来说,了解雷击浪涌的原理和传播机理,采取相应的防护措施,对于保护电力系统的设备和线路,减少雷击浪涌对电力系统的影响,具有重要的意义。

通过合理设计电力系统的防护措施,可以有效提高电力系统的抗雷击能力,保障电力系统的安全稳定运行。

因此,对雷击浪涌原理的研究和防护工作,需要引起我们的高度重视和关注。

雷电电磁脉冲知识

雷电电磁脉冲知识

雷电电磁感应讲义引言电磁兼容(EMC)是近年来发展很快并受到广泛重视的学科领域。

IEC(国际电工委员会)对EMC的定义是:“设备或系统在其电磁环境中能正常工作,且不对该环境中任何事物产生不允许的电磁骚扰的能力”。

电磁骚扰(EMD)定义是:任何可能引起设备或系统性能降低或对有生命及无生命物质产生损害作用的电磁现象。

电磁骚扰可能是电磁噪声,无用信号或传播媒介自身的变化。

电磁噪声与EMD术语有相似的含义,指“一种明显不传送信息的时变电磁现象,它可能与有用信号叠加或组合。

”电磁骚扰源分为自然骚扰源和人为骚扰源。

典型的自然骚扰源有:1、雷击电磁脉冲LEMP,又称大气噪声;2、太阳噪声,太阳黑子活动时产生的磁暴;3、宇宙噪声,来自银河系;4、静电放电ESD;人为骚扰源较多,典型的有:1、电力网络中操作过电压SEMP;2、核致电磁脉冲NEMP;3、高压配电系统对地短路造成过电压;其它家电、高频设备、电力设备、内燃机、无线电发射和接收设备、高速数字电路设备等,通过放电噪声、接触噪声、过渡现象、反射现象、非功能性噪声和无用信号等电磁骚扰的发生机理均会造成电磁干扰。

在IEC61312-1中对LEMP定义为:“作为干扰源的闪电电流和闪电电磁场。

”GB50057-94局部修改条文定义为:“作为干扰源的直接雷击和附近雷击所引起的效应。

绝大多数是通过连接导体的干扰,如雷电流或部分雷电流,被雷电击中的装置的电位升高以及磁辐射干扰。

”LEMP属由于放电而产生的噪声,由于雷云之间或雷云与大地之间产生火花放电,往往伴随着急剧的电流、电压的瞬时变化,即di/dt或du/dt很大。

与NEMP相比LEMP的电磁场强度、陡度和破坏范围都弱得多,但雷电这一大气物理现象,每次释放的数百兆焦尔(MJ)能量与足可影响敏感设备的毫焦尔(mJ)能量相比相差悬殊。

1971年美国通用研究公司R·D希尔用仿真试验建立模式证明:由于雷电干扰,对无屏蔽的计算机当磁感应强度Bm=0.07GS时,计算机会误动作;当Bd=2.4GS时,计算机设备会永久性损坏。

