(完整word版)材料现代分析测试方法总结(2)汇总
材料现代分析测试方法复习

XRD X 射线衍射 TEM 透射电镜—ED 电子衍射 SEM 扫描电子显微镜—EPMA 电子探针(EDS能谱仪 WPS 波谱仪) XPS X 射线光电子能谱分析 AES 原子发射光谱或俄歇电子能谱IR —FT —IR 傅里叶变换红外光谱 RAMAN 拉曼光谱 DTA 差热分析法 DSC 差示扫描量热法 TG 热重分析 STM 扫描隧道显微镜 AFM 原子力显微镜测微观形貌:TEM 、SEM 、EPMA 、STM 、AFM 化学元素分析:EPMA 、XPS 、AES (原子和俄歇)物质结构:远程结构(XRD 、ED )、近程结构(RAMAN 、IR )分子结构:RAMAN官能团:IR 表面结构:AES (俄歇)、XPS 、STM 、AFMX 射线的产生:高速运动着额电子突然受阻时,随着电子能量的消失和转化,就会产生X 射线。
产生条件:1.产生并发射自由电子;2.在真空中迫使电子朝一定方向加速运动,以获得尽可能高的速度;3.在高速电子流的运动路线上设置一障碍物(阳极靶),使高速运动的电子突然受阻而停止下来。
X 射线荧光:入射的X 射线光量子的能量足够大将原子内层电子击出,外层电子向内层跃迁,辐射出波长严格一定的X 射线俄歇电子产生:原子K 层电子被击出,L 层电子如L2电子像K 层跃迁能量差不是以产生一个K 系X 射线光量子的形式释放,而是被临近的电子所吸收,使这个电子受激发而成为自由电子,即俄歇电子14种布拉菲格子特征:立方晶系(等轴)a=b=c α=β=γ=90°;正方晶系(四方)a=b ≠cα=β=γ=90°;斜方晶系(正交)a ≠b ≠c α=β=γ=90°;菱方晶系(三方)a=b=c α=β=γ≠90°;六方晶系a=b ≠c α=β=90°γ=120°;单斜晶系a ≠b ≠c α=β=90°≠γ;三斜晶系a ≠b ≠c α≠β≠γ≠90°布拉格方程的推导 含义:线照射晶体时,只有相邻面网之间散射的X 射线光程差为波长的整数倍时,才能产生干涉加强,形成衍射线,反之不能形成衍射线。
材料现代分析方法

材料现代分析方法材料现代分析方法是指利用现代科学技术手段对材料进行分析和研究的方法。
随着科学技术的不断发展,材料分析方法也在不断更新和完善。
现代材料分析方法的发展,为材料科学研究提供了更加精准、快速和全面的手段,对于材料的研究和应用具有重要的意义。
首先,光谱分析是材料现代分析方法中的重要手段之一。
光谱分析是利用物质对电磁波的吸收、发射、散射等现象进行分析的方法。
常见的光谱分析方法包括紫外可见吸收光谱、红外光谱、拉曼光谱等。
通过光谱分析,可以对材料的结构、成分、性质等进行研究和分析,为材料的研究和应用提供重要的信息。
其次,电子显微镜分析也是材料现代分析方法中的重要手段之一。
电子显微镜是利用电子束来照射样品,通过电子与样品相互作用产生的信号来获取样品的显微结构和成分信息的一种显微镜。
通过电子显微镜分析,可以对材料的微观形貌、晶体结构、成分分布等进行研究和分析,为材料的结构性能和应用提供重要的参考。
此外,质谱分析也是材料现代分析方法中的重要手段之一。
质谱分析是利用质谱仪对物质进行分析的方法,通过对物质中离子的质量和相对丰度进行检测和分析,来确定物质的分子结构和成分。
质谱分析可以对材料的组成、纯度、分子量等进行研究和分析,为材料的质量控制和应用提供重要的支持。
综上所述,材料现代分析方法是利用现代科学技术手段对材料进行分析和研究的方法。
光谱分析、电子显微镜分析、质谱分析等都是材料现代分析方法中的重要手段,通过这些方法可以对材料的结构、成分、性能等进行全面的研究和分析,为材料的研究和应用提供重要的支持。
随着科学技术的不断发展,相信材料现代分析方法将会更加完善和精准,为材料科学研究和应用带来更多的新突破。