防雷知识系列-雷击闪电的特性

防雷知识系列-雷击闪电的特性

防雷知识系列(二)-雷击闪电的特性雷击闪电的特性(1)雷电流的特性雷电破坏作用与峰值电流及其波形有最密切的关系。

雷击的发生、雷电流大小与许多因数有关,其中主要的有地理位置、地质条件、季节和气象。

其中气象情况有很大的随机性,因此研究雷电流大多数采取大量观测记录,用统计的方法寻找出它的概率分布的方法。

根据资料表明,各次雷击闪电电流大小和波形差别很大。

尤其是不同种类放电差别更大。

为此有必要作如下说明。

由典型的雷雨云电荷分布可知,雷雨云下部带负电,而上部带正电。

根据云层带电极性来定义雷电流的极性时,云层带正电荷对地放电称为正闪电,而云层带负电荷对地放电称为负闪电。

正闪电时正电荷由云到地,为正值,负闪电时负电荷由云到地,故为负值。

云层对地是否发生闪电,取决于云体的电荷量及对地高度或者说云地间的电场强度。

云地间放电形成的先导是从云层内的电荷中心伸向地面。

这叫做向下先导。

其最大电场强度出现在云体的下边缘或地上高耸的物体顶端。

雷电先导也可能是从接地体向云层推进的向上先导。

因此,可以把闪分成四类,只沿着先导方向发生电荷中和的闪电叫无回击闪电。

当发生先导放电之后还出现逆先导方向放电的现象,称为有回击闪电。

上面讲到一次雷击大多数分成3~4次放电,一般是第一次放电的电流最大,正闪电的电流比负闪电的电流大。

这可以从图1.2典型的雷雨云中的电荷分布得到理解。

电流上升率数据对避雷保护问题极其重要,最大电流上升率出现在紧靠峰值电流之前。

习惯上用电流波形起始时刻至幅值下降为半幅值的时间间隔来表征雷电流脉冲部分的波长。

雷电流的大小与许多因素有关,各地区有很大区别,一般平原地区比山地雷电流大,正闪电比负闪电大,第一闪击比随后闪击大。

(2)闪电的电荷量闪电电荷是指一次闪电中正电荷与负电荷中和的数量。

这个数量直接反映一次闪电放出的能量,也就是一次闪电的破坏力。

闪电电荷的多少是由雷云带电情况决定的,所以它又与地理条件和气象情况有关,也存在很大的随机性。

雷电电磁脉冲及其防护

雷电电磁脉冲及其防护

雷电电磁脉冲及其防护1 、雷电电磁脉冲的物理特性(1)物理特性从积雨云的密布到发生闪电,会出现三种物理现象。

①云中静止电荷产生的静电场,产生静电感应现象,地面及各种导体会产生感应电荷,呈观静电场的作用。

这种作用随着距离的增大而迅速减小,与距离的三次方成反比。

②积雨云中电荷的移动(包括闪电)会产生磁场,若磁场强度发生变化就会出现电磁感应现象,这就是感应场产生的作用。

这种作用随着距离的增大而减小较快,与距离的平方成反比。

③闪电发生时,会出现电磁波辐射。

这种辐射场也随距离增大而减小,但比较缓慢,它与距离的一次方成反比。

除了注意上述三种物理现象,更应密切注意雷电流的变化特性,因为雷电的破坏作用与雷电流的峰值和波形密切相关。

现代防雷装臵正是根据雷电流的物理特性设计的,其主要的物理特性是:①峰值电流决定闪电的机械力和电力的作用大小以及雷灾的危害程度;②到达峰值的时间,数值愈小,冲击力愈大,在选用防雷元器件时应考虑响应速度;③最大电流变化率决定了闪电的电磁感应强弱,是电子设备防雷技术中应特别重视的参量,因为电子设备防雷技术中主要是对感应雷的防护;④半峰值时间或到达波尾中间的时间,是指回击电流减小到峰值一半时的时间,这个时间越长,热效应越大,容易造成元器件的损坏,也容易引起火灾。

超过lOO}上s就属于热闪电了。

(2)雷电电磁脉冲的频谱分析雷电电磁脉冲的频谱是研究避雷的重要依据,从频谱结构可以获得雷电电磁脉冲电压、电流的能量在各频段的分布。

根据这些资料可以估算通信设备或系统在其频率范围内可能遭受到的雷电冲击的幅度和能量大小,并以此作为确定避雷措施的参数。

①雷电流峰值比率的频率分析雷电流峰值比率的频率分布是指在雷电流的频谱范围内,每一个频率的电流峰值与雷电流峰值之比的频率分布。

雷电流主要贫布在低频部分,随频率升高迅速递减。

电波的波头越陡,高次谐波越丰富,波尾越长,低频部分越丰富。

②电流峰值比率积累的频率分布雷电流的破坏作用主要表现在对设备的过电压击穿和冲击能量过大的热击穿。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章雷电电磁脉冲场人类研究雷电已有200多年的历史,到目前为止,对直击雷和传导浪涌的防护技术已经发展得较为成熟,相对而言,对雷电电磁脉冲的研究还有待深入。

雷电电磁脉冲(LEMP)是伴随雷电放电产生的电流瞬变和强电磁辐射,属于雷电二次效应之一,它是最常见的一种天然强电磁脉冲干扰源。

直到20世纪70年代以后,雷电的电磁辐射效应才逐渐引起重视。

LEMP的发生频率远大于核电磁脉冲和高功率微波、超宽带等非核电磁脉冲,其峰值场强大,波形上升沿陡,对周围空间的各类敏感电子设备构成严重威胁,国内外相关事故报道不胜枚举。

LEMP的危害区域远大于直击雷,它既可以由云地闪电产生,也可以由云内闪电和云间闪电产生,影响区域遍布对流层以下至大地表层,对空中飞行的火箭、飞机、导弹、地面架空运输电线、各种电子设备都有不同程度的危害,因雷电电磁脉冲造成室内电磁设备损坏、失效、误动作等造成的间接损失更是难以估计。