材料现代分析测试方法

材料现代分析方法深圳大学材料学院主讲:李均钦材料现代分析方法主要参考书:1. 周玉主编,材料分析方法,哈工大出版社2007年版。
2. 黄新民、解挺编,材料分析测试方法,国防工业出版社2006年版。
3. 王富耻主编材料现代分析测试方法,北京理工大学出版社2006年版。
4. 梁敬魁编,粉末衍射法测定晶体结构,科学出版社2003年版。
绪论能源人类文明的三大支柱{{信息材料结构材料功能材料材料:用以制造有用构件、器件或其它物品的物质结构材料: 耐高温、耐高压、高强度材料等功能材料: 磁性材料、半导体材料、超导体材料化学成分材料的性能主要取决于{结构组织形态为了了解所获材料的化学组成、物相组成、结构、组织形态及各种研究技术对材料性能的影响,需要采用相应的分析表征方法。
材料现代分析方法是一门技术性实验方法性的课程。
绪论材料现代分析测试方法的含义:广义:技术路线、实验技术、数据分析狭义:测试组成和结构的仪器方法如:X射线衍射分析电子显微分析表面分析热分析光谱分析(光谱和色谱-高分子方向单独开)绪论化学成分材料的性能主要取决于{结构组织形态本课程主要介绍研究材料化学组成、物相组成、结构、组织形态的现代分析方法。
本课程的内容主要有:1、X射线粉末衍射分析(XRD:X-ray diffraction)主要用于物相分析和晶体结构的测定。
它所获取的所有信息都基于材料的结构。
绪论本课程的内容主要有:1、X射线粉末衍射分析(XRD:X-ray diffraction)主要用于物相分析和晶体结构的测定。
它所获取的所有信息都基于材料的结构。
绪论本课程的内容主要有:2、透射电子显微镜(TEM)(transition electron microscope)电子束透过薄膜样品,用于观察样品的形态,通过电子衍射测定材料的结构,从而确定材料的物相。
分辨率:0.34nm● 加速电压:75kV-200kV;放大倍数:25万倍● 能谱仪:EDAX -9100;扫描附件:S7010 透射电镜绪论本课程的内容主要有:3)扫描电子显微镜(SEM)电子束在样品表面扫描,用于观察样品的形貌(具有立体感);通过电子束激发样品的特征X射线获取样品的成分信息。
材料现代测试分析方法

材料现代测试分析方法的应用现状与发展趋势1. 前言 (2)2. (X)射线衍射的现状与发展趋势 (3)2.1 X 射线衍射方法 (3)2.2. X 射线衍射的应用和发展趋势 (3)2.2.1 X 射线衍射分析的应用 (3)2.2.2 X 射线衍射仪的应用 (4)2.3 X 射线衍射的发展趋势 (5)3. 材料电子显微分析方法应用现状与发展趋势 (6)3.1 扫描电子显微镜(SEM) (6)3.2 透射电子显微镜(TEM) (8)4. 电子能谱分析方法应用现状与发展趋势 (9)4.1 俄歇电子能谱分析方法及其应用 (9)4.1.1 AES 谱仪的基本结构 (9)4.1.2 俄歇电子能谱技术的应用 (10)4.2 X 射线光电子能谱分析及其应用 (13)4.2.1 XPS 谱仪的基本结构 (13)4.2.2 XPS 谱图分析技术的应用 (13)5. 光谱分析方法应用现状与发展趋势 (15)5.1 傅立叶变换红外光谱仪的应用 (15)2. 在表面化学研究中的应用 (17)3. 在催化化学研究中的应用 (17)4. 在石油化学研究中的应用 (17)5. 在环境分析中的应用 (18)6. 在半导体和超导材料等方面的应用 (18)5.2 拉曼光谱的应用 (19)6. 致谢 (22)参考文献 (22)1. 前言材料现代测试分析方法如今应用于测试分析的各个领域,它精确的电脑测算系统满足现代高水平、高精确的测算。
它领先的分析技术应用于金属失效领域的各个分析方面,满足了纳米级材料分析的现状。