随着电子设备的高集成化、智能化、低功耗化、LEMP的危害日益突出。

因此,LEC研究报告指出:“雷电电磁脉冲是信息化时代的公害。

”对LEMP的防护是目前雷电防护研究领域的热点和难点,对LEMP进行详细研究,有利于有针对性地做好设备防护工作。

4.1 雷电电磁脉冲分类根据IEC61312-1标准的定义,LEMP包括非直击雷产生的电磁场和电流瞬变。

以此为依据,LEMP可以划分为3种形式:静电脉冲、地电流浪涌和电磁脉冲辐射场。

以往防雷工程中强调的LEMP通常是指地电流瞬变和架空输电线的传导浪涌,而现在对电磁脉冲辐射场的危害越来越严重了。

4.1.1 静电脉冲大气电离层带正电荷,与大地之间形成了大气静电场,通常情况下,平原地区地面附近电场强度约150V/m。

雷雨云的下部静电荷较为集中,其电位较高,因此其下方地面局部静电场强远高于平时的大气静电场强,雷雨降临之前,该区域地面场强可达10000V/m~30000V/m。

雷雨云形成的电场,在地面物体表面磁感应出异号电荷,其电荷密度和电位随附近近大气场强而变化。

例如地面上10m处的架空线,可感应出100kV~300kV的对地电压。

落雷的瞬间,雷雨云电荷被释放,大气静电场急剧减小,地面物体的感应电荷失去束缚,会沿接地通路流向大地,由于电流流经的通道存在电阻,因而出现电压,这种瞬时高电压称为静电脉冲(Electrostatic Pulse),也称天电瞬变(Atmospheric Transients),如图4—1所示。

对于接地良好的导体而言,静电脉冲极小,可以忽略。

但静电接电阻较大的孤立导体,其放电时间常数大于雷电持续时间,静电脉冲的危害尤为明显。

静电放电脉冲的危害形式,只要表现为以下两种:(1)电压(流)浪涌。

输电线路上的静电高压脉冲会沿导线向两边传播,形成高压浪涌,对相连的电气设备造成危害。

(2)高压电击。

垂直安放的导体,如果接地电阻较大,会在尖端出现火花放电,能点燃易燃易爆物品;如果人,畜在闪电过后的短暂时间内触摸或接近这类物体(如木门框上的铁门),可能遭电击身亡。

图4-1 静电脉冲的形成原理4.1.2 地电流瞬变地电流瞬变是由落雷点附近区域的地面电荷中和过程形成的。

以常见的负地闪为例,如图4-2所示,主要电通道建立后,产生回击电流,即雷雨云中的负电荷会流向大地,同时地面的感应正电荷也流向落雷点与负电荷中和,形成瞬变地电流。

地电流流过的地方,会出现瞬态高电位;不同位置之间也会有瞬时高电压,即跨步电压,如图4-2中A B 两点。

地电流瞬变的危害形式包括以下3种:(1)地电位反击。

地电位的瞬时高压会使接地的仪器金属外壳与不接地的电路板之间出现火花放电。

(2)跨步电压电击。

附近的直击雷可能造成站在地面上的人、畜被跨步电压电击致死。

(3)传导和感应浪涌电压。

埋于地下的金属管道、电缆或其他导体,构成电荷流动的低阻通道,其表面有瞬变电流流过,造成导体两端出现电压浪涌;对屏蔽线而言,地电流虽只流经屏蔽层表面,但由于存在互感,在内芯导线上会感应出瞬变电压,其数值正比于屏蔽层电流的一阶导数。

由于地电流上升沿很陡,上升时间仅数白纳秒,故感应电压峰值极大,不但会干扰信息传输,还可能造成电路硬损伤。

图4-2 地电流瞬变4.1.3 电磁场辐射主放电通道一旦建立,云层电荷迅速与大地或云层异号感应电荷中和,回击电流急剧上升,受电荷电量、电位和通道阻抗影响,其上升速率最大可达500kA/μs;此时,放电通道构成等效天线,产生强烈的瞬态电磁辐射。

无论是闪电在空间的先导通道或回击通道中闪电产生的瞬变电磁场,还是闪电流进入地上建筑的避雷针系统以后所产生的瞬变电磁场,都会在一定范围产生电磁作用,对三维空间内的各种电子设备产生干扰和破坏作用。

图4-3是雷电放电各个阶段辐射电场强度波形,可见从雷雨云起电、预放电、阶跃先导到回击、后续回击等所有过程都伴随着电磁辐射。

图4-3 雷电辐射电场强度波形图4-4是首次回击产生的电场强度频谱;图4-5则是云内负闪电电场强度的频谱。

两图比较,地闪和云闪的电磁场的频带相近,主要成分都是分布在极低频(ELF,DC-3000Hz)和甚低频(VLF,3kHz)段,以长波干扰为主。

图4-4 回击电场强度频谱图4-5 云内负闪电电场强度频谱目前观测到的最大雷电感应电压为400kV,感应电流峰值为110kA;其中,产生感应电压的落雷中,首次回击占30%,二次回击占33%,三次以后的回击占37%。

对通信线路的实际观测证明,雷电电磁感应浪涌的波头平均值为25µs±2.5µs(10μs—50µs内的占90%),半峰值时间平均值为55µs±15µs(25µs—110µs的占90%)。

而且,大地电导率越低,感应雷电浪涌越大。

1971年,美国通用研究公司的R.D.Hill用类闪电(Like Lightning)规模进行仿真实验证明;磁场强度达到0.07Gs时,无屏蔽的计算机会产生误动作,而2.41Gs的脉冲磁场能使计算机永久损伤,虽然该模型与日前的雷电流模型有较大差别,但都基本反映了当时计算机的电磁敏感度进入20世纪80年代,随着超大规模集成电路、计算机技术和计算机网络系统的发展,对电磁脉冲的敏感程度有所提高,由于对电磁脉冲的防护相对较为薄弱,因此雷暴日虽未增加,但雷电灾害却呈逐年上升之势。

1984年,D.Jaeger研究了LEMP对军用电子设备的危害,提出能量耦合通道主要包括机壳、天线、馈线和穿壳导线,并且分析了各种典型元件的损伤阈值。

1988年,美国第26届航空科学年会上发表的研究报告指出,雷电对导弹的危害包括直击雷和电磁脉冲两个方面,其作用机理主要包括大电流直接注入,以及壳体电流与内部电路之间的能量耦合。

该报告参照美军标MIL-STD-1757中规定的雷电标准波形,建议用冲击电流发生器对导弹电弧放电模拟直击过程,而用脉冲高压发生器对地放电模拟LEMP。

在LEMP敏感度测试方面,美军标MILL-STD-464《系统电磁环境效应要求》,全面系统地提出了对武器系统全寿命过程中的电磁环境效应的一般要求,它所考虑的电磁环境效应包括雷电。

该标准中明确规定了用于雷电直接效应和间接效应的电流波形,规定10m处云地10A·(m·s)1-,电场变化率为6.8×1011V·(m·s)1-,该闪电的磁场变化率为2.2×9标准要求军械在暴露和储存条件先经历雷电的直接打击和近距离打击后应该保持安全并且满足其工作性能要求。

总的来说,目前对LEMP的研究,主要集中在建立雷电流数理模型、研究LEMP电磁场、雷电电磁脉冲辐射场对架空电力线的耦合等方面,但是,因为闪电的种类多、过程也比较复杂,并且由于使用的脉冲源和电磁环境不同,各国对用于电路测试的LEMP标准波形的规定也存在较大差异,尤其是模拟方式,还没有形成规范;有关LEMP对电子线路的效应和防护研究较少,而国内的LEMP危害研究大多借鉴国外研究经验,研究主要集中于雷电对电力传输线、变压器、通信线路等的影响方面。

4.2雷电脉冲场理论基础为研究雷电及电磁脉冲的时空分布规律,人们在雷电多发地区进行了许多实验测试。

但由于自然雷电的不可预测性,这种实验相当困难。

因此,采用人工引雷的方法,使云层对地放电。

人工引雷尽管与自然放电不完全相同,但可获得大量实验数据,为研究自然雷电提供了资料。

由于引雷成本高、成功率低,因此,必须从理论角度研究雷电电磁脉冲场的时空分布规律,为实验室模拟和防护研究提供理论依据。

雷电电磁场理论研究的一个重要方法是将理论推导与数值相结合,计算雷电电磁场时空分布。

雷电电磁场的计算有数值方法和解析方法。

用于电磁场计算的数值方法有矩量法、有限差分法、有限元法和边界元法等;解析方法有分离变量法、保角变换法、单极子法、偶极子法等。

偶极子法广泛的用于天线理论,包括雷电产生的电磁场,它要求知道电流密度的时空分布,用于计算推迟势非常有效,适合于计算雷电辐射的电磁场。

从20 世纪40 年代Bruce和Gold首次提出雷电回击模型以来,出现了许多雷电回击模型。

V.A.Rakov和M.A.Uman把雷电回击模型分为4类:气体动力学模型(物理模型)、电磁模型、分布电路模型和工程模型。

Drabkina、Braginskii和Dubovoy等人把回击模型看成圆柱形离子体,研究回击的多种物理特性,提出回击的物理模型。

这类模型中很多是把实验。

相关文档
最新文档