材料测试分析方法主要包括以下几个方面:1. X 射线衍射自1895年X射线被发现以来,可利用X射线分辨的物质系统越来越复杂。
从简单物质系统到复杂的生物大分子,X 射线已经为我们提供了很多关于物质静态结构的信息。
此外,在各种测量方法中,X射线衍射方法具有不损伤样品、无污染、快捷、测量精度高、能得到有关晶体完整性的大量信息等优点。
由于晶体存在的普遍性和晶体的特殊性能及其在计算机、航空航天、能源、生物工程等工业领域的广泛应用,人们对晶体的研究日益深入,使得X射线衍射分析成为研究晶体最方便、最重要的手段。
材料现代分析测试方法

1.2 X射线物理学基础
一、 X射线的产生与性质
(一)X射线的产生 (二)X
二、 X射线谱
(一)连续谱 (二)特征谱
三. X射线与物质的相互作用 四. X射线的吸收
上一页 返回
(一) X射线的产生
为获得X射线,需具备如下条件: (1)产生并发射自由电子; (2)在真空中迫使电子朝一定方向加速运动,以获得尽可能高的速度; (3)在高速电子流的运动路线上设置一障碍物;使高速运动的电子突然受
阻而停止下来。 X射线发生装置示意图
下一页 返回
(二)X射线的性质
X射线从本质上来说,和无线电波、可见光、γ射线等一样,也是电磁波,其波长 范围在0 001~100 nm之间,介于紫外线和γ射线之间,但没有明显的分界。
上一页 返回
(二)特征谱
特征X射线产生原理图 特征谱的相对强度是由电子在各能级之间的跃迁几率决定的,还与跃 迁前原来壳层上的电子数多少有关 。 由于愈靠近原子核的内层电子的结合能愈大,所以击出同一靶材原子
下一页
第一章 X射线衍射分析原理
1.1 概述 1.2 X射线物理学基础 1.3 X射线衍晶体学基础 1.4 X射线衍射方向 1.5 X射线衍射强度
下一页
1.1 概述
X射线衍射对于20世纪科学起着奠基石的作用。 1895年,德国物理学家伦琴(WCRntgen),在研究真管空的高 压放电现象时,发现了X射线。 几个月之后,医学界就将X射线运用于诊断及医疗. X射线衍射学除了用来研究晶体的微观结构外,已发展成为应用极广 一门实用科学 . X射线衍射分析在材料科学中的应用大体可归纳为四个方面: (1)晶体结构研究 (2)物相分析 (3)精细结构研究 (4)单晶体取向及多晶织构的测定
材料现代分析测试方法总结(2)

名词解释:晶带:晶体中,与某一晶向[uvw]平行的所有(HKL)晶面属于同一晶带,称为[uvw]晶带。
辐射的吸收:辐射通过物质时,其中某些频率的辐射被组成物质的粒子(原子、离子或分子等)选择性地吸收,从而使辐射强度减弱的现象。
辐射被吸收程度对ν或λ的分布称为吸收光谱。
辐射的发射:物质吸收能量后产生电磁辐射的现象。
辐射的散射:电磁辐射与物质发生相互作用,部分偏离原入射方向而分散传播的现象光电离:入射光子能量(hν)足够大时,使原子或分子产生电离的现象。
光电效应:物质在光照射下释放电子(称光电子)的现象又称(外)光电效应。
点阵消光:因晶胞中原子(阵点)位置而导致的|F|2=0的现象系统消光:晶体衍射实验数据中出现某类衍射系统消失的现象。
结构消光:在点阵消光的基础上,因结构基元内原子位置不同而进一步产生的附加消光现象,称为结构消光。
衍射花样指数化:确定衍射花样中各线条(弧对)相应晶面(即产生该衍射线条的晶面)的干涉指数,并以之标识衍射线条,又称衍射花样指数化(或指标化)。
背散射电子:入射电子与固体作用后又离开固体的总电子流。
特征X射线:射线管电压增至某一临界值,使撞击靶材的电子具有足够能量时,可使靶原子内层产生空位,此时较外层电子将向内层跃迁产生辐射即是特征X 射线。
俄歇电子:由于原子中的电子被激发而产生的次级电子,在原子壳层中产生电子空穴后,处于高能级的电子可以跃迁到这一层,同时释放能量。
当释放的能量传递到另一层的一个电子,这个电子就可以脱离原子发射,被称为俄歇电子。
二次电子:入射电子从固体中直接击出的的原子的核外电子和激发态原子退回基态时产生的电子发射,前者叫二次电子,后者叫特征二次电子。
X射线相干散射:入射光子与原子内受核束缚较紧的电子发生弹性碰撞作用,仅其运动方向改变没有能量改变的散射。
X射线非相干散射:入射光子与原子内受到较弱的电子或者晶体中自由电子发生非弹性碰撞作用,在光子运动方向改变的同时有能量损失的散射。
现代材料分析测试考试总结

现代材料分析测试考试重点总结1、X射线产生的条件:①用某种方法得到一定量的自由电子;②使这些自由电子在一定方向上做高速运动;③在电子运动的轨迹上设置一个能急剧阻止其运动的障碍物。
2、连续谱:在不同管压下都存在的、曲线呈丘包状的X射线谱成为连续谱。
3、连续辐射:大量电子击靶所辐射出的X射线光量子的波长必然是按统计规律连续分布,覆盖着一个很大的波长范围,故这种辐射成为连续辐射。
4、特征辐射:波长值能够反映出原子序数特征,而与原子所处的物理、化学状态无关的辐射成为特征辐射。
5、特征X射线谱:因X射线强度峰的波长反映了物质的原子序数特征,所以叫特征X射线,由特征X射线构成的X射线谱称为特征X射线谱。
6、Kα线:K层电子逸出后,电子由L→K跃迁,辐射出来的是K系特征谱线中的Kα线。
7、Kβ线:K层电子逸出后,电子由M→K跃迁,辐射出来的是K系特征谱线中的Kβ线。
8、相干散射:X射线的散射中含有与入射线束波长一致的线束,此种波长不变的散射称为相干散射。
9、非相干散射:X射线的散射中出现了随散射角增大散射线束波长增大的现象,这种移向长波的散射称为非相干散射。
10、二次特征辐射:为区别于电子击靶时产生的特征辐射,称由X射线激发产生的特征辐射为二次特征辐射。
11、倒易点阵的定义:如果用a、b、c表示晶体点阵的基本矢量;用a*、b*、c*来表示倒易点阵的基本平移矢量。
相对倒易点阵而言,把晶体点阵称为正点阵,则倒易点阵与正点阵的基本对应关系为:a* b=a* c=b* a=b* c=c* a=c* b=0; a* a=b* b=c* c=1。
12、倒易点阵的性质:①倒易矢量r*垂直于正点阵中的HKL面;②倒易矢量r*的长度等于HKL晶面间距d hkl的倒数13、劳厄方程的优缺点及应用:用途:解释了衍射现象;解决了衍射线的方向的问题;确定晶体结构。
优点:从本质上告诉我们如何获得衍射缺点:用劳厄方程描述X射线对晶体的衍射现象时,入射线、衍射线与晶轴的六个夹角不易决定,用该方程组求点阵常数比较困难,使用不方便。
材料现代分析方法

材料现代分析方法一.绪论1.材料现代分析方法:是关于材料成分、结构、微观形貌与缺陷等的现代分析,测试技术及其有关理论基础的科学。
2.基于电磁辐射及运动粒子束与物质相互作用的各种性质建立的各种分析方法已成为材料现代分析方法的重要组成部分,大体可分为光谱分析、电子能谱分析、衍射分析与电子显微分析等四大类方法。
3.各种方法的分析、检测过程均可大体分为信号发生器、检测器、信号处理器与读出装置等几部分组成。
二.核磁共振1.核磁共振(Nuclear Magnetic Resonance,NMR):无线电波照射样品时,使特定化学结构环境中的原子核发生的共振跃迁(核自旋能级跃迁)。
2.拉摩尔进动:外磁场与核自旋磁场的相互作用,导致核自旋轴绕磁场方向发生回旋,称为拉摩尔进动。
3.核磁共振现象的产生机理:主要是由核的自旋运动引起的,核的自旋产生了不同的核自旋能级,当某种频率的电磁辐射与核自旋能级差相同时,原子核从低自旋能级跃迁到高自旋能级,产生了核磁共振现象。
4.描述核自旋运动的量子数I与原子核的质子数和中子数有关,有下列三种情况:(1)偶-偶核,I=0;(2)奇-偶核,I为半整数;(3)奇-奇核,I为整数。
5.核磁共振的条件:(1)原子核有自旋现象(I﹥0);(2)在外磁场中发生能级裂分;(2π)。
(3)照射频率与外磁场的比值υB=γIB。
6.1H核磁共振条件:υO=γI2π7.化学位移:某一质子吸收峰出现的位置,与标准物质质子吸收峰出现的位置之间的差异,称为该质子的化学位移δ。
8.化学位移现象:同一种类原子核,但处在不同的化合物中,或是虽在同一种化合物中,但所处的化学环境不同,其共振频率也稍有不同,这就是所谓的化学位移现象。
9.影响化学位移的因素:诱导效应、共轭效应、磁各向异性效应、氢键效应和溶剂效应。
质子周围电子云密度↑,屏蔽效应↑,在较高磁场强度处(高场)发生核磁共振,δ小;电子云密度↓,屏蔽效应↓,在较低磁场强度处(低场)发生核磁共振,δ大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
名词解释:晶带:晶体中,与某一晶向[uvw]平行的所有(HKL)晶面属于同一晶带,称为[uvw]晶带。
辐射的吸收:辐射通过物质时,其中某些频率的辐射被组成物质的粒子(原子、离子或分子等)选择性地吸收,从而使辐射强度减弱的现象。
辐射被吸收程度对ν或λ的分布称为吸收光谱。
辐射的发射:物质吸收能量后产生电磁辐射的现象。
辐射的散射:电磁辐射与物质发生相互作用,部分偏离原入射方向而分散传播的现象光电离:入射光子能量(hν)足够大时,使原子或分子产生电离的现象。
光电效应:物质在光照射下释放电子(称光电子)的现象又称(外)光电效应。
点阵消光:因晶胞中原子(阵点)位置而导致的|F|2=0的现象系统消光:晶体衍射实验数据中出现某类衍射系统消失的现象。
结构消光:在点阵消光的基础上,因结构基元内原子位置不同而进一步产生的附加消光现象,称为结构消光。
衍射花样指数化:确定衍射花样中各线条(弧对)相应晶面(即产生该衍射线条的晶面)的干涉指数,并以之标识衍射线条,又称衍射花样指数化(或指标化)。
背散射电子:入射电子与固体作用后又离开固体的总电子流。
特征X射线:射线管电压增至某一临界值,使撞击靶材的电子具有足够能量时,可使靶原子内层产生空位,此时较外层电子将向内层跃迁产生辐射即是特征X 射线。
俄歇电子:由于原子中的电子被激发而产生的次级电子,在原子壳层中产生电子空穴后,处于高能级的电子可以跃迁到这一层,同时释放能量。
当释放的能量传递到另一层的一个电子,这个电子就可以脱离原子发射,被称为俄歇电子。
二次电子:入射电子从固体中直接击出的的原子的核外电子和激发态原子退回基态时产生的电子发射,前者叫二次电子,后者叫特征二次电子。
X射线相干散射:入射光子与原子内受核束缚较紧的电子发生弹性碰撞作用,仅其运动方向改变没有能量改变的散射。
X射线非相干散射:入射光子与原子内受到较弱的电子或者晶体中自由电子发生非弹性碰撞作用,在光子运动方向改变的同时有能量损失的散射。
K系特征辐射:原子K层出现空位,较外的L层电子向内的K层辐射跃迁,发射的辐射。
L 系特征辐射:原子的L 层出现空位,其外M,N 层电子跃迁产生的谱线统称为L 系特征辐射。
吸收限:X 射线照射固体物质产生光子效应时能量阀值对应的波长称为物质的吸收限。
X 射线散射:X 射线与物质作用(主要是电子)时,传播方向发生改变的现象。
X 射线衍射:散射X 射线干涉一致加强的结果,即衍射。
X 射线反射:与可见光的反射不同,是“选择反射”,实质是晶体中各原子面产生的反射方向上的相干散射线。
热分析:在程序控制温度条件下,测量物质的物理性质随温度或时间变化的函数关系的技术。
差热分析(DTA):在程序控制温度条件下,测量样品与参比物之间的温度差与温度(或时间)关系的一种热分析方法。
差示扫描量热法(DSC):在程序控制温度条件下,测量输入给样品与参比物的功率差与温度(或时间)关系的一种热分析方法。
简答题1、连续X 射线:从某一短波限λ。
开始,直至波长等于无穷大λ∞的一系列波长。
特征X 射线: 具有一定波长的特强X 射线,叠加于连续X 射线谱上。
连续X 射线谱:强度随波长连续变化的谱线。
特征X 射线谱:当管电压达到阳极材料某特征U K 时,在某特定波长范围处,产生的强度特别大的谱线X 射线管适宜工作电压U ≈(3~5)U k光电效应:当入射光子的能量等于或大于碰撞体原子某壳层电子的结合能时,光子被电子吸收,获得能量的电子从内层溢出,成为自由电子,即光电子,高能量层电子填补激发态空位,能量差以X 射线形式辐射,该现象称为光电效应。
二次X 射线(荧光辐射):由入射X 射线所激发出来的特征X 射线。
俄歇效应:当原子中K 层的一个电子被打出后,它就处于K 激发状态,其能量为Ek 。
如果一个L 层电子来填充这个空位,K 电离就变成了L 电离,其能由Ek 变成El ,此时将释Ek-El 的能量,可能产生荧光χ射线,也可能给予L 层的电子,使其脱离原子产生二次电离。
即K 层的一个空位被L 层的两个空位所替代,这种现象称俄歇效应。
滤波材料λk:相干散射:当入射线与原子内受核束缚较紧的电子相遇,光量子能量不足以使原子电离,但电子可在X 射线交变电场作用下发生受迫振动,这样的电子就成为一个电磁波的发射源,向周围辐射与入射X 射线波长相同的辐射,因为各电子所散射的射线波长相同,有可能相互干涉,故称αβλλλK K K <<相干散射。
不相干散射:能量为hv 的光子与自由电子或受核束缚较弱的电子碰撞,将一部分能量给予电子,使其动量提高,成为反冲电子,光子损失了能量,并改变了运动的方向,能量减少hv ,显然v`<v ,此为不相干散射。
2、连续谱受管电压、管电流和阳极靶材的原子序的作用及相互关系 见书P7、93、晶面指数干涉面指数:晶面(h k l )的n 级反射面(nh nk nl )用(H K L )表示,称为反射面或干涉面,干涉面的面指数即干涉面指数,有公约数n 。
干涉面间距d HKL =a/根号(H^2+K^2+L^2)。
4、X 射线衍射方法:1)、劳埃法 采用连续X 射线照射不动的单晶体,用垂直于入射线的平底片记录衍射线而得到劳埃斑点。
劳埃法多用于单晶体取向测定及晶体对称性的研究。
2)、周转晶体法 采用单色X 射线照射转动的单晶体,并用一张以旋转轴为轴的圆筒形底片来记录确定晶体的结构。
3)、粉末法 采用单色X 射线照射多晶体。
有数量众多、取向混乱的微晶体组成。
各微晶体中某种指数的晶面在空间占有各种方位。
粉末法主要用于测定晶体结构,进行物相定性、定量分析,精确测定晶体的点阵参数以及材料的应力、织构、晶粒大小的测定等。
5、布拉格方程布拉格方程 2dsin θ=λ中的d 、θ、λ分别表示什么?布拉格方程式有何用途?答:d HKL 表示HKL 晶面的面网间距,θ角表示掠过角或布拉格角,即入射X 射线或衍射线与面网间的夹角,λ表示入射X 射线的波长。
该公式有二个方面用途:(1)已知晶体的d 值。
通过测量θ,求特征X 射线的λ,并通过λ判断产生特征X 射线的元素。
这主要应用于X 射线荧光光谱仪和电子探针中。
(2)已知入射X 射线的波长, 通过测量θ,求晶面间距。
并通过晶面间距,测定晶体结构或进行物相分析。
6、产生电子衍射的充分条件是F hkl ≠0, 产生电子衍射必要条件是满足或基本满足布拉格方程。
系统消光:由于F HKL =0而使衍射线消失的现象称为系统消光。
7、几种点阵的结构因数计算8、多晶体衍射的相对积分强度:M HKL e A F P I 2222)(cos sin 2cos 1-+=θθθθ9、总结简单点阵、体心点阵和面心点阵衍射线的系统消光规律。
晶体结构结构消光(F hkl=0)条件简单主体无结构消光体心立方h+k+l=奇数面心立方h、k、l奇偶混合体心正方h+k+l=奇数10.量子数n、l与m如何表征原子能级?在什么情况下此种表征失去意义?答:原子中核外电子的运动状态由主量子数n、角量子数l、磁量子数m、自旋量子数s和自旋磁量子数m s表征。
n、l、m共同表征了电子的轨道运动,而s与ms则是电子自旋运动的表征。
n决定电子运动状态的主要能量(主能级能量,E),n值越大,则电子离核越远,能量越高。
l取值为0~n-1的正整数,对应于l=0,1,2,3,…的电子亚层或原子轨道形状分别称为s、p、d、f等层或(原子)轨道。
磁量子数m取值为0,±1,±2,…,±l。
当无外磁场存在时,同一亚层伸展方向不同的轨道具有相同的能量。
当有外磁场时,只用量子数n、l与m表征的原子能级失去意义。
11.简述电子与固体作用产生的信号及据此建立的主要分析方法。
答:电子与固体作用产生的信号主要有:背散射电子,二次电子,透射电子,吸收电子,俄歇电子,X射线、表面元素发射等;建立的分析方法主要有透射电子显微镜(TEM),扫描电子显微镜(SEM),电子探针X射线显微分析(EPMA),俄歇电子能谱(AES)等。
12.电子与固体作用产生多种粒子信号(如下图),哪些对应入射电子?哪些是由电子激发产生的?答:图中背散射电子流IR 、吸收电流IA和透射电子流IT对应入射电子;二次电子流IS 、X射线辐射强度IX、表面元素发射总强度IE是由电子激发产生的。
13.电子“吸收”与光子吸收有何不同?答:电子吸收是指由于电子能量衰减而引起的强度(电子数)衰减的现象。
电子吸收只是能量衰减到不能逸出样品,而不是真的被吸收了。
光子的吸收是因光子的能量与物质中某两个能级差相等而被吸收,光子被真吸收了,转化成了另外的能量。
14.入射X射线比同样能量的入射电子在固体中穿入深度大得多,而俄歇电子与X光电子的逸出深度相当,这是为什么?答:因为俄歇电子与X光电子的能量差不多,都比较小,在内部经多次散射后能量衰减,难以逸出固体表面,只有表面几个原子层产生的俄歇电子和X光电子才能逸出表面,从而被电子能谱仪检测到。
15.简述布拉格方程的意义。
答:布拉格公式2dHKL sinθ=λ中,dHKL——干涉指数为(HKL)的晶面的晶面间距,θ——X射线的入射方向或反射(衍射)方向与(HKL)面之间的夹角(叫掠射角或布拉格角),λ——入射X射线的波长,该公式表达了晶面间距d、衍射方向θ和X射线波长λ之间的定量关系。
该公式的基本应用及意义有:(1)已知X射线的波长λ和掠射角θ,可计算晶面间距d(分析晶体结构);(2)已知晶体结构(晶面间距d)和掠射角θ,可测定(分析)X射线的波长λ,进行元素成分分析(加上莫塞莱定律)。
16.某斜方晶体晶胞含有两个同类原子,坐标位置分别为:(3/4,3/4,1)和(1/4,1/4,1/2),该晶体属何种布拉菲点阵?写出该晶体(100)、(110)、(211)、(221)等晶面反射线的F2值。
如果将原子(1/4,1/4,1/2)移动到原点(0,0,0),则另一原子的坐标变为(1/2,1/2,1/2),因此该晶体属布拉菲点阵中的斜方体心点阵。
对于体心点阵:17.简述影响X射线衍射强度的因素答:影响X射线衍射方向和强度的因素主要有:入射X射线的波长λ和强度I、产生衍射的晶面的晶面间距d、样品的成分和结构、产生衍射的晶面的多重性、衍射时的温度、样品对入射X射线的吸收性质、实验条件等。
18.试总结德拜法衍射花样的背底来源,并提出一些防止和减少背底的措施。
答:德拜法衍射花样的背底来源主要有:(1)荧光X射线;(2)入射X射线的单色性(连续X射线和Kβ辐射的干扰)等。
防止和减少背底的主要措施:(1)选择合适的靶材,尽量少地激发样品产生荧光X射线,以降低衍射花样背底,使图像清晰;(2)选择合适的狭缝宽度(在保证入射X射线强度的前提下,尽量减小狭缝宽度),提高X射线的单色性;(3)选择适当的滤光片,尽量减少连续X射线和Kβ辐射的干扰,等等。